Épreuve de Mathématiques 8

Correction

Exercice 1 (E3A PC 2024)

- 1. Questions de cours
 - **1.1.** $\forall k \in X(\Omega) = \mathbb{N}, \ \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad E(X) = \lambda, \quad V(X) = \lambda$
 - **1.2.** $\forall x \in \mathbb{R}, \quad \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \quad \operatorname{et} \quad \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$
 - **1.3.** Deux variables aléatoires discrètes X et Y définies sur Ω sont indépendantes si, pour tout $A \subset X(\Omega)$ et $B \subset Y(\Omega)$, les événements $(X \in A)$ et $(Y \in B)$ sont indépendants, c'est-à-dire $\mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$.
- **2. 2.1.** $\{Y=0\} = \bigcup_{j \in \mathbb{N}} \{X=2j\}$ et $\{Y=1\} = \bigcup_{j \in \mathbb{N}} \{X=2j+1\}$
 - **2.2.** $Y(\Omega) = \{0,1\}$ donc Y suit une loi de Bernoulli. De plus,

$$\mathbb{P}(Y=1) = \sum_{j=0}^{+\infty} \mathbb{P}(X=2j+1)$$
 union disjointe
$$= \sum_{j=0}^{+\infty} e^{-\lambda} \frac{\lambda^{2k+1}}{(2k+1)!}$$
 loi de Poisson
$$= e^{-\lambda} \operatorname{sh}(\lambda)$$

De plus $E(Y) = 0 \times \mathbb{P}(Y = 0) + 1 \times \mathbb{P}(Y = 1)$:

$$Y \sim \mathcal{B}(e^{-\lambda} \operatorname{sh}(\lambda))$$
 et $E(Y) = e^{-\lambda} \operatorname{sh}(\lambda)$

3. 3.1. $T(\Omega) = \{kn \mid k \in \{1, 2\} \text{ et } n \in \mathbb{N}\} \text{ donc}$

$$T(\Omega) = \mathbb{N}$$

3.2. D'après la formule des probabilités totales, en utilisant le système complet d'évènements, suggéré par l'énoncé, $(Z = n)_{n \in Z(\Omega)}$,

$$\begin{split} \mathbb{P}(T = k) &= \mathbb{P}(\{T = k\} \cap \{Z = 1\}) + \mathbb{P}(\{T = k\} \cap \{Z = 2\}) \\ &= \mathbb{P}(\{X = k\} \cap \{Z = 1\}) + \mathbb{P}(\{2X = k\} \cap \{Z = 2\}) \\ &= \frac{1}{2} \left(\mathbb{P}(X = k) + \mathbb{P}(2X = k) \right) \end{split} \qquad \text{car } T = XZ$$

Ainsi,

$$\boxed{\mathbb{P}(T=k) = \frac{1}{2} \left(\mathbb{P}(X=k) + \mathbb{P}(2X=k) \right)}$$

3.3. Comme $(2X = 2k + 1) = \emptyset$ et (2X = 2k) = (X = k), il vient

$$\forall k \in \mathbb{N}, \quad \mathbb{P}(T = 2k) = \frac{e^{-\lambda}}{2} \left(\frac{\lambda^{2k}}{(2k)!} + \frac{\lambda^k}{k!} \right) \quad \text{et} \quad \mathbb{P}(T = 2k + 1) = \frac{e^{-\lambda}}{2} \frac{\lambda^{2k+1}}{(2k+)!}$$

3.4. Comme $\{T \in 2\mathbb{N}\} = \bigcup_{k=0}^{+\infty} \{T = 2k\},$

$$\mathbb{P}(T \in 2\mathbb{N}) = \sum_{k=0}^{+\infty} \frac{e^{-\lambda}}{2} \left(\frac{\lambda^{2k}}{(2k)!} + \frac{\lambda^k}{k!} \right)$$
$$= \frac{e^{-\lambda}}{2} \left(\sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!} + \sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} \right)$$
$$= \frac{e^{-\lambda}}{2} \left(\operatorname{ch}(\lambda) + e^{\lambda} \right)$$
$$= \frac{e^{-\lambda}}{2} \operatorname{ch}(\lambda) + \frac{1}{2}$$

$$\boxed{\mathbb{P}(T \in 2\mathbb{N}) = \frac{1}{2} + \frac{1}{2}e^{-\lambda}\operatorname{ch}(\lambda)}$$

On peut aussi regarder les événements attentivement : 2 divise le produit XZ si et seulement si 2 divise X ou Z. D'où $(T \in 2\mathbb{N}) = (Z = 2) \cup (X \in 2\mathbb{N})$ et, par formule du crible, indépendance et calcul de $\mathbb{P}(Y = 0)$, on conclue.

Exercice 2 (CCP 2010 TSI, partiel)

Partie 1 (Étude d'une équation différentielle)

1) Soit x > 0. La fonction $f: t \mapsto \frac{e^{-\frac{t}{x}}}{1+t}$ est continue, donc continue par morceaux, et positive sur $[0, +\infty[$. Étude en $+\infty$: Par croissance comparée, comme 1/x > 0,

$$t^2 f(t) \sim t e^{-t/x} \xrightarrow[t \to +\infty]{} 0$$

Donc $f(t) = o\left(\frac{1}{t^2}\right)$. Or $\int_1^{+\infty} \frac{1}{t^2} dt$ converge d'après Riemann $(\alpha = 2 > 1)$.

Donc, par théorème de comparaison, $\int_0^{+\infty} f(t) dt$ converge. Conclusion :

$$\varphi(x)$$
 existe pour tout $x > 0$

- 2) Rédaction : il faut savoir structurer sa réponse, lorsqu'il y a beaucoup d'étapes dans une question.
 - Intégrabilité de ψ : Posons

$$\forall t \in [0, +\infty[, \qquad \psi(t) = \frac{te^{-t/b}}{a^2(1+t)}$$

La fonction ψ est continue sur $[0, +\infty[$.

Étude en $+\infty$: De même qu'au 1, par croissance comparée, comme 1/b > 0,

$$t^2\psi(t) \sim t^2 e^{-t/b} \xrightarrow[t \to +\infty]{} 0$$

Donc $\psi(t)=o\Bigl(\frac{1}{t^2}\Bigr)$. Or $\int_1^{+\infty}\frac{1}{t^2}\,\mathrm{d}t$ converge d'après Riemann $(\alpha=2>1)$.

Donc, par théorème de comparaison, $\int_0^{+\infty} \psi(t) dt$ converge (absolument, car $\psi \geqslant 0$).

• Majorations : Soit $t \in [0, +\infty[$. Pour tout $x \in [a, b]$,

$$0 < a \leqslant x \Longrightarrow \frac{t}{x^2} \leqslant \frac{t}{a^2}$$

 Et

$$0 < x \leqslant b \Longrightarrow \frac{t}{b} \leqslant \frac{t}{x} \Longrightarrow e^{-\frac{t}{x}} \leqslant e^{-\frac{t}{b}}$$

En conclusion,

$$0 \leqslant \frac{te^{-t/x}}{x^2(1+t)} \leqslant \frac{te^{-t/b}}{a^2(1+t)} = \psi(t)$$

Quand la majoration n'est pas immédiate, il faut justifier (au moins 1 étape intermédiaire), et il vaut mieux déplacer les calculs en « préliminaires ».

• Théorème de dérivation : Posons

$$\forall (t,x) \in [0,+\infty[\times[a,b], \qquad h(x,t) = \frac{e^{-\frac{t}{x}}}{1+t}$$

Avoir une dérivée partielle juste est fondamental. Prenez votre temps, décomposez, mais la dérivée doit être juste. On dérive par rapport à x. $e^{-\frac{t}{x}}=e^u$, $(e^u)'=u'e^u$. $\frac{\partial}{\partial x}\left(\frac{t}{x}\right)=\frac{\partial}{\partial x}(tx^{-1})=-tx^{-2}$. Etc.

• $\forall t \in [0, +\infty[$, la fonction $x \mapsto h(x, t)$ est de classe \mathscr{C}^1 sur [a, b], et

$$\forall x \in [a, b], \qquad \frac{\partial h}{\partial x}(x, t) = \frac{te^{-t/x}}{x^2(1+t)}$$

- $\forall x \in [a, b]$, la fonction $t \mapsto h(x, t)$ est intégrable sur $[0, +\infty[$ (d'après 1)); la fonction $t \mapsto \frac{te^{-t/x}}{x^2(1+t)}$ est continue par morceaux sur $[0, +\infty[$.
- La fonction $\psi : [0, +\infty[\to \mathbb{R}_+ \text{ définie ci-dessus est intégrable sur } [0, +\infty[\text{ d'après ci-dessus et, toujours d'après les calculs ci-dessus,}]$

$$\forall (x,t) \in [a,b] \times [0,+\infty[, \qquad \left| \frac{\partial h}{\partial x}(x,t) \right| \leqslant \psi(t)$$

Donc, d'après le théorème de dérivation sous le signe somme (ou théorème de Leibniz), il vient

$$\varphi \text{ est } \mathscr{C}^1 \text{ sur } [a, b] \text{ et } \varphi'(x) = \int_0^{+\infty} \frac{te^{-t/x}}{x^2(1+t)} dt.$$

3) D'après la question précédente, la fonction φ est \mathscr{C}^1 sur tout segment de \mathbb{R}_+^* , donc φ est \mathscr{C}^1 sur \mathbb{R}_+^* :

$$\varphi$$
 est classe \mathscr{C}^1 sur $]0,+\infty[$

On vous donne l'équation différentielle, vous avez y et y': vérifiez si en remplaçant – tout bêtement – le résultat tombe. Au pire, vous aurez des idées pour une éventuelle intégration par parties.

Pour tout $x \in]0, +\infty[$,

$$x^{2}\varphi'(x) + \varphi(x) = x^{2} \int_{0}^{+\infty} \frac{te^{-t/x}}{x^{2}(1+t)} dt + \int_{0}^{+\infty} \frac{e^{-\frac{t}{x}}}{1+t} dt$$

$$= \int_{0}^{+\infty} \frac{te^{-\frac{t}{x}}}{1+t} + \frac{e^{-\frac{t}{x}}}{1+t} dt$$

$$= \int_{0}^{+\infty} e^{-\frac{t}{x}} dt$$

$$= \left[\frac{e^{-\frac{t}{x}}}{-1/x}\right]_{0}^{+\infty}$$

$$= x$$

Conclusion:

φ est solution sur $]0,+\infty[$ de l'équation différentielle (\mathscr{E})

4) a) Par théorème de dérivation terme à terme des séries entières, F est \mathscr{C}^1 sur]-R,R[(à l'intérieur du domaine de convergence) et

$$\forall x \in]-R, R[, \qquad F'(x) = \sum_{n=0}^{+\infty} n a_n x^{n-1}$$

En remplaçant dans (\mathcal{E}) , il vient

$$\forall x \in]-R, R[, \qquad x^2 F'(x) + F(x) = \sum_{n=0}^{+\infty} n a_n x^{n+1} + \sum_{n=0}^{+\infty} a_n x^n$$

$$= \sum_{n=1}^{+\infty} (n-1) a_{n-1} x^n + \sum_{n=0}^{+\infty} a_n x^n$$

$$= a_0 + \sum_{n=1}^{+\infty} \left[(n-1) a_{n-1} + a_n \right] x^n \quad \text{(décalage d'indices)}$$

Ainsi, par unicité du développement en série entière,

$$F \text{ solution de } (\mathscr{E}) \text{ sur }] - R, R[\iff \forall x \in] - R, R[, \quad a_0 + \sum_{n=1}^{+\infty} \left[(n-1)a_{n-1} + a_n \right] x^n = x$$

$$\iff \begin{cases} a_0 = 0 \\ 0 + a_1 = 1 \\ \forall n \geqslant 2, \quad (n-1)a_{n-1} + a_n = 0 \end{cases}$$

Conclusion:

$$a_0 = 0$$
, $a_1 = 1$ et $\forall n \ge 2$, $a_n = -(n-1)a_{n-1}$

b) Montrons par récurrence que la propriété:

$$\mathcal{H}_n: \quad a_n = (-1)^{n+1}(n-1)!$$

est vraie pour tout $n \ge 1$.

- \mathcal{H}_1 : est vraie d'après a).
- $\frac{\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}}{\mathcal{H}_{n+1}}$: Supposons \mathcal{H}_n vraie. $a_{n+1} = -na_n = (-1)^{n+2}n!$ d'après a) $(n+1 \ge 2)$. Donc $\frac{\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}}{\mathcal{H}_{n+1}}$ est vraie.
- Conclusion:

$$a_0 = 0$$
 et $\forall n \ge 1, \ a_n = (-1)^{n+1}(n-1)!$

c) Pour tout $x \in \mathbb{R}$, posons $u_n = a_n x^n = (-1)^{n+1} (n-1)! x^n$.

$$\forall x \neq 0, \quad \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(-1)^{n+2} n! x^{n+1}}{(-1)^{n+1} (n-1)! x^n} \right| = n|x| \xrightarrow[n \to +\infty]{} + \infty > 1$$

Donc, d'après d'Alembert, $\sum |u_n|$ diverge grossièrement, donc $\sum u_n$ diverge.

Ainsi,
$$R = 0$$

Vu le coefficient, ce n'est pas étonnant. Cf. l'exercice 1 de la feuille sur les séries entières.

En conclusion

L'équation (\mathscr{E}) n'admet pas de solution développable en série entière sur un intervalle]-R,R[, quel que soit R>0.

Partie 2 (Détermination d'une valeur approchée de $\varphi(x)$) Soit $x \in \mathbb{R}_+^*$ fixé.

1) Soit $n \in \mathbb{N}$ et $t \ge 0$. Somme des termes d'une série géométrique :

$$\sum_{k=0}^{n} (-t)^k = \frac{1 - (-t)^{n+1}}{1 - (-t)} = \frac{1}{1+t} - (-1)^{n+1} \frac{t^{n+1}}{1+t}$$

Par conséquent, en multipliant par $e^{-\frac{t}{x}}$,

$$\boxed{\frac{e^{-\frac{t}{x}}}{1+t} = \sum_{k=0}^{n} (-1)^k t^k e^{-\frac{t}{x}} + (-1)^{n+1} \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t}}$$

2) Soit $k \in \mathbb{N}$ et $n \in \mathbb{N}$.

Les fonctions $t \mapsto t^k e^{-\frac{t}{x}}$ et $t \mapsto \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t}$ sont continues sur $[0, +\infty[$ et par croissance comparée,

$$\lim_{t \to +\infty} t^{k+2} e^{-\frac{t}{x}} = 0 \qquad \text{et} \qquad t^2 \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} \sim \frac{t^{n+3} e^{-\frac{t}{x}}}{t} \xrightarrow[t \to +\infty]{} 0$$

Donc ces deux fonctions sont des petits o de $1/t^2$ en $+\infty$, or $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (Riemann, $\alpha = 2 > 1$), donc, par théorème de comparaison, elles sont intégrables au voisinage de $+\infty$. Ainsi,

$$\int_0^{+\infty} t^k e^{-\frac{t}{x}} dt \text{ et } \int_0^{+\infty} \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} dt \text{ existent}$$

Nous pouvons donc intégrer l'égalité obtenue au 1). La somme est finie donc par linéarité

$$\varphi(x) = \sum_{k=0}^{n} (-1)^k \int_0^{+\infty} t^k e^{-\frac{t}{x}} dt + (-1)^{n+1} \int_0^{+\infty} \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} dt$$

- **3) a)** $I_0(x) = \left[\frac{e^{-t/x}}{-1/x}\right]_0^{+\infty} = x.$
 - b) Soit $k \in \mathbb{N}$. On effectue une intégration par parties. Soit $u = \frac{t^{k+1}}{k+1}$ et $v = e^{-t/x}$. Comme $\lim_{t \to +\infty} uv = 0$ par croissance comparée, par théorème d'intégration par parties, les deux intégrales $\int_{\mathbb{R}} u'v$ et $\int_{\mathbb{R}} uv'$ sont de même nature convergente d'après la question 2. De plus,

$$I_k(x) = [uv]_0^{+\infty} - \int_0^{+\infty} \frac{t^{k+1}}{k+1} (-1/x) e^{-t/x} dt = \frac{1}{x(k+1)} I_{k+1}(x)$$

Conclusion: $I_{k+1}(x) = (k+1)xI_k(x)$

c) La relation de récurrence est quasiment la même qu'en partie 1, question 4a. Et pour cause : on calcule là aussi le développement en série entière de φ. Ce n'est pas choquant l'obtenir la même expression. Par contre, dans cette partie, on maîtrise le reste, i.e. l'écart entre φ et la somme partielle de la série entière. Montrons par récurrence que la propriété :

$$\mathcal{H}_k$$
: $I_k(x) = k! x^{k+1}$

est vraie pour tout $k \ge 0$.

• \mathcal{H}_0 : est vraie d'après a).

• $\mathcal{H}_k \Longrightarrow \mathcal{H}_{k+1}$: Supposons \mathcal{H}_k vraie. $I_{k+1}(x) \stackrel{\text{b)}}{=} (k+1)xI_k(x) = (k+1)xk!x^{k+1} = (k+1)!x^{k+2}$. Donc \mathcal{H}_{k+1} est vraie.

• Conclusion:
$$\forall k \ge 0$$
 $I_k(x) = k! x^{k+1}$

• Conclusion: $\forall k \geqslant 0$ $I_k(x) = k!x^{k+1}$ Vous devez savoir faire le calcul de $I_k(x)$ sans aucune question intermédiaire : c'est un classique.

a) Soit $n \in \mathbb{N}$. 4)

$$\varphi(x) = \sum_{k=0}^{n} (-1)^k I_k(x) + (-1)^{n+1} \int_0^{+\infty} \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} dt$$
 d'après la question 2
$$= \sum_{k=0}^{n} (-1)^k k! x^{k+1} + (-1)^{n+1} \int_0^{+\infty} \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} dt$$
 d'après la question 3c

Donc $R_n(x) = (-1)^{n+1} \int_0^{+\infty} \frac{t^{n+1}e^{-\frac{t}{x}}}{1+t} dt$. Ainsi, par inégalité triangulaire,

$$|R_n(x)| \le \int_0^{+\infty} \left| \frac{t^{n+1} e^{-\frac{t}{x}}}{1+t} \right| dt$$

Or $0 < \frac{1}{1 + t} \le 1$ sur $[0, +\infty[$, ce qui entraine,

$$|R_n(x)| \le \int_0^{+\infty} t^{n+1} e^{-\frac{t}{x}} dt = I_{n+1}(x) = (n+1)! x^{n+2}$$

Ainsi,

$$\forall n \in \mathbb{N}, \quad |R_n(x)| \le (n+1)!x^{n+2}$$

b) $u_n \neq 0$ et

$$\frac{u_{n+1}}{u_n} = \frac{(n+2)!10^{n+2}}{10^{n+3}(n+1)!} = \frac{n+2}{10}$$

Donc pour tout $n \in \{0, \dots, 8\}$, $0 < \frac{u_{n+1}}{u_n} \le 1$ et la suite est décroissante $(u_n > 0)$.

Pour $n \ge 8$, $\frac{u_{n+1}}{u_n} \ge 1$ et la suite devient croissante. Donc

La suite
$$(u_n)$$
 est minimale pour $n = 8$

c)
$$\varphi\left(\frac{1}{10}\right) = \sum_{k=0}^{8} (-1)^k I_k(1/10) + R_8(1/10)$$
, et d'après a)

$$|R_8(1/10)| \le 9!(1/10)^{10} = 3,6288 \times 10^{-5}$$

Donc on peut obtenir $\varphi\left(\frac{1}{10}\right)$ avec 4 chiffres significatifs en calculant $\sum_{k=0}^{\infty} (-1)^k I_k(1/10)$.

5) Soit $z \neq 0$ et $v_k = (-1)^k k! z^{k+1}$.

$$\left| \frac{v_{k+1}}{v_k} \right| = (k+1)|z| \xrightarrow[k \to +\infty]{} +\infty > 1$$

Donc, d'après le critère de D'Alembert, $\sum |v_k|$ diverge grossièrement, donc $\sum v_k$ aussi.

Le rayon de convergence de la série entière $\sum_{k\geqslant 0} (-1)^k k! z^{k+1}$ est 0

En particulier cette série n'est pas convergente pour $z = \frac{1}{10}$

On vient d'utiliser une série divergente (et pas qu'un peu divergente) pour approximer $\varphi(1/10)$. Grâce à la maîtrise du reste de la série.

La partie 1 montre que φ est solution de $\mathscr E$ et que $\mathscr E$ n'a pas de solution développable en série entière en 0. Donc nous savions déjà que φ n'était pas développable en série entière.

Exercice 3 (Mines Ponts PSI 2024)

Une marche aléatoire!

1) Soit $n \in \mathbb{N}^*$ et $Y_n = \frac{1 + X_n}{2}$. Comme $Y_n(\Omega) = \{0, 1\}$, $Y_n \sim \mathcal{B}(p)$, et $p = \mathbb{P}(Y_n = 1) = \mathbb{P}(X_n = 1)$. Or X_n est centrée : $E(X_n) = -\frac{1}{2}\mathbb{P}(X_n = -1) + \frac{1}{2}\mathbb{P}(X_n = 1) = p - 1/2 = 0$. Donc

Pour tout $n \in \mathbb{N}^*$, la variable aléatoire $\frac{1+X_n}{2}$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$

2) Un indice d'égalité est un indice de passage par l'origine. Déjà fait en exercice.

Soit $i \in [1, n]$. Par définition d'un indice d'égalité, $A_i = (S_{2i} = 0)$.

Avec les $(Y_k)_{k\in\mathbb{N}^*}$ définis à la question précédente, $X_k=2Y_k-1$, donc

$$S_n = \sum_{k=1}^n X_k = 2\left[\sum_{k=1}^n Y_k\right] - n$$

Or, par le lemme des coalitions, $(Y_k)_{k\in\mathbb{N}^*}$ est une suite de variables aléatoires discrètes indépendantes, et elles suivent une loi de Bernoulli de même paramètre p=1/2.

Donc leur somme $Z_n = \sum_{k=1}^n Y_k = (S_n + n)/2$ suit une loi binomiale de paramètre 1/2:

$$Z_n = \frac{1}{2}(S_n + n) \sim \mathcal{B}(n, 1/2)$$

Ainsi, comme $(S_{2i} = 0) = (Z_{2i} = i)$ et $\mathbb{P}(Z_n = k) = \binom{n}{k} \frac{1}{2^k} \frac{1}{2^{n-k}}$,

$$\mathbb{P}(A_i) = \mathbb{P}(S_{2i} = 0) = \binom{2i}{i} \frac{1}{2^{2i}}$$

3) Si $n - \ell$ est impair, $n + \ell$ aussi et $(S_n = \ell) = (Z_n = \frac{\ell + n}{2}) = \emptyset$:

$$\mathbb{P}(S_n = \ell) = 0$$

Si $n - \ell$ est pair, $(S_n = \ell) = (Z_n = \frac{\ell + n}{2})$ et, d'après 2,

$$\boxed{\mathbb{P}(S_n = \ell) = \frac{1}{2^n} \binom{n}{(\ell+n)/2}}$$

Si k > n ou k < 0, $\binom{n}{k} = 0$.

- 4) Comme (c_n) et (d_n) sont à termes positifs, le théorème de comparaison nous donne $\sum d_n$ diverge. De plus, $c_n \sim d_n$ s'écrit $c_n = d_n + o(d_n)$. En notant $a_n = c_n d_n$, il vient
 - La suite (a_n) n'est pas forcément non nulle... mais (d_n) l'est.
 - D'après ci-dessus, $a_n = o(d_n)$,
 - Par hypothèse, $d_n > 0$ et $\sum d_n$ diverge

Donc, d'après le théorème de l'énoncé (en ignorant l'hypothèse (a_n) non nuls),

$$\sum_{k=1}^{n} a_k = o\left(\sum_{k=1}^{n} d_k\right)$$

Or
$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} c_k - \sum_{k=1}^{n} d_k$$
, d'où

$$\sum d_n$$
 diverge et $\sum_{k=1}^n c_k \underset{n \to +\infty}{\sim} \sum_{k=1}^n d_k$

5) $N_n(\Omega) = [0, n]$, donc N_n est finie et admet une espérance. Soit f_{A_i} la variable aléatoire qui vaut 1 si 2i est un indice d'égalité de (X_1, \ldots, X_{2n}) , et 0 sinon 1. Par définition, $N_n = \sum_{i=0}^n f_{A_i}$, donc, par linéarité de l'espérance,

$$\mathbb{E}(N_n) = \sum_{i=0}^n \mathbb{E}(f_{A_i})$$

Or
$$\mathbb{E}(f_{A_i}) = 1 \times \mathbb{P}(A_i) = \frac{1}{2^{2i}} \binom{2i}{i}$$
:

$$\mathbb{E}(N_n) = \sum_{i=1}^{n} \frac{\binom{2i}{i}}{4^i}$$

6) a) Soit $n \in \mathbb{N}^*$. La fonction f est décroissante sur [0,1]:

$$\forall k \in [1, n-1], \ \forall t \in \left[\frac{k}{n}, \frac{k+1}{n}\right], \ f\left(\frac{k+1}{n}\right) \leqslant f(t) \leqslant f\left(\frac{k}{n}\right)$$

$$\implies \forall k \in [1, n-1], \int_{\frac{k}{n}}^{\frac{k+1}{n}} f\left(\frac{k+1}{n}\right) \, \mathrm{d}t \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) \, \mathrm{d}t \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f\left(\frac{k}{n}\right) \, \mathrm{d}t \quad \text{croissance de l'intégrale}$$

$$\implies \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k+1}{n}\right) \leqslant \int_{\frac{1}{n}}^{1} f(t) \, \mathrm{d}t \leqslant \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right)$$

$$\implies -\frac{1}{n} f\left(\frac{1}{n}\right) + \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \leqslant \int_{\frac{1}{n}}^{1} f(t) \, \mathrm{d}t \leqslant \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right)$$

$$\implies \frac{1}{n} f(1) + \int_{\frac{1}{n}}^{1} f(t) \, \mathrm{d}t \leqslant \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \leqslant \frac{1}{n} f\left(\frac{1}{n}\right) + \int_{\frac{1}{n}}^{1} f(t) \, \mathrm{d}t$$

De plus, en reprenant les inégalités de gauche pour k=0, il vient $f(1/n) \leq f(t)$ sur [0,1/n] puis

$$\frac{1}{n}f\left(\frac{1}{n}\right) \leqslant \int_0^{\frac{1}{n}} f(t) \, \mathrm{d}t$$

(Ici, il faut être très précis : f n'est pas définie en 0 donc le terme de droite n'existe pas à droite pour k=0. Par contre, on ne peut pas se contenter de jeter le résultat pour k=0 : il nous faut l'inégalité de gauche.)

D'où

$$\frac{1}{n}f(1) + \int_{\frac{1}{n}}^{1} f(t) \, dt \le \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \le \int_{0}^{1} f(t) \, dt$$

Or l'intégrale converge, donc $\lim_{n\to+\infty}\frac{1}{n}f(1)+\int_{\frac{1}{n}}^1f(t)\,\mathrm{d}t=\int_0^1f(t)\,\mathrm{d}t.$ Par encadrement,

La somme de Riemann
$$\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)$$
 converge vers $\int_0^1 f(t) dt$ lorsque $n \to +\infty$.

^{1.} Donc elle vaut 1 sur A_i et 0 ailleurs : c'est $\mathbf{1}_{A_i}$, la fonction indicatrice de A_i .

b) La fonction $f: t \mapsto \frac{1}{\sqrt{t}}$ est continue, décroissante et intégrable sur]0,1] (Riemann, $\alpha = \frac{1}{2} < 1$). Donc, d'après la question 6a,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{\frac{n}{k}} = \int_{0}^{1} t^{-1/2} dt = 2$$

Ainsi, comme $\lambda=2\neq 0, \ \frac{1}{\sqrt{n}}\sum_{k=1}^n\frac{1}{\sqrt{k}}\sim 2,$ puis

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \underset{n \to +\infty}{\sim} 2\sqrt{n}$$

7) Soit $d_n = \frac{1}{2^{2n}} \binom{2n}{n} = \frac{(2n)!}{2^{2n}(n!)^2}$. Or, d'après Stirling, $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$, donc

$$\binom{2n}{n} = \frac{(2n)!}{n!^2}$$

$$\sim \frac{\left(\frac{2n}{e}\right)^{2n} \sqrt{4\pi n}}{\left(\frac{n}{e}\right)^{2n} 2\pi n}$$

$$\sim \frac{2^{2n}}{\sqrt{\pi n}}$$

D'où $d_n \sim \frac{1}{\sqrt{\pi n}}$. Vu le coefficient est quasiment le même que pour la question de cours facultative – un classique – le calcul est aussi le même.

Ainsi, (d_n) et $(c_n) = (\frac{1}{\sqrt{\pi n}})$ sont deux suites de nombres réels strictement positifs tels que $c_n \sim d_n$. Et $\sum c_n$ diverge (Riemann, $\alpha = 1/2 \leq 1$).

Ainsi, d'après la question 4, $\sum d_n$ diverge et $\sum_{k=1}^n d_k \sim \sum_{k=1}^n c_k$, c'est-à-dire

$$\mathbb{E}(N_n) = \sum_{k=1}^{n} d_k \sim \frac{1}{\sqrt{\pi}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

En utilisant le résultat de la question 6b, il vient

$$\boxed{\mathbb{E}\left(N_n\right)_n \underset{n \to +\infty}{\sim} \frac{2}{\sqrt{\pi}} \sqrt{n}}$$

FIN DE L'ÉPREUVE