
Lycée St Joseph Lundi 26 janvier 2026
Classe de PC

Épreuve de Mathématiques 6

Correction

Exercice 1 (E3A PC 2025 – corrigé du jury)
1) J est une matrice de rang 1 et Im (J) = Vect(C1) où C1 est la première colonne de la matrice J .
2) D’après la question précédente, Ker (J) est un hyperplan de Rn.

Un vecteur X =

x1
...
xn

 ∈ Rn est dans Ker (J) si et seulement si
n∑
j=1

xj = 0 qui est l’équation de

Ker (J).

On en déduit que X ∈ Ker (J) ⇐⇒ X =


x1
...

xn−1
−x1 − x2 − · · · − xn−1

, ce qui donne comme base de

Ker (J) la famille : V1 =


1
0
...
0
−1

 , V2 =



0
1
0
...
0
−1


, . . . , Vn−1 =


0
...
0
1
−1

.

3) La matrice J est symétrique réelle donc, diagonalisable.
4) 0 est valeur propre d’ordre n− 1 et le sous-espace propre associé est Ker (J).

La deuxième (et dernière) valeur propre est tr(J) = n et le sous-espace propre associé est Vect(C1)
car JC1 = nC1.
On en déduit alors que D = diag(0, ..., 0, n) en utilisant la base (V1, . . . , Vn−1, C1).

5) On peut remarquer que le produit scalaire d’un vecteur de base de Ker (f) avec C1 est nul, donc Ker (f)
et Im (f) sont orthogonaux. D’après le théorème du rang, ils sont supplémentaires orthogonaux dans
Rn.

6) On a Mr = rJ + (1− r)In ∈ Vect(In, J).
7) La matriceMr est diagonalisable dansMn(R) puisque symétrique réelle. Comme J est diagonalisable,

il existe P inversible telle que J = PDP−1. Donc

Mr = rPDP−1 + (1− r)PP−1 = P (rD + (1− r)In)P−1

La matrice Mr est donc semblable à la matrice ∆r = diag(1− r, ..., 1− r, (n− 1)r + 1).
Remarque : si on a choisi D = diag(n, 0, . . . , 0), on a ∆r = diag((n− 1)r + 1, 1− r, . . . , 1− r).

8) Pour tout couple (X,Y ) de vecteurs de Rn, on pose fr(X,Y ) = X>MrY .
a) Prenons Y, Z ∈ Rn et λ ∈ R. On a

fr(X,λY + Z) = X>Mr(λY + Z) = λX>MrY +X>MrZ = λfr(X,Y ) + fr(X,Z)

De plus, X> est de taille 1×n, Mr de taille n×n et Y de taille n× 1, donc X>MrY est de taille
1× 1 et est un réel.
Donc Y 7→ fr(X,Y ) est une forme linéaire sur Rn.
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b) Soit (X,Y ) ∈ (Rn)2. Comme une matrice de taille 1 est égale à sa transposée,
fr(X,Y ) = X>MrY = (X>MrY )> = Y >MrX = fr(Y,X) car Mr est symétrique.

c) D’après le théorème spectral, il existe une matrice P ∈Mn(R) orthogonale telle que

Mr = P>∆rP

Pour (X,Y ) ∈ (Rn)2, fr(X,Y ) = X>(P>∆rP )Y = X ′∆rY
′, avec X ′ = PX et Y ′ = PY .

d) D’après les questions précédentes, fr est une forme bilinéaire symétrique, donc elle définit un
produit scalaire si et seulement si elle est définie positive. Prenons alors X ∈ Rn et notons
(x1, . . . , xn) les composantes de X ′.

On a donc fr(X,X) = (1− r)
n−1∑
k=1

x2
k + ((n− 1)r+ 1)x2

n. Ainsi, fr définit un produit scalaire si et

seulement si 1− r > 0 et (n− 1)r + 1 > 0, autrement dit si et seulement si − 1
n− 1 < r < 1.

Exercice 2 (E3A PC 2025 – corrigé du jury)
1) Z peut prendre toutes les valeurs dans N∗ et pour tout k ∈ N∗, P(Z = k) = p(1 − p)k−1. De plus,

E(Z) = 1
p
et V(Z) = 1− p

p2 .

2) X1 et X2 sont indépendantes si pour tout A ⊂ X1(Ω) et B ⊂ X2(Ω), les événements (X1 ∈ A)
et (X2 ∈ B) sont indépendants. De façon équivalente, X1 et X2 sont indépendantes si pour tout
x ∈ X1(Ω) et tout y ∈ X2(Ω), P(X1 = x,X2 = y) = P(X1 = x)P(X2 = y).

3) P(X > k) =
+∞∑
n=k

P(X = n)

=
+∞∑
n=k

pqn

= pqk
1

1− q car q ∈]0, 1[

Donc on a bien P(X > k) = qk.
4) a) Comme X et Y prennent des valeurs dans N, X + Y prend ses valeurs dans N.

b) Pour tout entier naturel n :

(X + Y = n) =
n⋃
i=0

((X = i) ∩ (Y = n− i)).

Ainsi, par indépendance : P(X+Y = n) =
n∑
i=0

P(X = i)P(Y = n−i) =
n∑
i=0

pqipqn−i = (n+1)p2qn.

c) i) Comme

P(X+Y=n)(X = k) = P(X = k,X + Y = n)
P(X + Y = n) = P(X = k, Y = n− k)

P(X + Y = n) = P(X = k)P(Y = n− k)
P(X + Y = n)

si k > n, (Y = n− k) est impossible, donc P(X+Y=n)(X = k) = 0.

ii) Si k ∈ J0, nK,P(X+Y=n)(X = k) = P(X = k)P(Y = n− k)
P(X + Y = n) = 1

n+ 1 d’après la question

précédente. On pose donc rn = 1
n+ 1 qui convient.

5) On pose V = Y −X et M = min(X,Y ).
a) V prend ses valeurs dans Z et M prend ses valeurs dans N.
b) Soit k ∈ N.

P(M > k) = P(X > k, Y > k).
Or P(X > k) = qk et de même P(Y > k) = qk car X et Y ont même loi.
D’où P(M > k) = q2k.
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c) On en déduit la loi de la variable aléatoire M :
pour tout k ∈ N,P(M = k) = P(M > k)− P(M > k + 1) = q2k(1− q2).

d) Commençons par remarquer que (V > 0) = (Y > X) = (M = X).
— Si r > 0,

P(M = k, V = r) = P(X = k, Y −X = r)
= P(X = k, Y = k + r)
= P(X = k)P(Y = k + r)
= p2q2k+r

par indépendance.
— Si r < 0, de même,

P(M = k, V = r) = P(Y = k,X = k − r)
= P(Y = k)P(X = k − r)
= p2q2k−r

En conclusion : P(M = k, V = r) = p2q2k+|r|

e) La loi de V est donc une loi marginale du couple (M,V ) donnée, pour tout r ∈ Z, par :

P(V = r) =
+∞∑
k=0

p2q2k+|r| = p2q|r|
1

1− q2 .

f) Avec les questions précédentes, on trouve que pour tout r ∈ Z et k ∈ N,
P(M = k)P(V = r) = P(M = k, V = r) donc les deux variables aléatoires M et V sont
indépendantes.

Exercice 3 (CCINP MPI 2025)
1) C’est une question classique. Comme pour toute suite, on peut commencer par déterminer les premiers termes.

Une fois les valeurs (du degré et du terme dominant) conjecturée, prouver les formules par récurrence.
Ici, on trouve degP0 = 0, degP1 = 1,

P2 = 2XP1 − P0 = 2X2 − 1 a2 = 2
P3 = 2XP2 − P1 = 4X3 − 2X −X = 4X3 − 3X a3 = 4
P4 = 2XP3 − P2 = 2X(4X3 − 3X)− (2x2 − 1) = 8X4 +Q(X) a4 = 8

On conjecture degPn = n et an = 2n−1 pour n > 1.
Notons an le coefficient dominant de Pn. Montrons par récurrence que la propriété :

Hn : degPn = n et an = 2n−1

est vraie pour tout n > 1.
• H1 : est vraie car P1 = X de degré 1 et terme dominant an = 1.
• H2 : est vraie car P2 = 2X2 − 1 de degré 2 et terme dominant an = 2.
• Hn =⇒ Hn+1 : Supposons Hn et Hn−1 vraies pour un certain n > 2 :
Pn = 2n−1Xn +Q avec degQ < n et degPn−1 = n− 1.

Pn+1 = 2XPn − Pn−1

= 2Xn + 2XQ+ Pn−1

Comme deg(2XQ+ Pn−1) < n+ 1, degPn+1 = n+ 1 et an+1 = 2n. Donc Hn+1 est vraie.

• Conclusion : ∀n > 1 degPn = n et son terme dominant est 2n−1Xn

Pour n = 0, P0 = 1 est de degré 0 et de terme dominant 1.
Vous avez besoin d’informations sur Pn et Pn−1, donc il vous faut Hn et Hn−1 : c’est une récurrence forte. Il
faut donc H2 aussi.
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2) Soit θ ∈ R. Montrons par récurrence que la propriété :

Hn : Pn
(

cos(θ)
)

= cos(nθ).

est vraie pour tout n > 0.
• H0 : P0 = 1 et cos(0) = 1 donc P0(cos θ) = cos(0× θ). Donc H0 est vraie.
• H1 : P1(cos θ) = cos(θ) = cos(1× θ). Donc H1 est vraie.
• Hn =⇒ Hn+1 : Supposons Hn et Hn−1 vraies.

Pn+1(cos θ) = 2 cos(θ)Pn(cos θ)− Pn−1(cos θ)
= 2 cos(θ) cos(nθ)− cos((n− 1)θ) (Hn et Hn−1)

= 2 cos(θ) cos(nθ)− [cos(nθ) cos(θ) + sin(nθ) sin(θ)] formules de trigo : savoir qu’elles
existent et savoir les retrouver.

= cos(θ) cos(nθ)− sin(nθ) sin(θ)
= cos((n+ 1)θ)

Donc Hn+1 est vraie.
• Conclusion : ∀n > 0 Pn(cos θ) = cos(nθ)

3) Soit P,Q ∈ R[X]. La fonction f :]− 1, 1[→ R définie par f(t) = P (t)Q(t)√
1− t2

est continue donc continue

par morceaux sur ]− 1, 1[.
Étude en t = 1 : Soit t = 1− h.

f(1− h) = P (1− h)Q(1− h)√
1− (1− h)2 Or 1− (1− h)2 = 1− (1− 2h+ h2) = 2h− h2 ∼ 2h

f(1− h) ∼ 1√
2
P (1− h)Q(1− h) 1√

h

Par continuité de t 7→ P (t)Q(t) en 1,

P (1− h)Q(1− h) ∼ P (1)Q(1) ou P (1− h)Q(1− h) = o(1)

selon que P (1)Q(1) 6= 0 ou = 0. D’où f(1− h) ∼ K

h1/2 ou f(1− h) = o( 1
h1/2 ).

Or
∫ 1

0

1
h1/2 dh converge (Riemann, α = 1/2 < 1).

Donc, par théorème de comparaison,
∫ 1

0
f(1− h)dh converge absolument donc converge.

Ainsi,
∫ 1

−1

P (t)Q(t)√
1− t2

dt converge en 1.

Étude en t = −1 : Soit t = −1 + h. L’étude est identique, par parité de t 7→ 1/
√

1− t2.

f(−1 + h) ∼ 1√
2
P (−1 + h)Q(−1 + h) 1√

h

Par continuité de t 7→ P (t)Q(t) en −1, f(−1 + h) ∼ K

h1/2 ou f(1− h) = o( 1
h1/2 ).

Or
∫ 1

0

1
h1/2 dh converge (Riemann, α = 1/2 < 1).

Donc, par théorème de comparaison,
∫ 1

0
f(−1 + h)dh converge absolument donc converge.

Ainsi,
∫ 1

−1

P (t)Q(t)√
1− t2

dt converge en −1.

Conclusion :
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L’intégrale
∫ 1

−1

P (t)Q(t)√
1− t2

dt converge

4) Soit E = R[X].
• Symétrie : 〈., .〉 est symétrique par commutativité du produit dans R :

∀(P,Q) ∈ E2, 〈P,Q〉 = 〈Q,P 〉

• Bilinéarité : Soient P1, P2, Q ∈ E et λ ∈ R.

〈λP1 + P2, Q〉 =
∫ 1

−1

[λP1(t) + P2(t)]Q(t)√
1− t2

dt.

= λ

∫ 1

−1

P1(t)Q(t)√
1− t2

dt+
∫ 1

−1

P2(t)Q(t)√
1− t2

dt par linéarité de l’intégrale

= λ〈P1, Q〉+ 〈P2, Q〉

Donc 〈., Q〉 linéaire, et, par symétrie, 〈., .〉 bilinéaire.
• Positivité : Soit P ∈ E, par positivité de l’intégrale,

〈P, P 〉 =
∫ 1

−1

P 2(t)√
1− t2︸ ︷︷ ︸
>0

dt > 0

Donc 〈., .〉 positif.

• Caractère défini positif : Soit P ∈ E tel que 〈P, P 〉 =
∫ 1

−1

P 2(t)√
1− t2

dt = 0.

La fonction f : t 7→ P 2(t)√
1− t2

vérifie

• f continue sur I =]− 1, 1[ ;
• f > 0 ;

•
∫
I
f = 0

Donc, d’après le théorème de l’intégrale nulle, f = 0 sur ]− 1, 1[ :

∀t ∈]− 1, 1[, P 2(t)√
1− t2

= 0

Donc P (t) = 0 pour tout t ∈]− 1, 1[. Ainsi, P a une infinité de racines (tous les t ∈]− 1, 1[).
Donc P = 0.
Par conséquent, 〈., .〉 est défini positif.

Conclusion :

〈., .〉 est un produit scalaire sur R[X] donc sur Rk[X]

5) Soit n,m ∈ N2.Formules de trigo, le retour.

2 cos(nθ) cos(mθ) = cos((n+m)θ) + cos((n−m)θ)

Or, pour k ∈ Z \ {0}, ∫ π

0
cos(kθ)dθ =

[1
k

sin(kθ)
]π

0
= 0

D’où, ∫ π

0
cos(nθ) cos(mθ)dθ =

{
0 si n 6= m

π si n = m
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6) Montrons que (Pn)n∈J0,kK est une famille orthogonale : soient n,m ∈ J0, kK2. En posant t = cos(θ),
dt = − sin(θ)dθ, et le changement de bornes{

t = −1
t = 1

donne
{
θ = π

θ = 0

La fonction θ 7→ cos θ est C 1, strictement décroissante, donc bijective de ]0, π[ dans ]−1, 1[. Le théorème
de changement de variable affirme que les deux intégrales suivantes sont de même nature (convergente
d’après 4) et

〈Pn, Pm〉 =
∫ 1

0

Pn(t)Pm(t)√
1− t2

dt

=
∫ 0

π
Pn(cos θ)Pm(cos θ)− sin θ

| sin θ| dθ Or, sur [0, π], sin θ > 0

=
∫ π

0
cos(nθ) cos(mθ)dθ d’après 2

=
{

0 si n 6= m

π si n = m

Donc (Pn)n∈J0,kK est une famille orthogonale de Rk[X].

En considérant la famille ( 1√
π
Pn)n∈J0,kK, on a

∀n,m 〈Pn, Pm〉 = δn,m

Par conséquent,

La famille ( 1√
π
Pn)n∈J0,kK est une base orthonormale de Rk[X] pour ce produit scalaire

Exercice 4 (CCINP MPI 2025)
1) Montrons que

∀x ∈]− 1,+∞[, ln(1 + x) 6 x

Soit ϕ(x) = ln(1 + x)− x pour x ∈ I =]− 1,+∞[.

∀x ∈ I, ϕ′(x) = 1
1 + x

− 1 = − x

1 + x

D’où le tableau de variations

x

ϕ′(x)

ϕ

−1 0 +∞

+ 0 −

−∞−∞

00

−∞−∞

D’où ϕ 6 0 sur I, et l’inégalité voulue.
Comme xk > 0 pour tout k, et donc m > 0 aussi, on peut appliquer l’inégalité précédente avec
x = xk/m− 1 ∈ I :

∀k ∈ J1, nK , ln
(
xk
m

)
6
xk
m
− 1

En sommant sur k, il vient
n∑
k=1

ln
(xk
m

)
6

n∑
k=1

(xk
m
− 1

)
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2) Simplifions les expressions précédentes :

n∑
k=1

ln
(xk
m

)
= ln

(
n∏
k=1

xk

)
− n ln(m)

= ln
(

n∏
k=1

xk

)
− n ln(m)

n∑
k=1

(xk
m
− 1

)
= 1
m

(
n∑
k=1

xk

)
− n

= n− n
= 0

Ainsi, d’après 1,

ln
(

n∏
k=1

xk

)
− n ln(m) 6 0

=⇒ 1
n

ln
(

n∏
k=1

xk

)
6 ln(m)

=⇒
(

n∏
k=1

xk

) 1
n

6 m Par croissance de l’exponentielle

Conclusion : ( n∏
k=1

xk
) 1

n
6

1
n

n∑
k=1

xk.

3)⇐= Supposons x1 = x2 = · · · = xn. Alors les deux termes de l’inégalité valent x1, et sont donc égaux.

=⇒ Supposons que
( n∏
k=1

xk
) 1

n = 1
n

n∑
k=1

xk = m, c’est-à-dire, en prenant le logarithme,

n∑
k=1

ln
(xk
m

)
= 0

Or, pour tout k ∈ J1, nK, xk/m ∈]0, 1], donc les ln(xk/m) sont tous de même signe – négatif.
Ainsi,

∀k ∈ J1, nK , ln
(xk
m

)
= 0

D’où xk = m pour tout k, et donc

x1 = x2 = · · · = xn

Conclusion :

L’inégalité précédente est une égalité si, et seulement si, x1 = x2 = · · · = xn.

4) D’après le théorème spectral, il existe P ∈ On(R) et D diagonale telles que B = PDP−1.
De plus B définie positive, donc Sp (B) ⊂ R∗+ : les valeurs propres, coefficients diagonaux λ1, . . . , λn
de D, sont strictement positives.
Or det et Tr sont invariants par changements de base :

detB = detD =
n∏
k=1

λk et Tr B = Tr D =
n∑
k=1

λk

En appliquant le résultat de la question 2 avec xk = λk > 0 pour tout k, il vient

(
det(B)

) 1
n 6

1
n

Tr (B)

D’après la question 3, l’inégalité précédente est une égalité si et seulement si λ1 = · · · = λn, ce qui
signifie D ∈ Vect (In).
Or D = λIn entraîne B = P (λIn)P−1 = λIn, et réciproquement. D’où
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(
det(B)

) 1
n = 1

n
Tr (B) si et seulement si B ∈ Vect (In).

5) Par définition de S++
n (R),

∀X ∈ Rn, X 6= 0, X>AX > 0

Soit i ∈ J1, nK. Notons X = Ei le vecteur colonne avec un 1 à la i-ème ligne, et 0 ailleurs. Alors, par
calcul matriciel,

E>i AEi = E>i

a1i
...
ani

 = aii

Ainsi,
∀i ∈ J1, nK ai,i > 0

6) Comme B> = D>A>D> = B, B est symétrique réelle. Soit X ∈ R2 non nul,

X>BX = (DX)>A(DX)
= Y >AY avec Y = DX 6= 0
> 0 car A ∈ S++

n (R)

Par conséquent,
B ∈ S++

n (R)

D’après la question 4, B ∈ S++
n (R) entraîne

(
det(B)

) 1
n 6

1
n

Tr (B).

Or det(B) = det(A)(det(D))2 = det(A)
n∏
i=1

a−1
ii .

Et, en notant A =

 C1 · · · Cn

, on a AD2 =

 1
a11

C1 · · · 1
ann

Cn

. D’où

Tr (B) = Tr (D(AD)) = Tr (AD2) =
n∑
i=1

aii
aii

= n

Donc l’inégalité précédente s’écrit [
det(A)

n∏
i=1

a−1
ii

] 1
n

6 1

Conclusion :
det(A) 6 a1,1 × a2,2 × · · · × an,n

S’il y a égalité dans l’inégalité précédente, on a
(

det(B)
) 1

n = 1
n

Tr (B).
Or, d’après la question 4, celle-ci est vraie si et seulement si B ∈ Vect (In), i.e. B = λIn pour un
certain λ ∈ R.
Ce qui entraîne A = λD−2 diagonale.
Réciproquement, si A est diagonale, alors det(A) = a11 × · · · × ann.
En conclusion :

Il y a égalité si et seulement si A est diagonale
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