Épreuve de Mathématiques 7

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1

On considère la fonction F qui, à tout réel x de son domaine de définition \mathcal{D}_F , associe :

$$F(x) = \ln\left(\frac{x(x+1)}{(2x+1)^2}\right)$$

- 1) Déterminer \mathcal{D}_F . Ce résultat sera nécessairement justifié à l'aide d'un tableau de signes.
- 2) Justifier que F est dérivable sur \mathcal{D}_F . On désigne par f sa dérivée.
- 3) Montrer que, pour tout réel x de \mathcal{D}_F : $f(x) = \frac{1}{x(x+1)(2x+1)}$.
- 4) On s'intéresse, dans ce qui suit, à la série entière $\sum_{n\geq 1} f(n)x^{2n+1}$.
 - a) Déterminer son rayon de convergence R.
 - b) Rappeler le développement en série entière de la fonction $x \mapsto \ln(1-x)$, ainsi que son rayon de convergence.
 - c) i) Donner le développement en série entière de la fonction $x \mapsto \frac{1}{1-x^2}$, en précisant le rayon de convergence.
 - ii) Vérifier que, pour tout réel $x \in \mathbb{R} \setminus \{-1, 1\}, \frac{1}{1 x^2}$ peut s'exprimer comme une combinaison linéaire de $\frac{1}{1 x}$ et $\frac{1}{1 + x}$.
 - d) Déduire de la question précédente, en justifiant le résultat à l'aide d'un théorème de cours, le développement en série entière de la fonction $x \mapsto \frac{1}{2} \ln \frac{1+x}{1-x}$, en précisant le rayon de convergence, que l'on comparera à la valeur R obtenue en 4a.

e) Montrer que, pour tout réel x de]-R,R[:

$$\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n} = -x \ln\left(1 - x^2\right)$$

f) Pour tout réel x de]-R,R[, exprimer, à l'aide de fonctions usuelles :

$$\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n(n+1)(2n+1)}$$

<u>Indication</u>: on pour calculer $\frac{2}{x} + \frac{2}{x+1} - \frac{4}{x+1/2}$.

g) Déterminer :

$$\lim_{\substack{x \to 1 \\ x < 1}} \left(\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n(n+1)(2n+1)} \right)$$

h) En déduire que

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(2n+1)} = 3 - 4\ln(2)$$

Exercice 2

Soit n un entier naturel non nul.

On donne, dans un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, deux variables aléatoires X et Y prenant leurs valeurs dans [1, n+1].

On suppose qu'il existe $\alpha \in \mathbb{R}$ tel que :

$$\forall (i,j) \in [1, n+1]^2, \quad p_{ij} = \mathbb{P}([X=i] \cap [Y=j]) = \alpha \binom{n}{i-1} \binom{n}{j-1}$$

- 1) Déterminer la valeur du réel α .
- 2) Déterminer les lois des variables aléatoires X et Y.
- 3) Les deux variables X et Y sont-elles indépendantes?
- 4) Reconnaître la loi de la variable aléatoire Z = X 1. En déduire l'espérance et la variable aléatoire X.
- 5) On note $B \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice dont le coefficient de la *i*-ème ligne et de la *j*-ème colonne est :

$$b_{ij} = \mathbb{P}_{[X=j]}([Y=i]).$$

Montrer que $b_{ij} = \frac{1}{2^n} \binom{n}{j-1}$.

- 6) Déterminer $\operatorname{rg}(B)$ et les sous-espaces vectoriels $\operatorname{Im}(B)$ et $\operatorname{Ker}(B)$.
- 7) a) Si $C = \begin{pmatrix} c_1 \\ \vdots \\ c_{n+1} \end{pmatrix}$ et $L = (\ell_1 \cdots \ell_{n+1})$, exprimer les coefficients de la matrice CL à l'aide des coefficients de C et de L.
 - b) Déterminer une matrice colonne $C \in \mathcal{M}_{n+1,1}(\mathbb{R})$ et une matrice ligne $L \in \mathcal{M}_{1,n+1}(\mathbb{R})$ telles que B = CL.
 - c) En déduire une expression de Tr(B) à l'aide de L et C.
- 8) Démontrer que $B^2 = \text{Tr}(B)B$.
- 9) Déterminer les valeurs propres de B. B est-elle diagonalisable?

Exercice 3 (Marche aléatoire sur \mathbb{Z})

On considère une particule se déplaçant sur une droite graduée par les entiers relatifs. Sa position à l'instant initial t=0 est k=0. À chaque instant $t\in\mathbb{N}^*$, elle se déplace aléatoirement de sa position $k\in\mathbb{Z}$ à la position k+1 ou k-1.

Soit $p \in]0,1[$. On définit sur un espace probabilisé $(\Omega,\Sigma,\mathbb{P})$ une suite de variable aléatoire discrète indépendantes $(X_t)_{t\in\mathbb{N}^*}$ et identiquement distribuées dont la loi est définie par :

$$\forall t \in \mathbb{N}^*, \quad \mathbb{P}(X_t = 1) = p \quad \text{ et } \quad \mathbb{P}(X_t = -1) = 1 - p.$$

Enfin, pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{t=1}^n X_t$.

Pour tout $t \in \mathbb{N}^*$, la variable aléatoire X_t modélise le déplacement de la particule à l'instant t. Si $X_t = 1$, la particule se déplace vers la droite. Si $X_t = -1$, la particule se déplace vers la gauche. Ainsi, pour tout $n \in \mathbb{N}^*$, S_n modélise la position de la particule après n déplacements.

On rappelle la formule de Stirling:

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Partie I - Un développement en série entière

- 1) Soit $\alpha \in \mathbb{R}$ tel que $\alpha \notin \mathbb{N}$. Donner sans démonstration un développement en série entière de la fonction réelle $x \mapsto (1+x)^{\alpha}$ au voisinage de 0 en précisant son rayon de convergence.
- 2) En déduire que pour tout $x \in]-1;1[$:

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} \binom{2n}{n} x^n.$$

Partie II - Probabilité de retour à l'origine

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \mathbb{P}(S_n = 0).$$

- 3) Pour tout $t \in \mathbb{N}^*$, déterminer la loi de la variable aléatoire $Y_t = \frac{X_t + 1}{2}$. En déduire que pour tout $n \in \mathbb{N}^*$, la variable aléatoire $\sum_{t=1}^n \frac{X_t + 1}{2}$ suit une loi binomiale dont on précisera les paramètres.
- 4) En déduire que pour tout $n \in \mathbb{N}^*$:

$$u_n = \begin{cases} \binom{n}{\frac{n}{2}} (p(1-p))^{\frac{n}{2}} & \text{si } n \text{ est pair} \\ 0 & \text{sinon.} \end{cases}$$

5) Déterminer la limite de la suite $(u_{2n})_{n\in\mathbb{N}^*}$ lorsque n tend vers $+\infty$ selon les valeurs de p et interpréter le résultat.

Partie III - Nombre de passages par l'origine

Pour tout $j \in \mathbb{N}$, on note O_{2j} la variable aléatoire égale à 1 si la particule est à l'origine à l'instant t = 2j, 0 sinon. Pour tout $n \in \mathbb{N}$, on pose $T_n = \sum_{j=0}^n O_{2j}$. On note $\mathbb{E}(T_n)$ l'espérance de la variable aléatoire T_n . Dans cette partie, on souhaite déterminer $\lim_{n \to +\infty} \mathbb{E}(T_n)$.

6) Soit $n \in \mathbb{N}$. Que modélise la variable aléatoire T_n ?

7) Soit $j \in \mathbb{N}$. Déterminer la loi de la variable aléatoire O_{2j} . En déduire que :

$$\mathbb{E}(T_n) = \sum_{j=0}^{n} {2j \choose j} (p(1-p))^j.$$

- 8) On suppose dans cette question que $p \neq \frac{1}{2}$. En utilisant le résultat de la question 2, calculer $\lim_{n \to +\infty} \mathbb{E}(T_n)$ et interpréter le résultat.
- 9) On suppose dans cette question que $p = \frac{1}{2}$. Montrer que :

$$\forall n \in \mathbb{N}, \quad \mathbb{E}(T_n) = \frac{2n+1}{2^{2n}} \binom{2n}{n}$$

et en déduire $\lim_{n\to+\infty} \mathbb{E}(T_n)$.

Exercice 4 (Puissances de matrices et limites de suites de matrices)

Soit $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$. On s'intéresse ici à la convergence des suites matricielles $(M_k)_{k \in \mathbb{N}}$ où pour tout $k \in \mathbb{N}$, $M_k \in \mathcal{M}_{n,p}(\mathbb{C})$ avec p=1 (matrices colonnes) ou p=n (matrices carrées). Pour tout $k \in \mathbb{N}$, on note alors $M_k = \binom{nk}{i,j}_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]}$ ou plus simplement $M_k = \binom{nk}{i,j}$.

On suppose que l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{C})$ est muni d'une norme notée $\|.\|$ indifféremment des valeurs de n et p. En particulier, si $V \in \mathcal{M}_{n,1}(\mathbb{C})$, V est une matrice colonne assimilée à un vecteur de \mathbb{C}^n et on note $\|V\|$ sa norme.

On rappelle que les trois assertions suivantes sont équivalentes :

- 1) la suite $(M_k)_{k\in\mathbb{N}}$ converge vers la matrice $A=(a_{i,j})\in\mathcal{M}_{n,p}(\mathbb{C})$;
- 2) la suite des normes $(\|M_k A\|)_{k \in \mathbb{N}}$ converge vers 0;
- **3)** pour tout $(i,j) \in [1;n] \times [1;p]$, la suite de nombres complexes $(m_{i,j}^{(k)})_{k \in \mathbb{N}}$ converge vers $a_{i,j} \in \mathbb{C}$ (convergence des coefficients de la matrice).

On s'intéresse en particulier à la suite des puissances itérées $\left(M^k\right)_{k\in\mathbb{N}}$ d'une matrice donnée $M\in\mathcal{M}_n(\mathbb{C})$.

Partie I - Diagonalisation et puissances d'une matrice particulière

Soit $n \in \mathbb{N}$ tel que $n \geqslant 3$. Pour tout $(a,b) \in \mathbb{C}^2$, on définit la matrice $M(a,b) \in \mathcal{M}_n(\mathbb{C})$ par :

$$M(a,b) = \begin{pmatrix} b & a & a & \dots & a \\ a & b & a & \dots & a \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a & \dots & a & b & a \\ a & \dots & a & a & b \end{pmatrix}$$

et on note $P_{a,b}$ le polynôme caractéristique de la matrice M(a,b).

On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$ et on remarque que pour tous réels a et b,

$$M(a,b) = bI_n + aM(1,0).$$

1) On suppose, dans cette question uniquement, que $(a,b) \in \mathbb{R}^2$. Montrer que dans ce cas M(a,b) est diagonalisable.

2) Montrer que $V = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$ est un vecteur propre de M(a,b) et déterminer la valeur propre associée à V.

- 3) Montrer que $P_{1,0}(X) = (X (n-1))(X+1)^{n-1}$.
- 4) On suppose que $a \neq 0$. Montrer que $P_{a,b}(X) = a^n P_{1,0}\left(\frac{X-b}{a}\right)$. En déduire l'ensemble des valeurs propres de M(a,b) ainsi que leurs multiplicités.
- 5) On définit le polynôme $Q_{a,b} \in \mathbb{C}[X]$ par $Q_{a,b}(X) = (X (b-a))(X (b+(n-1)a))$. Montrer que $Q_{a,b}$ est un polynôme annulateur de M(a,b) et en déduire que M(a,b) est diagonalisable (on distinguera les cas a = 0 et $a \neq 0$).
- 6) Soit $k \in \mathbb{N}$. On suppose que $a \neq 0$. Déterminer le reste de la division euclidienne du polynôme X^k par le polynôme $Q_{a,b}$ et en déduire une expression de $M(a,b)^k$ comme combinaison linéaire de M(a,b) et de I_n .
- 7) Supposons que |b-a| < 1 et |b+(n-1)a| < 1. Déterminer la limite de la suite de matrices $\left(M(a,b)^k\right)_{k\in\mathbb{N}}$.

Partie II - Limite des puissances d'une matrice

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel \mathbb{C}^n muni d'une norme notée $\|.\|$. On note sa base canonique $\mathscr{B} = (e_1, \ldots, e_n)$. Soit u un endomorphisme de \mathbb{C}^n vérifiant la propriété suivante :

$$\forall \lambda \in \mathrm{Sp}(u), \quad |\lambda| < 1$$

où $\operatorname{Sp}(u)$ est l'ensemble des valeurs propres de u. On note A la matrice de l'endomorphisme u dans la base \mathscr{B} .

L'objectif de cette partie est de montrer que $\lim_{k \to +\infty} A^k = 0$.

On suppose (sauf à la question 12) que A = T où T est une matrice triangulaire supérieure :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots & * \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \dots & \dots & 0 & \lambda_n \end{pmatrix}.$$

- 8) a) Pour $k \in \mathbb{N}$, calculer $u^k(e_1)$ en fonction de k, λ_1 et e_1 .
 - **b)** Montrer que $\lim_{k \to +\infty} ||u^k(e_1)|| = 0$ et en déduire $\lim_{k \to +\infty} u^k(e_1)$.

On suppose qu'il existe $i \in [1; n-1]$ tel que pour tout $j \in [1; i]$, $\lim_{k \to +\infty} u^k(e_j) = 0$.

- 9) Montrer qu'il existe $x \in \text{Vect}(e_j)_{j \in \llbracket 1;i \rrbracket}$ tel que : $u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x$. En déduire que pour tout $k \in \mathbb{N}^*$: $u^k(e_{i+1}) = \lambda_{i+1}^k e_{i+1} + \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x)$.
- **10)** a) Montrer que $\lim_{k \to +\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0.$
 - **b)** En déduire que $\lim_{k\to+\infty} u^k(e_{i+1}) = 0$.
- 11) Montrer alors que $\lim_{k \to +\infty} T^k = 0$.

12) On ne suppose plus que A est triangulaire supérieure. Montrer que $\lim_{k\to+\infty}A^k=0$.

Partie III - Application à la méthode de Gauss-Seidel

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall i \in [1; n], \quad |a_{i,i}| > \sum_{\substack{j=1\\j \neq i}}^{n} |a_{i,j}|.$$

On dit alors que A est une matrice à diagonale strictement dominante. On admet que dans ce cas A est inversible.

On définit ensuite $M \in \mathcal{M}_n(\mathbb{C})$ et $F \in \mathcal{M}_n(\mathbb{C})$ de la manière suivante : pour tout $(i,j) \in [1,n]^2$,

- si $i \geqslant j$, $m_{i,j} = a_{i,j}$ et $f_{i,j} = 0$;
- si i < j, $m_{i,j} = 0$ et $f_{i,j} = -a_{i,j}$.

Ainsi, A = M - F où F est la partie triangulaire supérieure de diagonale nulle de -A et où M est la partie triangulaire inférieure de A.

Soit $Y \in \mathcal{M}_{n,1}(\mathbb{C})$. On note $X \in \mathcal{M}_{n,1}(\mathbb{C})$ l'unique matrice colonne telle que :

$$AX = Y$$
.

Le but de cette partie est de trouver une suite qui converge vers X.

13) Justifier que M est inversible.

Dans la suite de cette partie, on pose $B = M^{-1}F$. On définit par récurrence une suite de matrices colonnes $(X_k)_{k\in\mathbb{N}}$ avec $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$ quelconque et :

$$\forall k \in \mathbb{N}, \quad X_{k+1} = BX_k + M^{-1}Y.$$

14) Montrer que $X = BX + M^{-1}Y$.

Soit λ une valeur propre quelconque de la matrice B. On note $V \in \mathcal{M}_{n,1}(\mathbb{C})$ un vecteur propre de B associé à cette valeur propre.

Par convention, si $(u_j)_{j\in\mathbb{N}}$ est une suite de nombres complexes alors $\sum_{j=n+1}^n u_j = \sum_{j=1}^0 u_j = 0$.

15) Montrer que $FV = \lambda MV$. En déduire que :

$$\forall i \in [1, n], \quad \lambda a_{i,i} v_i = -\left(\sum_{j=i+1}^n a_{i,j} v_j + \lambda \sum_{j=1}^{i-1} a_{i,j} v_j\right).$$

16) Montrer qu'il existe $i_0 \in \llbracket 1; n \rrbracket$ tel que $|v_{i_0}| = \max_{j \in \llbracket 1; n \rrbracket} |v_j|$ et $v_{i_0} \neq 0$. En déduire que :

$$|\lambda a_{i_0,i_0}| \le \left(\sum_{j=i_0+1}^n |a_{i_0,j}| + |\lambda| \sum_{j=1}^{i_0-1} |a_{i_0,j}|\right).$$

- 17) En déduire que $|\lambda| < 1$, puis que $\lim_{k \to +\infty} B^k = 0$.
- 18) Montrer que:

$$\forall k \in \mathbb{N}, \quad X_k - X = B^k(X_0 - X)$$

et conclure.

FIN DE L'ÉPREUVE