Devoir de Mathématiques numéro 2

Exercice 1 (Ecricome ECS 2009)

Le but de l'exercice est l'étude de la fonction f définie par la formule suivante :

$$f(x) = \int_0^{+\infty} e^{-2t} \sqrt{1 + x^2 e^{2t}} \, dt$$

- 1) Domaine de définition, parité et valeur en x = 0 de f.
- 2) Branche infinie de \mathscr{C}_f :
 - a) Montrer que $\forall (x,t) \in]0, +\infty[\times \mathbb{R}_+ \quad xe^t \leqslant \sqrt{1+x^2e^{2t}} \leqslant xe^t + \frac{e^{-t}}{2x}$
 - b) En déduire que $\forall x > 0, x \leqslant f(x) \leqslant x + \frac{1}{6x}$ puis la nature de la branche infinie de \mathscr{C}_f au voisinage de $+\infty$.
- 3) Montrer que f est \mathscr{C}^1 sur son domaine de définition. Donner son tableau de variations.
- 4) a) Soit x > 0. En effectuant le changement de variable $u = xe^t$, déterminer une nouvelle expression de f. Faire de même pour f'.
 - b) Montrer que f est solution d'une équation différentielle que l'on précisera.
 - c) Montrer que, pour tout x > 0, $\int_x^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}} = -\frac{\ln x}{\sqrt{1+x^2}} + \int_x^{+\infty} \frac{u\ln u}{(1+u^2)^{\frac{3}{2}}} \,\mathrm{d}u$ et que la fonction $u \mapsto \frac{u\ln u}{(1+u^2)^{\frac{3}{2}}}$ est intégrable sur $]0, +\infty[$.
 - d) En déduire un équivalent de f' puis de $f \frac{1}{2}$ au voisinage de 0.