Devoir de Mathématiques numéro 2

Correction

Exercice 1

Pour tout $x \in \mathbb{R}$, on pose $F(x) = \int_0^{+\infty} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$.

1) Majorons $\exp\left(-\left(t^2+\frac{x^2}{t^2}\right)\right)$ indépendamment de x: Soit $x\in\mathbb{R}$ et $t\in]0,+\infty[$.

$$t^{2} > 0 \Longrightarrow \frac{1}{t^{2}} > 0$$

$$\Longrightarrow \frac{x^{2}}{t^{2}} > 0$$

$$\Longrightarrow -\left(t^{2} + \frac{x^{2}}{t^{2}}\right) < -t^{2}$$

$$\Longrightarrow \exp\left(-\left(t^{2} + \frac{x^{2}}{t^{2}}\right)\right) < e^{-t^{2}}$$

Posons

$$\forall t \in [0, +\infty[, \quad \varphi(t) = e^{-t^2}]$$

Montrons que φ est intégrable sur $[0, +\infty[$: La fonction φ est continue sur $[0, +\infty[$.

Étude en $+\infty$:

Par croissance comparée, $t^2 e^{-t^2} \xrightarrow[t \to +\infty]{} 0$, donc $\varphi(t) = o(\frac{1}{t^2})$.

Or $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (Riemann, $\alpha = 2 > 1$). Donc, par théorème de comparaison,

La fonction φ est intégrable sur $[0, +\infty[$

Montrons que F est continue sur \mathbb{R} : Soit $I=]0,+\infty[,\ D=\mathbb{R}$ et, définie sur $D\times I,$

$$h(x,t) = \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$$

- $\forall t \in I$, la fonction $x \mapsto h(x,t)$ est continue sur D.
- $\forall x \in D$, la fonction $t \mapsto h(x,t)$ est continue par morceaux sur I.
- La fonction $\varphi: I \to \mathbb{R}_+$ définie ci-dessus par $\varphi(t) = e^{-t^2}$ est **intégrable sur** I et, d'après ci-dessus,

$$\forall (x,t) \in D \times I, \qquad 0 \leqslant h(x,t) \leqslant \varphi(t)$$

Donc, d'après le théorème de continuité sous le signe somme,

F est définie et continue sur \mathbb{R}

Parité : Soit $x \in \mathbb{R}$.

$$F(-x) = \int_0^{+\infty} \exp\left(-\left(t^2 + \frac{(-x)^2}{t^2}\right)\right) dt = F(x)$$

Donc

2) Soit $0 < a < b : [a, b] \subset \mathbb{R}_+^*$. Montrons que F est \mathscr{C}^1 sur [a, b].

Majorons $\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$ indépendamment de x: Soit $x \in [a, b]$ et $t \in]0, +\infty[$.

$$t^{2} > 0 \Longrightarrow \frac{1}{t^{2}} > 0$$

$$\Longrightarrow \frac{a^{2}}{t^{2}} \leqslant \frac{x^{2}}{t^{2}} \leqslant \frac{b^{2}}{t^{2}}$$

$$\Longrightarrow 0 < -\left(t^{2} + \frac{b^{2}}{t^{2}}\right) \leqslant -\left(t^{2} + \frac{x^{2}}{t^{2}}\right)$$

$$\Longrightarrow \exp\left(-\left(t^{2} + \frac{x^{2}}{t^{2}}\right)\right) \leqslant \exp\left(-\left(t^{2} + \frac{a^{2}}{t^{2}}\right)\right)$$

$$\Longrightarrow \frac{2x}{t^{2}} \exp\left(-\left(t^{2} + \frac{x^{2}}{t^{2}}\right)\right) \leqslant \frac{2b}{t^{2}} \exp\left(-\left(t^{2} + \frac{a^{2}}{t^{2}}\right)\right)$$

$$\Longrightarrow \frac{2x}{t^{2}} \exp\left(-\left(t^{2} + \frac{x^{2}}{t^{2}}\right)\right) \leqslant \frac{2b}{t^{2}} \exp\left(-\left(t^{2} + \frac{a^{2}}{t^{2}}\right)\right)$$

Posons

$$\forall t \in]0, +\infty[, \quad \psi(t) = \frac{2b}{t^2} \exp\left(-\left(t^2 + \frac{a^2}{t^2}\right)\right)$$

Montrons que ψ est intégrable sur $]0, +\infty[$: La fonction ψ est continue sur $]0, +\infty[$.

• Étude en $0: \psi(t) \sim \frac{2b}{t^2}e^{-\frac{a^2}{t^2}}$. Quand $t \to 0$, $u = \frac{1}{t^2}$ tends vers $+\infty$. Or $\lim_{u \to +\infty} 2bue^{-a^2u} = 0$ par croissance comparée.

Donc $\lim_{t\to 0} \psi(t) = 0$. Ainsi, ψ est prolongeable par continuité en 0.

Par conséquent $\int_0^1 \psi(t) dt$ converge car faussement généralisée.

• Étude en $+\infty$:

Pour tout $t \geqslant 1$.

$$0 \leqslant \psi(t) \leqslant \frac{2b}{t^2} e^{-t^2} \leqslant 2be^{-t^2}$$

Or $\int_{1}^{+\infty} e^{-t^2} dt$ converge d'après 1). Donc, par théorème de majoration, $\int_{1}^{+\infty} \psi(t) dt$ converge.

Conclusion:

La fonction ψ est intégrable sur $]0, +\infty[$

 $\frac{\text{Montrons que } F \text{ est } \mathscr{C}^1 \text{ sur } [a,b] :}{\text{Posons } D = [a,b], \, I =]0, +\infty[\text{ et } h \text{ comme ci-dessus.}}$

- $\forall t \in I$, la fonction $x \mapsto h(x,t)$ est de classe \mathscr{C}^1 sur D;
- $\forall x \in D$, la fonction $t \mapsto h(x,t)$ est intégrable sur I (d'après 1)); la fonction $t \mapsto \frac{\partial h}{\partial x}(x,t) = -\frac{2x}{t^2}e^{-\left(t^2 + \frac{x^2}{t^2}\right)}$ est \mathscr{C}^0 donc continue par morceaux sur I.

• Soit $\varphi: I \to \mathbb{R}_+$ définie par $\varphi(t) = \frac{2b}{t^2} \exp\left(-\left(t^2 + \frac{a^2}{t^2}\right)\right)$. La fonction φ est **intégrable sur** I d'après ci-dessus et, toujours d'après ci-dessus

$$\forall (x,t) \in D \times I, \qquad \left| \frac{\partial h}{\partial x}(x,t) \right| = \frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) \leqslant \psi(t)$$

Donc, d'après le théorème de dérivation sous le signe somme (ou théorème de Leibniz), il vient

$$F \text{ est } \mathscr{C}^1 \text{ sur } [a, b] \text{ et } F'(x) = \int_0^{+\infty} -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt.$$

Ceci est vrai pour tout $[a,b] \subset \mathbb{R}_+^*$, donc sur $\bigcup_{0 < a < b} [a,b] = \mathbb{R}_+^*$:

$$F \operatorname{est} \mathscr{C}^1 \operatorname{sur} \mathbb{R}_+^* \operatorname{et} F'(x) = \int_0^{+\infty} -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt.$$

3) On cherche un changement de variable qui laisse inchangé]0,+∞[: il y a u = 1/t. On essaye, on ajuste. Deviner un changement de variable est une question relativement délicate, mais comme je vous l'ai déjà dit, je suis là pour répondre aux questions si vous êtes bloqués.

Soit x > 0. Effectuons le changement de variable $u = \varphi(t) = \frac{x}{4}$.

La fonction φ est \mathscr{C}^1 , strictement décroissante et bijective de \mathbb{R}_+^* dans \mathbb{R}_+^* .

De plus, $du = -\frac{x}{t^2} dt$, $t = \frac{x}{u}$. Et φ envoie 0 sur $+\infty$ et $+\infty$ sur 0 (bornes)

Donc, d'après le théorème de changement de variable, les intégrales $\int_0^{+\infty} -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$

et $-\int_0^{+\infty} 2 \exp\left(-\left(\left(\frac{x}{u}\right)^2 + u^2\right)\right) du$ sont de même nature, donc convergente d'après 2), et

$$F'(x) = \int_0^{+\infty} -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$$
$$= -\int_0^{+\infty} 2 \exp\left(-\left(\left(\frac{x}{u}\right)^2 + u^2\right)\right) du$$
$$= -2F(x)$$

Ainsi

La fonction
$$F$$
 est solution de $y' + 2y = 0$ sur \mathbb{R}_+^*

4) Les solution de l'équation différentielle y' + 2y = 0 sont les f telles que

$$\forall x > 0, \qquad f(x) = Ce^{-2x}$$

Donc, pour tout x > 0, $F(x) = Ce^{-2x}$ avec $C \in \mathbb{R}$ une constante.

Or F est continue sur \mathbb{R} et $F(0) = \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$ (exercices 1 et 2 de la feuille d'exercice de la semaine – ce n'est pas à connaître par coeur). Donc

$$C = \lim_{x \to 0} Ce^{-2x} = F(0) = \frac{\sqrt{\pi}}{2}$$

Nous savons de plus, d'après 1), que F est paire. Ainsi,

$$F(x) = \frac{\sqrt{\pi}}{2}e^{-2x} \quad \text{si } x \geqslant 0$$
$$= \frac{\sqrt{\pi}}{2}e^{2x} \quad \text{si } x < 0$$

On remarque que F n'est pas dérivable en 0.

Exercice 2 (d'après CCP MP 2020)

1) Informatique.

```
def cantor(n, x):
1
        """Keyword arguments:
2
       n -- entier positif
3
       x -- float dans l'intervalle [0, 1]
4
       retourne la valeur en x de la fonction f_n
5
6
       if n == 0:
7
            return x
8
9
       if x <= 1/3:
            return cantor(n-1, 3*x)/2
10
        elif x < 2/3:
11
            return 1/2
12
13
       else:
            return (1 + cantor(n-1, 3*x-2))/2
14
```

2) La syntaxe utilisée pour obtenir ces tracés peut vous intéresser, elle est sur ma page web.

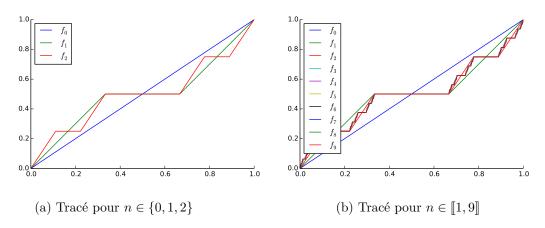


FIGURE 1 – Tracé des courbes représentatives de f_n .

Pour n=1:

$$\forall x \in [0, 1], \qquad f_1(x) = \begin{cases} 3x/2 & \text{si } x \leq 1/3\\ 1/2 & \text{si } 1/3 < x < 2/3\\ (3x - 1)/2 & \text{si } 2/3 \leq 2/3 \end{cases}$$

3) Montrons par récurrence que la propriété :

$$\mathcal{H}_n: \quad \forall x \in [0,1], \ |f_{n+1}(x) - f_n(x)| \le \frac{1}{3 \times 2^{n+1}}$$

est vraie pour tout $n \ge 0$.

•
$$\underline{\mathcal{H}}_0$$
: Pour $x \in \left[0, \frac{1}{3}\right]$, $f_1(x) - f_0(x) = \frac{3x}{2} - x = \frac{1}{2}x \in \left[0, \frac{1}{6}\right]$, donc $|f_1(x) - f_0(x)| \leqslant \frac{1}{3 \times 2^{0+1}}$

Pour
$$x \in \left[\frac{1}{3}, \frac{2}{3}\right]$$
, $f_1(x) - f_0(x) = \frac{1}{2} - x \in \left[-\frac{1}{6}, \frac{1}{6}\right]$, donc la majoration est vraie.
Pour $x \in \left[\frac{2}{3}, 1\right]$, $f_1(x) - f_0(x) = \frac{3x - 1}{2} - x = \frac{x - 1}{2} \in \left[-\frac{1}{6}, 0\right]$, donc la majoration est vraie.
Ainsi, \mathcal{H}_0 est vraie.

• $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons \mathcal{H}_n vraie.

Pour
$$x \in \left[0, \frac{1}{3}\right]$$
,

$$|f_{n+2}(x) - f_{n+1}(x)| = |f_{n+1}(3x)/2 - f_n(3x)/2|$$
 Par définition
 $\leq \frac{1}{2} \times \frac{1}{3 \times 2^{n+1}}$ (\mathcal{H}_n)

Pour
$$x \in \left[\frac{1}{3}, \frac{2}{3} \right[, f_{n+2}(x) - f_{n+1}(x) = \frac{1}{2} - \frac{1}{2} = 0$$
, donc la majoration est vraie.
Pour $x \in \left[\frac{2}{3}, 1 \right]$,

$$|f_{n+2}(x) - f_{n+1}(x)| = |(1 + f_{n+1}(3x - 2))/2 - (1 + f_n(3x - 2))/2|$$
Par définition

$$= \frac{1}{2} |f_{n+1}(3x - 2) - f_n(3x - 2)|$$

$$\leq \frac{1}{2} \times \frac{1}{3 \times 2^{n+1}}$$
 (\mathcal{H}_n)

Donc \mathcal{H}_{n+1} est vraie.

- Conclusion: $\forall n \ge 0 \quad \forall x \in [0,1], |f_{n+1}(x) f_n(x)| \le \frac{1}{3 \times 2^{n+1}}$
- 4) D'après 3), $|f_{n+1} f_n|$ est bornée sur [0,1] (ce que l'on sait dès que l'on montre que les f_n sont continues sur le segment [0,1]), et

$$||f_{n+1} - f_n||_{\infty} \le \frac{1}{3 \times 2^{n+1}}$$

Ainsi, la série de fonction de terme général $u_n = f_{n+1} - f_n$ est normalement convergente, donc uniformément convergente sur [0,1].

De plus,
$$\sum_{n=0}^{N} f_{n+1} - f_n = f_{N+1} - f_0$$
, donc

La suite de fonction
$$(f_n)$$
 converge uniformément sur $[0,1]$

5) Continuité des f_n : Montrons par récurrence que la propriété :

$$\mathcal{H}_n$$
: f_n est continue sur $[0,1]$, $f(0)=0$ et $f(1)=1$

est vraie pour tout $n \ge 0$.

- $\underline{\mathcal{H}}_0$: est vraie car $x \mapsto x$ est continue sur [0,1] et vérifie les égalités demandées.
- $\underline{\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}}$: Supposons \mathcal{H}_n vraie. Par continuité de f_n , f_{n+1} est continue sur $[0,1]\setminus\{\frac{1}{3},\frac{2}{3}\}$. En $x = \frac{1}{3}: \lim_{x \to \frac{1}{2}^+} f_{n+1}(x) = \frac{1}{2}$ (fonction constante), et

$$\lim_{x\to\frac{1}{3},x\leqslant\frac{1}{3}}f_{n+1}(x)=\lim_{x\to1}f_n(x)/2$$

$$=f_n(1)/2 \qquad \text{Par continuit\'e de }f_n\text{ en }1$$

$$=\frac{1}{2} \qquad \qquad \mathcal{H}_n:f_n(1)=1$$

Donc f_{n+1} est continue en $x = \frac{1}{3}$.

En
$$x = \frac{2}{3}$$
, de même : $\lim_{x \to \frac{2}{3}^-} f_{n+1}(x) = \frac{1}{2}$ (fonction constante), et

$$\begin{split} \lim_{x\to\frac{2}{3},x\geqslant\frac{2}{3}}f_{n+1}(x)&=\lim_{x\to0}(1+f_n(x))/2\\ &=(1+f_n(0))/2 \qquad \qquad \text{Par continuit\'e de } f_n \text{ en } 0\\ &=\frac{1}{2} \qquad \qquad \mathcal{H}_n:f_n(0)=0 \end{split}$$

Donc f_{n+1} est continue en $x = \frac{2}{3}$.

De plus, $f_{n+1}(0) = f_n(3 \times 0)/2 = 0$ et $f_{n+1}(1) = (1 + f_n(3-2))/2 = 1$.

Donc \mathcal{H}_{n+1} est vraie.

• Conclusion:

$$\forall n \geq 0$$
 f_n est continue sur $[0,1]$, $f(0) = 0$ et $f(1) = 1$

Continuité de f

- Pour tout $n \in \mathbb{N}$, f_n est continue sur [0,1] d'après ci-dessus.
- D'après 4, (f_n) converge uniformément sur [0,1]

Donc, d'après le théorème de continuité,

La limite
$$f$$
 de la suite des (f_n) est continue sur $[0,1]$

6) • <u>Croissance</u>: Montrons par récurrence que la propriété:

$$\mathcal{H}_n$$
: f_n est croissante sur $[0,1]$ et $f_n([0,1]) = [0,1]$

est vraie pour tout $n \ge 0$.

- \mathcal{H}_0 : Comme $f_0 = \mathrm{id}_{[0,1]}$, \mathcal{H}_0 est vraie.
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons \mathcal{H}_n vraie.
 - o Pour $x \in [0, 1/3]$, f_{n+1} est croissante par croissance de f_n et $f_{n+1}(x) = f_n(3x)/2 \le 1/2$.
 - ∘ Pour $x \in]1/3, 2/3[$, $f_{n+1}(x) = 1/2$ est supérieur à $f_{n+1}(y)$ pour $y \in [0, 1/3]$, donc f_{n+1} est croissante sur [0, 2/3[.
 - o Pour $x \in [2/3, 1]$, $f_{n+1}(x) = (1 + f_n(3x 2))/2$ est supérieure à 1/2 donc à tout $f_{n+1}(y)$ avec $y \in [0, 2/3]$. De plus, par croissance de f_n sur [0, 1], f_{n+1} est croissante sur [2/3, 1]. Donc f_{n+1} est croissante sur [0, 1].

Par conséquent, f_{n+1} est à valeurs dans $[f_{n+1}(0), f_{n+1}(1)]$. De plus, d'après 5, $f_{n+1}(0) = 0$ et $f_{n+1}(1) = 1$. Donc $f_{n+1}([0,1]) = [0,1]$.

Donc \mathcal{H}_{n+1} est vraie.

• Conclusion : $\forall n \ge 0$ f_n croissante sur [0,1] et d'image [0,1].

Ce qui entraîne

$$\forall (x,y) \in [0,1] \quad (x \leqslant y \Longrightarrow \forall n \in \mathbb{N} \quad f_n(x) \leqslant f_n(y))$$

D'où, par passage à la limite (convergence simple),

$$\forall (x,y) \in [0,1]$$
 $(x \leqslant y \Longrightarrow f(x) = \lim_{n \to +\infty} f_n(x) \leqslant \lim_{n \to +\infty} f_n(y) = f(y))$

Donc

La fonction
$$f$$
 est croissante sur $[0,1]$

• Image: De plus, d'après 5), $\forall n \in \mathbb{N}$, $f_n(0) = 0$ donc, par passage à limite, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$. De même f(1) = 1. Or d'après ci-dessus f est croissante. Donc

La fonction f est à valeurs dans [0,1]

• Surjectivité : f est continue, donc, d'après le théorème des valeurs intermédiaires, tout $c \in \overline{[f(0), f(1)]} = [0, 1]$ admet au moins un antécédent. Donc

La fonction f est surjective de [0,1] dans [0,1]

7) a) L'union définissant C_{n+1} est disjointe : $\frac{C_n}{3} \subset \left[0, \frac{1}{3}\right]$ donc $\left(\frac{2}{3} + \frac{C_n}{3}\right) \subset \left[\frac{2}{3}, 1\right]$ et

$$\frac{C_n}{3} \cap \left(\frac{2}{3} + \frac{C_n}{3}\right) \subset \left[0, \frac{1}{3}\right] \cap \left[\frac{2}{3}, 1\right] = \emptyset$$

Comme $\ell(C_n/3) = \ell(C_n)/3$ et $\ell(x+I) = \ell(I)$, il vient

$$\ell(C_{n+1}) = \ell\left(\frac{C_n}{3}\right) + \ell\left(\frac{2}{3} + \frac{C_n}{3}\right)$$
$$= 2\ell\left(\frac{C_n}{3}\right)$$
$$= \frac{2}{3}\ell(C_n)$$

Ainsi

$$\forall n \in \mathbb{N}, \ell(C_{n+1}) = \frac{2}{3}\ell(C_n) \text{ et } C_n = \left(\frac{2}{3}\right)^n$$

Or, pour tout couple d'ensembles (A, B) admettant une longueur, si $A \subset B$ alors $\ell(A) \leq \ell(B)$ (car $B = A \cup (B \setminus A)$, union disjointe, et qu'une longueur est toujours positive).

Comme pour tout $n \in \mathbb{N}$, $C \subset C_n$, il vient

$$\forall n \in \mathbb{N}, \qquad 0 \leqslant \ell(C) \leqslant \left(\frac{2}{3}\right)^n$$

Par encadrement,

$$\ell(C) = 0$$

- b) Par récurrence.
- c) Par récurrence et par construction de f_n .
- d) Soit $n \in \mathbb{N}$. Sur chacun des intervalles ouverts de C_n , f_n est dérivable de dérivée nulle. Montrons que, pour tout $k \ge n$, f_k est constante sur les intervalles où f_n est constante.

On en déduit, en passant à la limite, que f est constante sur chacun des intervalles ouverts de C_n , donc dérivable de dérivée nulle.

Soit $x \in [0,1]$ et $\varepsilon > 0$. Comme $\ell(]x - eps, x + \varepsilon[) = 2\varepsilon > 0$, $]x - eps, x + \varepsilon[\cap([0,1]\backslash C) \neq \emptyset$.

Pour tout $n \in \mathbb{N}^*$, on choisit $x_n \in]x - \frac{1}{n}, x + \frac{1}{n}[\cap([0,1]\setminus C)]$. Par construction, $\lim_{n \to +\infty} x_n = x$.

Et, pour tout $n \in \mathbb{N}$, $x_n \notin C$, donc dans un petit intervalle où f' = 0. D'où $f'(x_n) = 0$.

Si f' est continue, $f'(x) = \lim_{n \to +\infty} f'(x_n) = 0$, et donc f' = 0.

Donc f serait constante sur [0,1], or $f(0)=0\neq 1=f(1)$: c'est absurde.

Ainsi, f n'est pas \mathscr{C}^1 .