Lycée St Joseph Lundi 26 janvier 2026
Classe de PC

Epreuve de Mathématiques 6

Correction

Exercice 1 (E3A PC 2025 — corrigé du jury)

1) J est une matrice de rang 1 et Im (J) = Vect(C1) ou C; est la premiere colonne de la matrice J.

2) D’apres la question précédente, Ker (J) est un hyperplan de R".

3)
)

5)

6)
7)

8)

x] "
Un vecteur X = | ¢ | € R" est dans Ker (J) si et seulement si ij = 0 qui est 'équation de
x 7=1
n
Ker (J).
z1
On en déduit que X € Ker(J) <— X = : , ce qui donne comme base de
Tn—1
—T1 = T2~ Tpd
1 0 0
1
0 0 :
Ker(J) lafamille: Vi=| : |, Va=| . |,....;Vac1=1| 0
0 : 1
0
-1 - -1

La matrice J est symétrique réelle donc, diagonalisable.

0 est valeur propre d’ordre n — 1 et le sous-espace propre associé est Ker (J).

La deuxiéme (et derniere) valeur propre est tr(J) = n et le sous-espace propre associé est Vect(Ch)
car JC1 = n(CY.

On en déduit alors que D = diag(0, ...,0,n) en utilisant la base (V1,...,V,_1,C1).

On peut remarquer que le produit scalaire d’un vecteur de base de Ker (f) avec C est nul, donc Ker ( f)
et Im (f) sont orthogonaux. D’apres le théoréeme du rang, ils sont supplémentaires orthogonaux dans
R™.

Ona M, =rJ+ (1 —r)l, € Vect(I,J).

La matrice M, est diagonalisable dans M,,(R) puisque symétrique réelle. Comme J est diagonalisable,
il existe P inversible telle que J = PDP~!. Donc

M, =rPDP '+ (1—r)PP ' =P(rD+ (1 —1)I,)P!
La matrice M, est donc semblable & la matrice A, = diag(1 —7r,...,1 —r,(n — 1)r 4+ 1).
Remarque : si on a choisi D = diag(n,0,...,0), on a A, =diag((n — )r+1,1—7r,...,1—7).
Pour tout couple (X,Y) de vecteurs de R™, on pose f,(X,Y) = X" M,Y.
a) Prenons Y, Z e R" et A€ R. On a
(XY +2)=XTM,(\Y +2) =AX"M,Y + X "M, Z = \f.(X,Y) + (X, Z)

De plus, X " est de taille 1 x n, M, de taille n x n et Y de taille n x 1, donc X ' M,Y est de taille
1 x 1 et est un réel.
Donc Y — f,(X,Y) est une forme linéaire sur R".
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b) Soit (X,Y) € (R")% Comme une matrice de taille 1 est égale & sa transposée,
X Y)=X"TMY =(X"M,Y)" =Y "M, X = f.(Y, X) car M, est symétrique.

c) D’apres le théoreme spectral, il existe une matrice P € M, (R) orthogonale telle que
M, =PTA,P

Pour (X,Y) € (R")?, f.(X,Y)=X"(P"A,P)Y = X'A,Y' avec X' = PX et Y' = PY.

d) D’apres les questions précédentes, f, est une forme bilinéaire symétrique, donc elle définit un
produit scalaire si et seulement si elle est définie positive. Prenons alors X € R" et notons

(x1,...,2,) les composantes de X'.
n—1
On a donc f(X, X)=(1—-r) Z z3 4+ ((n—1)r +1)22. Ainsi, f, définit un produit scalaire si et
k=1
1
seulement si 1 —r >0 et (n — 1)r + 1 > 0, autrement dit si et seulement si — 1 <r<l
n p—

Exercice 2 (E3A PC 2025 — corrigé du jury)
1) Z peut prendre toutes les valeurs dans N* et pour tout k € N*, P(Z = k) = p(1 — p)*~*. De plus,

1 1-
R(Z) = et V(Z) = pzp.

2) X1 et Xy sont indépendantes si pour tout A C X1(2) et B C X3(R), les événements (X; € A)
t (X2 € B) sont indépendants. De fagon équivalente, X; et Xy sont indépendantes si pour tout
x e Xl(Q) et tout y € XQ(Q), P(Xl =ux,X9 = y) = P(Xl = I’)P(Xg = y)

3) P(X ZIP
= Z pq"
n=~k

1
= qulfq car q €]0, 1]
Donc on a bien P(X > k) = ¢*.
4) a) Comme X et Y prennent des valeurs dans N, X + Y prend ses valeurs dans N.

b) Pour tout entier naturel n :
n

(X+Y =n)= U((X:i)ﬁ(Y:n—i)).
1=0
Ainsi, par indépendance : P(X+Y =n) = Z]P’(X =4)P(Y =n—i) qu pg" "t = (n+1)p?
c) i) Comme

P(X=kX+Y=n) PX=kY=n—k PX=kPY=n—k)

P(X +Y =n) P(X +Y =n) P(X +Y =n)
si k >n, (Y =n —k) est impossible, donc Py y_p)(X = k) =
P(X =KP(Y =n—k 1
ii) Si k € [0,n],Pxyy—n)(X = k) = ( IP’(X)+(Y — :;) ) = T d’apreés la question

précédente. On pose donc r, = o qui convient.
n

5) Onpose V=Y — X et M =min(X,Y).
a) V prend ses valeurs dans Z et M prend ses valeurs dans N.

b) Soit k € N.
P(M>k)=P(X >kY > k).
Or P(X > k) = ¢" et de méme P(Y > k) = ¢* car X et Y ont méme loi.
Dot P(M > k) =
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¢) On en déduit la loi de la variable aléatoire M :

pour tout k € NNP(M = k) =P(M > k) —P(M > k+1) = ¢**(1 — ¢?)
d) Commengons par remarquer que (V >20)=(Y > X) = (M = X)
— Sir >0,
P(M=kV=r)=PX=kY—X=r)
—P(X =k Y =k+7)
=P(X =k)P(Y =k+7)
:p2q2k+7“

par indépendance.
— Sir < 0, de méme,

PM=kV=r)=PY =kX=Fk—r)
=PY =k)P(X =k—r)

p2q2k7r

En conclusion : |P(M =k, V = r) = p?¢?**I"!

e) La loi de V est donc une loi marginale du couple (M, V') donnée, pour tout r € Z, par :
+oo
1
P(V = — 2 2k+|r| — 2 |r| )
(V=r) kgpq U
f) Avec les questions précédentes, on trouve que pour tout r € Z et k € N,
P(M = k)P(V =7r) = P(M = k,V = r) donc les deux variables aléatoires M et V sont
indépendantes.

Exercice 3 (CCINP MPI 2025)

1) C’est une question classique. Comme pour toute suite, on peut commencer par déterminer les premiers termes.
Une fois les valeurs (du degré et du terme dominant) conjecturée, prouver les formules par récurrence.
Ici, on trouve deg Py = 0, deg P} =1,

P, =2XP — Py =2X%2-1 as = 2

Py =2XP,— P, =4X3% —2X — X =4X3 - 3X as =4

Py =2XP;— P, =2X(4X? - 3X) — (222 — 1) = 8X* + Q(X) ay =8
On conjecture deg P,, = n et a,, = on—1 pour n = 1.

Notons a,, le coefficient dominant de P,,. Montrons par récurrence que la propriété :
Hn: degPo=n et a,=2""

est vraie pour tout n > 1.
e H; : est vraie car P, = X de degré 1 et terme dominant a,, = 1.
o Hy : est vraie car P, = 2X 2_1de degré 2 et terme dominant a, = 2.
e H, = Hpyt1 : Supposons H, et H,_1 vraies pour un certain n > 2 :
P,=2""1X"4+ Q avec degQ < n et deg P,_1 = n — 1.

Pn+1 ZQXPn_Pn—l
—2X" 4+ 2XQ + Py,

Comme deg(2XQ + P,—1) <n+1,deg Pt1 =n+1 et apt1 = 2" Donc Hy41 est vraie.

e Conclusion : |Vn > 1 deg P, = n et son terme dominant est on—1xmn

Pour n =0, Py =1 est de degré 0 et de terme dominant 1.
Vous avez besoin d’informations sur P, et P,_1, donc il vous faut H, et H,_1 : c’est une récurrence forte. Il

faut donc Ho aussi.
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2) Soit § € R. Montrons par récurrence que la propriété :
My Py,(cos(f)) = cos(nb).

est vraie pour tout n > 0.
e Ho: Py=1etcos(0) =1 donc Py(cosf) = cos(0 x ). Donc Hy est vraie.
e Hi : Pi(cosf) = cos(#) = cos(1 x 6). Donc H; est vraie.
e H,, = Hp41 : Supposons H,, et H,_1 vraies.

Py +1(cos @) = 2cos(0)P,(cos @) — P,—1(cosb)
= 2cos(0) cos(nf) — cos((n — 1)0) (Hn, et Hp_1)
(9) no

) — [cos(nf) cos(8) + sin(nd) sin(6)] formules de trigo : savoir qu’elles

= 2cos(f) cos
( existent et savoir les retrouver.

= cos(#) cos(nfh) — sin(nh) sin(h)
= cos((n +1)0)

Donc H, 41 est vraie.

e Conclusion : ‘Vn >0 P,(cosf) = cos(nh) ‘

P)Q(1)

3) Soit P,Q € R[X]. La fonction f :] —1,1[— R définie par f(t) = est continue donc continue

par morceaux sur | — 1, 1].
Etude en t =1 : Soit t =1 — h.

fu—hyzpﬂiﬁ?géf) Orl1—(1-h)2?=1-(1-2h+h? =2h—h*~2h

P(1—h)Q(1 - h)

1
V2
Par continuité de t — P(t)Q(t) en 1,

f(L=h)

Sl-

PUL-WQL—h) ~PLQL) ou  PL—h)QL—h)=o(1)

selon que P(1)Q(1) # 0 ou =0. D’ou f(1 —h) ~ % ou f(1—h)= 0(#).

11
Or / ——=dh converge (Riemann, o =1/2 < 1).
0 hl/2

1
Dong, par théoreme de comparaison, / f(1 — h)dh converge absolument donc converge.
0

L P)Q(Y)
-1 V1—1¢2
Etude en t = —1 : Soit t = —1 4 h. L’étude est identique, par parité de ¢ — 1/V1—¢t2.

Ainsi, dt converge en 1.

F-L4B) ~ S5 P14 QL+ ) -

K
Par continuité de t — P(t)Q(t) en —1, f(—1+h) ~ wijz Ou fl—h)= o(w).
L
Or / ——=dh converge (Riemann, o = 1/2 < 1).
o hl/2

1
Donc, par théoreme de comparaison, / f(=14 h)dh converge absolument donc converge.
0

L PHQ(t
Ainsi, / Mdt converge en —1.
-1 V1—1t2

Conclusion :
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L P(t)Q(t)
L Viee

L’intégrale dt converge

4) Soit E = R[X].
e Symétrie : (.,.) est symétrique par commutativité du produit dans R :
V(P,Q) e B (P.Q)=(Q,P)
e Bilinéarité : Soient P, P»,Q € E et A € R.
AP(E) + Pa(1)]Q(2)

L Py L P(t)Q(t
=\ / 1 t+ Mdt par linéarité de l'intégrale
-1 V1—1#2

= A(P1,Q> (Pz,Q>

Donc (., Q) linéaire, et, par symétrie, (.,.) bilinéaire.

e Positivité : Soit P € E, par positivité de l'intégrale,

Donc (., .) positif.

L Pt
e Caractere défini positif : Soit P € E tel que (P, P) = / : ( )tQ dt =0
-1 —
P2(t)
La fonction f : ¢ +— vérifie
f V1 — 2
e f continue sur I =] —1,1[;
o [20;
[} /f = 0
I
Donc, d’apres le théoréme de l'intégrale nulle, f =0 sur | —1,1]:
P2(t)
vVt el —1,1], =
RSN
Donc P(t) = 0 pour tout ¢ €] — 1,1[. Ainsi, P a une infinité de racines (tous les ¢t €] — 1, 1]).

Donc P = 0.
Par conséquent, (.,.) est défini positif.

Conclusion :

‘ (.,.) est un produit scalaire sur R[X| donc sur R[X] ‘

5) Soit n,m € N2. Formules de trigo, le retour.
2 cos(n#) cos(ml) = cos((n +m)#) + cos((n —m)6)
Or, pour k € Z\ {0},

s

/07r cos(k0)df = [lt Sin(kﬂ)} =0

0
D’ou,

0 sin#m

T sin=m

/ﬂ cos(nf) cos(mf)dl = {
0
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6) Montrons que (Pp)nefox] est une famille orthogonale :
dt = —sin(#)do, et le changement de bornes

t=-1
t=1

La fonction # — cos 6 est €, strictement décroissante, donc bijective de |0, [ dans ]—1, 1[. Le théoréme
de changement de variable affirme que les deux intégrales suivantes sont de méme nature (convergente

d’apres 4) et

(P, Py

P, (cos 0)

= / cos(nf) cos(mb)de
0

:{2

sin#m

sin=m

{ 0=m
donne

Donc (Py)nefo,r) est une famille orthogonale de Ry.[X].

1
En considérant la famille ( ﬁpn)ne[[(),k]]a on a

Par conséquent,

Vn, m

(Pn; Prn)

soient n,m € [0,k]%. En posant t = cos(6),

0=0

Or, sur [0, 7], sinf >0

= 5n,m

d’apres 2

1
La famille (—
NZS

Pr)nefo, est une base orthonormale de Ry[X] pour ce produit scalaire

Exercice 4 (CCINP MPI 2025)

1) Montrons que

Soit ¢(z) = In(1 4+ x) —  pour x € 1

D’ou le tableau de variations

Vr €] — 1, +o0], In(l+z) <=z
=] —1,4o0][.
1 x
Veel '(z) = 1=
x -1 0 +00
¢'(z) + 0 -

OO/O\

D’ou ¢ < 0 sur I, et I'inégalité voulue.

Comme zp > 0 pour tout k, et donc m > 0 aussi, on peut appliquer l'inégalité précédente avec

x=xp/m—-1€l:

En sommant sur k, il vient

Yk € [1,n], 1n(f:> g%—1
S () < S (B
() <X (5 -1
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2) Simplifions les expressions précédentes :

n n n n
T Tk 1
Zln — :ln<]:[x;€>nln(m) Z —= -1 :<Zxk>n
k=1 (m) k=1 k=1 (m ) M \k=1
n =n-n
=1In ( :rk> —nln(m)
k=1 =0
Ainsi, d’apres 1,
n
In (H :rk> —nln(m) <0
k=1

1 n
= —In <H wk> < In(m)

o \k21

1
n n
= <H l’k> <m Par croissance de I’exponentielle
k=1
Conclusion :
n 1 1 n
( H xk) X n Z Tk
k=1 k=1
3)[<=] Supposons x1 = x3 = - - - = . Alors les deux termes de 'inégalité valent 1, et sont donc égaux.
LY S o :
Supposons que ( H :z:k) =— Z xp = m, c’est-a-dire, en prenant le logarithme,
n
k=1 k=1

n

S (%) =0

=1 "
Or, pour tout k € [1,n], zx/m €]0,1], donc les In(zx/m) sont tous de méme signe — négatif.
Ainsi,

T\
Vke[l,n], In (E) -0

D’ou zp = m pour tout k, et donc

T1=T2 =" ""=1Tp

Conclusion :

L’inégalité précédente est une égalité si, et seulement si, x1 =22 = --- = x,,.

4) D’apres le théoreme spectral, il existe P € 0, (R) et D diagonale telles que B = PDP !,
De plus B définie positive, donc Sp (B) C R, : les valeurs propres, coefficients diagonaux Aq,..., A,
de D, sont strictement positives.
Or det et Tr sont invariants par changements de base :

n n
detB=detD=J[ M\ et TrB=TrD=> X
k=1 k=1

En appliquant le résultat de la question 2 avec xp = A > 0 pour tout k, il vient

(det(B))* < = Tr(B)

D’apres la question 3, I'inégalité précédente est une égalité si et seulement si Ay = -+ = A, ce qui
signifie D € Vect (I,).
Or D = A\, entraine B = P()\In)P*1 = M, et réciproquement. D’ou
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3=

(det(B))

1
= —Tr(B) si et seulement si B € Vect (1,).
n

5) Par définition de S, " (R),
VX eR", X #0, XTAX >0
Soit i € [1,n]. Notons X = E; le vecteur colonne avec un 1 a la i-eéme ligne, et 0 ailleurs. Alors, par

calcul matriciel,
aii

EJAE,=E! | : | = ay
(0799

Ainsi,

Vi € [[1,n] a;i > 0

6) Comme BT =DTATDT = B, B est symétrique réelle. Soit X € R? non nul,

X"BX = (DX)TA(DX)
—y'Ay avec Y =DX #0
>0 car A€ SH(R)

Par conséquent,

B € ST (R)

i1
D’apres la question B € S t(R) entraine (det(B))" < — Tr (B).
n
n

Or det(B) = det(A)(det(D))? = det(A) H a;lt.

i

i=1
9 1 1 .
Et,ennotant A=| Cy|---|C,, |,onaAD*=| —Ci|---| —C, |.Dou
ai1 Qnn
Tr(B) = Tr (D(AD)) =Tr (AD*) =)~ =n
s
i=1 2

Donc I'inégalité précédente s’écrit

3=

Conclusion :

‘det(A) Lai1 X a2 X - Xapnp

3=

1
S’il y a égalité dans I'inégalité précédente, on a (det(B))" = — Tr (B).
n

Or, d’apres la question {4} celle-ci est vraie si et seulement si B € Vect (I,), i.e. B = A, pour un
certain A € R.

Ce qui entraine A = A\D~2 diagonale.

Réciproquement, si A est diagonale, alors det(A4) = a1 X -+ X app.

En conclusion :

Il y a égalité si et seulement si A est diagonale




