Devoir de Mathématiques numéro 1

Correction

Exercice 1 (Concours licence 2025)

1) En 0:
$$\cot x(x) = \frac{\cos(x)}{\sin(x)} \sim_0 \frac{1}{x}$$
.
En $x = \pi + h$, $\cot x(x) = \cot x(\pi + h)$.
$$\cos(\pi + h)$$

$$= \frac{\cos(\pi + h)}{\sin(\pi + h)}$$

$$= \frac{-\cos(h)}{-\sin(h)}$$

$$= \frac{\cos(h)}{\sin(h)}$$

$$\sim_{\pi} \frac{1}{h}$$

Donc cotan $(x) \sim \frac{1}{x-\pi}$

2) (a) La fonction $g: x \mapsto f(x)f'(x) \cot (\pi x)$ est continue donc continue par morceaux sur]0,1[comme composée de fonctions continues.

Étude en 0:
$$f(x) = f(0) + xf'(0) + o(x)$$
 et $f'(x) = f'(0) + o(1)$. Donc $= xf'(0) + o(x)$

$$g(x) = (xf'(0) + o(x))(f'(0) + o(1))\cot (\pi x)$$
$$= (xf'(0)^2 + o(x))\left(\frac{1}{\pi x} + o(\frac{1}{x})\right)$$
$$= f'(0)^2/\pi + o(1)$$

Ainsi $\lim_{x\to 0} g(x) = f'(0)^2/\pi$. Par conséquent g est prolongeable par continuité en x=0.

Donc
$$\int_0^{1/2} g(t) dt$$
 converge.

<u>Étude en 1</u> : Posons x = 1 - h. La situation est la même :

$$g(1-h) = f(1-h)f'(1-h)\cot (\pi - \pi h)$$

$$= [f(1) - hf'(1) + o(h)] [f'(1) + o(1)] [-\cot (\pi h)]$$

$$= [hf'(1)^2 + o(h)] \left[\frac{1}{\pi h} + o(\frac{1}{h})\right]$$

$$= f'(1)^2/\pi + o(1)$$

Ainsi $\lim_{h\to 0} g(1-h) = f'(1)^2/\pi$. Par conséquent g est prolongeable par continuité en x=1.

Donc
$$\int_{1/2}^{1} g(t) dt$$
 converge.

Conclusion:

L'intégrale I est bien définie

(b) Effectuons une intégration par parties : posons

$$u = f^{2}(x)$$

$$u' = 2f'(x)f(x)$$

$$v = \cot (\pi x)$$

$$v' = -\pi(1 + \cot (\pi x))$$

En x = 0, un DL donne

$$uv = f^{2}(x) \cot (\pi x)$$

$$= \left[xf'(0) + o(x)\right]^{2} \left[\frac{1}{\pi x} + o(\frac{1}{x})\right]$$

$$= xf'(0)^{2}/\pi + o(x)$$

donc $\lim_{x\to 0} uv = 0$ (et existe).

De même, en x = 1 + h, $uv = hf'(1)^2/\pi + o(h)$ et $\lim_{x \to 1} uv = 0$.

Donc, d'après le théorème d'intégration par parties, $\int_0^1 u'v$ et $\int_0^1 uv'$ sont de même nature.

Or $\int_0^1 u'v = 2I$ converge d'après 2.a, par conséquent les intégrales convergent. Et le théorème d'intégration par parties donne

$$2I = [uv]_0^1 - \int_0^1 uv' = \pi \int_0^1 (f(x))^2 (1 + \cot^2(\pi x)) dx$$

(c) La fonction $g: x \mapsto (f'(x) - \pi f(x) \cot (\pi x))^2$ est continue sur]0,1[. Un DL en x = 0 donne, comme à la question 2a,

$$f(x)\cot (\pi x) = f'(0)/\pi + o(1)$$

Donc g prolongeable par continuité en x=0 par $g(0)=(f'(0)-f'(0))^2=0$.

De même en x = 1, $f(x) \cot (\pi x) = f'(1)/\pi + o(1)$ donc g prolongeable par continuité en x = 1 par g(1) = 0.

Ainsi, $\int_0^1 g(x) dx$ est faussement généralisée, et

L'intégrale J est bien définie

(d) Attention! Lorsque vous utilisez la linéarité de l'intégrale, vérifiez que toutes les intégrales convergent.

$$J = \int_0^1 (f'(x) - \pi f(x) \cot (\pi x))^2 dx$$
$$= \int_0^1 f'(x)^2 - 2\pi f(x) f'(x) \cot (\pi x) + \pi^2 f(x)^2 \cot^2 (\pi x) dx$$

L'intégrale $\int_0^1 f'(x)^2 dx$ est sur un segment, donc convergente, et $2\pi I$ converge d'après 2a.

Donc $\int_0^1 \pi^2 f(x)^2 \cot^2(\pi x) dx$ converge comme somme d'intégrales convergentes. Et il vient

$$J = \int_0^1 f'(x)^2 dx - 2\pi \int_0^1 f(x)f'(x) \cot (\pi x) dx + \int_0^1 \pi^2 f(x)^2 \cot^2(\pi x) dx$$

$$= \int_0^1 f'(x)^2 dx - \pi^2 \int_0^1 f(x)^2 (1 + \cot^2(\pi x)) dx + \int_0^1 \pi^2 f(x)^2 \cot^2(\pi x) dx \quad (d'après 2b)$$

$$= \int_0^1 f'(x)^2 dx - \pi^2 \int_0^1 f(x)^2 dx$$

De plus, par positivité de l'intégrale, $J \ge 0$. Ainsi,

$$\int_{0}^{1} (f(x))^{2} dx \leq \frac{1}{\pi^{2}} \int_{0}^{1} (f'(x))^{2} dx$$

3) On résout l'équation différentielle. Une primitive de $x \mapsto \pi \cot(\pi x)$ sur]0,1[est $x \mapsto \ln(\sin(\pi x))$ $(\sin(\pi x) > 0)$. D'où, avec $C \in \mathbb{R}$ une constante,

$$\forall x \in]0,1[, \quad y(x) = Ce^{\ln(\sin(\pi x))} = C\sin(\pi x)$$

Ainsi l'ensemble des solutions de l'équation différentielle est

$$\mathscr{S} = \{ x \mapsto C \sin(\pi x) \mid C \in \mathbb{R} \}$$

4) Soit $f \in E$ telle que $\int_0^1 (f(x))^2 dx = \frac{1}{\pi^2} \int_0^1 (f'(x))^2 dx$.

D'après le calcul de la question d, J=0.

Or $x \mapsto (f'(x) - \pi f(x) \cot (\pi x))^2$ est continue sur]0,1[, et positive.

Donc, d'après le théorème de l'intégrale nulle et de la fonction nulle,

$$\forall x \in]0,1[, (f'(x) - \pi f(x) \cot (\pi x))^2 = 0$$

Ce qui signifie que f est solution de l'équation différentielle précédente. Ainsi, $f(x) = C \sin(\pi x)$ pour tout $x \in]0,1[$ pour un $C \in \mathbb{R}$ fixé.

Par continuité de f en 0 et en 1, il vient

$$\forall x \in [0, 1], \qquad f(x) = C\sin(\pi x)$$

On remarque que f ainsi définie est bien \mathscr{C}^1 , et vérifie f(0) = f(1) = 0. Donc $f \in E$, il n'y a pas de contradiction

Réciproquement, si $f:[0,1]\to\mathbb{R}$ définie par $f(x)=C\sin(\pi x)$. On a $f\in E$, et $f'(x)=\pi C\cos(\pi x)$, puis, avec le changement de variable u=1-x,

$$\int_0^1 f(x)^2 dx = \int_1^0 C^2 \cos(\pi u)^2 (-1) du = \frac{1}{\pi^2} \int_0^1 f'(u)^2 du$$

Ainsi, les fonctions vérifiant l'égalité sont exactement les

$$f:[0,1]\to\mathbb{R}$$
 définie par $f(x)=C\sin(\pi x)$, où $C\in\mathbb{R}$.

Exercice 2 (d'après PT C 2018)

Partie 1 (Préambule)

1) Pour tout $k \in \mathbb{N}$, comme $|e^{i\theta}| = 1$ pour tout $\theta \in \mathbb{R}$,

$$\left| \frac{1}{k} \int_{a}^{b} f'(t) e^{ikt} dt \right| \leq \frac{1}{k} \int_{a}^{b} |f'(t)| dt$$

Or $\lim_{k \to +\infty} \frac{1}{k} = 0$, donc, par encadrement,

$$\lim_{k \to +\infty} \frac{1}{k} \int_{a}^{b} f'(t) e^{ikt} dt = 0$$

2) Soit $k \in \mathbb{N}^*$. Intégrons par parties :

$$\int_{a}^{b} f(t) e^{ikt} dt = \left[f(t) \frac{e^{ikt}}{ik} \right]_{a}^{b} - \int_{a}^{b} f'(t) \frac{e^{ikt}}{ik} dt$$
$$= f(b) \frac{e^{ikb}}{ik} - f(a) \frac{e^{ika}}{ik} - \frac{1}{ik} \int_{a}^{b} f'(t) e^{ikt} dt$$

D'où

$$\left| \int_{a}^{b} f(t) e^{ikt} dt \right| \leqslant \frac{|f(b)|}{k} + \frac{f(a)}{k} + \frac{1}{k} \left| \int_{a}^{b} f'(t) e^{ikt} dt \right|$$

Or d'après a), $\lim_{k\to+\infty}\frac{1}{k}\int_a^b f'(t) e^{ikt} dt = 0$, donc par encadrement

$$\lim_{k \to +\infty} \int_{a}^{b} f(t) e^{ikt} dt = 0$$

Partie 2

1) a) Soit $n \in \mathbb{N}^*$ fixé.

La fonction $f_n: \left\{ \begin{array}{ccc}]0,\pi/2[& \to & \mathbb{R} \\ & t & \mapsto & \frac{\sin(2nt)}{\tan t} \end{array} \right.$ est continue donc continue par morceaux sur $]0,\pi/2[$.

<u>Étude en 0</u>: $f_n(t) \sim \frac{2nt}{t} = 2n \ (\neq 0 \ \text{car} \ n \geqslant 1)$. Donc $\lim_{t\to 0} f_n(t) = 2n \ \text{et} \ f_n$ est prolongeable par continuité en t=0 donc $\int_0^{\frac{\pi}{4}} f_n(t) \ dt$ converge.

Étude en $\frac{\pi}{2}$: Soit $t = \frac{\pi}{2} - h$.

$$f_n\left(\frac{\pi}{2} - h\right) = \frac{\sin(n\pi - 2nh)}{\tan(\pi/2 - h)}$$
$$= (-1)^{n+1}\sin(2nh)\frac{\sin(h)}{\cos(h)} \xrightarrow[h \to 0]{} 0$$

Donc f_n est aussi prolongeable par continuité en $t = \frac{\pi}{2}$, et $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f_n(t) dt$ converge.

<u>Conclusion</u>:

$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2nt)}{\tan t} \, \mathrm{d}t \text{ converge}$$

b) Calculons I_1 : pour tout $t \in \left[0, \frac{\pi}{2}\right]$,

$$\frac{\sin(2t)}{\tan t} = \frac{\sin(2t)\cos t}{\sin t}$$
$$= \frac{2\sin t \cos^2 t}{\sin t}$$
$$= 2\cos^2 t$$
$$= \cos(2t) + 1$$

Donc
$$I_1 = \left[\frac{\sin(2t)}{2} + t\right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}.$$

c) Si l'on note $\mathcal{I}m(z)$ la partie imaginaire d'un complexe z, on a :

$$\sin((2n+2)t) - \sin(2nt) = \mathcal{I}m\left(e^{2(n+1)it} - e^{2nit}\right)$$

avec

$$e^{2(n+1)it} - e^{2nit} = e^{(2n+1)it} \left(e^{it} - e^{-it} \right)$$

= 2 (-\sin ((2n+1)t) \sin t + i \cos ((2n+1)t) \sin t)

donc

$$\sin((2n+2)t) - \sin(2nt) = 2\cos((2n+1)t)\sin t.$$

d) On en déduit, pour $n \in \mathbb{N}^*$, par linéarité de l'intégrale :

$$I_{n+1} - I_n = \int_0^{\frac{\pi}{2}} 2\cos((2n+1)t)\cos t \,dt.$$

Mais par un calcul analogue au précédent :

$$2\cos((2n+1)t)\cos t = \cos((2n+2)t) + \cos(2nt)$$

donc, comme $2n \neq 0$ et $2n + 1 \neq 0$,

$$I_{n+1} - I_n = \left[\frac{\sin((2n+2)t)}{2(n+1)} + \frac{\sin(2nt)}{2n} \right]_0^{\frac{\pi}{2}} = 0$$

ce qui prouve que la suite $(I_n)_{n\in\mathbb{N}^*}$ est constante.

Avec la question (b), on peut conclure que

La suite de terme général I_n , $n \in \mathbb{N}^*$, est constante égale à $\pi/2$.

2) Pour p entier naturel non nul, la fonction $t \mapsto \frac{\sin(pt)}{t}$ est continue sur $\left[0, \frac{\pi}{2}\right]$ comme quotient de telles fonctions dont le dénominateur ne s'annule pas, et se prolonge par continuité en 0 avec la valeur p. L'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin(pt)}{t} dt$ est donc convergente, car faussement généralisée. C'est vrai notamment pour p = 2n avec n entier naturel non nul ou pour p = 1.

Les intégrales considérées sont convergentes.

3) Comme différence de telles fonctions, φ est de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$.

Prolongement par continuité

- En $\frac{\pi}{2}$: Pour tout $t \in \left[0, \frac{\pi}{2}\right], \varphi(t) = \frac{1}{t} \frac{\cos t}{\sin t}$. Donc $\lim_{t \to \frac{\pi}{2}} \varphi(t) = \frac{2}{\pi}$: φ se prolonge par continuité en $\frac{\pi}{2}$ avec la valeur $\frac{2}{\pi}$.
- En 0 : pour tout $t \in \left[0, \frac{\pi}{2}\right]$,

$$\varphi(t) = \frac{\tan t - t}{t \tan t} = \frac{t + \frac{t^3}{3} + o(t^3) - t}{t \tan t} = \frac{\frac{t^3}{3} + o(t^3)}{t \tan t}$$

Ainsi $\varphi(t) \sim \frac{\frac{t^3}{3}}{t}^2 = \frac{t}{3} \xrightarrow[t \to 0]{} 0 : \varphi$ se prolonge par continuité en 0 avec la valeur 0.

La fonction φ se prolonge en une fonction $\widetilde{\varphi}$ continue sur $\left[0, \frac{\pi}{2}\right]$.

<u>Caractère \mathscr{C}^1 </u>: Nous allons appliquer à $\widetilde{\varphi}$ le théorème du prolongement \mathscr{C}^1 en 0 et en $\frac{\pi}{2}$.

Pour $t \in \left]0, \frac{\pi}{2}\right[$,

$$\widetilde{\varphi}'(t) = \frac{-1}{t^2} + \frac{1 + \tan^2 t}{\tan^2 t} = 1 + \frac{1}{\tan^2 t} - \frac{1}{t^2}.$$

• En $\frac{\pi}{2}$:

$$\lim_{t \to \frac{\pi}{2}} \widetilde{\varphi}'(t) = 1 - \frac{4}{\pi^2}$$

• En 0 : $(t - \tan t) \sim -\frac{t^3}{3}$ et $(t + \tan t) \sim 2t$ donc

$$\frac{1}{\tan^2 t} - \frac{1}{t^2} = \frac{(t - \tan t)(t + \tan t)}{t^2 \tan^2 t} \sim \frac{-\frac{t^3}{3} \times 2t}{t^4} = \frac{-2}{3}$$

donc

$$\lim_{t\to 0}\widetilde{\varphi}'\left(t\right)=1-\frac{2}{3}=\frac{1}{3}.$$

Donc, d'après le théorème de la limite de la dérivée appliqué en a=0 et $a=\frac{\pi}{2}$

Le prolongement
$$\widetilde{\varphi}$$
 est de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$.

4) Puisque $\widetilde{\varphi}$ est C^1 sur $\left[0, \frac{\pi}{2}\right]$, il découle du préambule que la suite de terme général

$$\alpha_{n} = \int_{0}^{\frac{\pi}{2}} \widetilde{\varphi}(t) e^{int} dt$$

converge vers 0, et la suite extraite $(\alpha_{2n})_n$ également. Il est en de même de la suite de terme général $(\mathcal{I}m(\alpha_{2n}))$ car $0 \leq |\mathcal{I}m(\alpha_{2n})| \leq |\alpha_{2n}|$. Or

$$\mathcal{I}m\left(\alpha_{2n}\right) = \int_{0}^{\frac{\pi}{2}} \widetilde{\varphi}\left(t\right) \sin\left(2nt\right) dt = J_{n} - I_{n}$$

donc

$$\lim_{n \to +\infty} (J_n - I_n) = 0$$

5) a) La fonction $t \mapsto \frac{\sin t}{t}$ est continue donc continue par morceaux sur $\left[\frac{\pi}{2}, +\infty\right[$.

 $\underline{\text{\acute{E}tude en } + \infty}$: Posons $u: t \mapsto \frac{1}{t}$ et $v: t \mapsto -\cos t$. Ce sont deux fonctions \mathscr{C}^1 sur $\left[\frac{\pi}{2}, +\infty\right[$ et telles que le produit uv admette des limites finies (nulles) aux bornes de l'intervalle.

$$\forall t \in \left[\frac{\pi}{2}, +\infty\right[, \quad \begin{cases} u(t) = \frac{1}{t} & u'(t) = -\frac{1}{t^2} \\ v(t) = \cos t & v'(t) = -\sin t \end{cases}$$

D'après le théorème d'intégration par parties, les intégrales $\int_{\frac{\pi}{2}}^{+\infty} u(t)v'(t) dt$ et $\int_{\frac{\pi}{2}}^{+\infty} u'(t)v(t) dt$ sont de même nature.

Or $|u'(t)v(t)| = \left|\frac{\cos t}{t^2}\right| \leqslant \frac{1}{t^2}$ et l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge pour $\alpha > 1$ donc pour $\alpha = 2$.

Donc, par théorème de majoration,

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\cos t}{t^2} \, \mathrm{d}t.$$

est absolument convergente donc convergente.

Donc le théorème d'intégration par parties nous donne

L'intégrale
$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin t}{t} dt$$
 est convergente.

b) La fonction $t \mapsto u = 2nt$ est une bijection C^1 strictement croissante de $\left]0, \frac{\pi}{2}\right]$ sur $\left]0, n\pi\right]$, donc par théorème de changement de variable :

$$J_n = \int_0^{n\pi} \frac{\sin u}{u} du.$$

Puisque $\int_0^{+\infty} \frac{\sin t}{t} dt$ est convergente, par composition de limites, on a bien :

$$\lim_{n \to +\infty} J_n = \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

c) D'après la question 1.(d), on peut écrire :

$$J_n = I_n + (J_n - I_n) = \frac{\pi}{2} + (J_n - I_n)$$

donc, d'après les questions 4 et 5.(b):

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$