Épreuve de Mathématiques 6

Durée 4 h

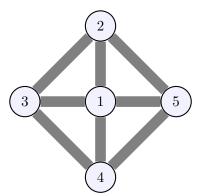
N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1

Un labyrinthe est constitué de cinq salles, numérotées de 1 à 5, qui communiquent par des tubes selon le schéma ci-dessous :



Un rat se déplace dans ce labyrinthe, et on relève sa position en des instants numérotés $0, 1, 2, \ldots, k, \ldots$ $(k \in \mathbb{N})$. On admet que, si le rat se trouve à l'instant k $(k \in \mathbb{N})$ dans la salle numéro i $(1 \le i \le 5)$, alors il empruntera aléatoirement l'un des tubes de la salle i et se trouvera donc, à l'instant k+1, avec équiprobabilité, dans l'une quelconque des salles communiquant avec la salle i. On admet que l'on peut introduire, pour tout k entier naturel, une variable aléatoire S_k donnant le numéro de la salle où se trouve le rat à l'instant k. À titre d'exemple, on aura donc

$$\forall k \in \mathbb{N}, \ \mathbb{P}(S_{k+1} = 1 | S_k = 2) = \mathbb{P}(S_{k+1} = 3 | S_k = 2) = \mathbb{P}(S_{k+1} = 5 | S_k = 2) = \frac{1}{3}$$

Pour tout $k \in \mathbb{N}$, on introduit la matrice-colonne $X_k = \begin{pmatrix} \mathbb{P}(S_k = 1) \\ \mathbb{P}(S_k = 2) \\ \mathbb{P}(S_k = 3) \\ \mathbb{P}(S_k = 4) \\ \mathbb{P}(S_k = 5) \end{pmatrix} \in \mathcal{M}_{5,1}(\mathbb{R}).$

Pour une matrice $B,\,B^T$ représente sa matrice transposée.

DST 6

1) En utilisant la formule des probabilités totales, montrer que $\mathbb{P}(S_{k+1}=1)$ s'écrit comme une combinaison linéaire des $(\mathbb{P}(S_k=i), i=1,\ldots,5)$.

- 2) Expliciter la matrice carrée $B \in \mathcal{M}_5(\mathbb{R})$ telle que $X_{k+1} = BX_k$ pour tout k entier naturel.
- 3) En observant les colonnes de la matrice B, montrer que le réel 1 est valeur propre de B^T et expliciter un vecteur propre associé.

On suppose que la loi de la variable S_0 est donnée par $X_0 = \begin{pmatrix} \frac{1}{4} & \frac{3}{16} & \frac{3}{16} & \frac{3}{16} & \frac{3}{16} \end{pmatrix}^T$.

- 4) Montrer qu'alors les variables aléatoires S_k ont toutes la même loi.
- 5) Est-ce que S_0 et S_1 sont indépendantes?

Exercice 2

On se place dans l'espace euclidien $E = \mathbb{R}^3$ muni de son produit scalaire canonique défini par :

$$\forall (x,y) \in E^2, \quad \langle x,y \rangle = \sum_{i=1}^3 x_i y_i = x_1 y_1 + x_2 y_2 + x_3 y_3$$

La norme du vecteur x est défini par $||x|| = \sqrt{\langle x, x \rangle}$.

On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de E et on rappelle que \mathscr{B} est orthonormale pour le produit scalaire canonique de E.

On note id l'endomorphisme identité de E.

On se propose d'étudier l'ensemble F des endomorphismes f de E tels qu'il existe un réel k de [0,1[pour lequel on a :

$$\forall x \in E, \quad ||f(x)|| \le k||x||$$

- 1) Déterminer $f \in F$ lorsque k = 0.
- 2) Un premier exemple.

On considère l'endomorphisme f de E dont la matrice dans la base \mathscr{B} est :

$$A = \frac{1}{27} \begin{pmatrix} -1 & 8 & -4 \\ 8 & -1 & -4 \\ -4 & -4 & -7 \end{pmatrix}$$

- a) Calculer A^2 , puis en déduire les deux valeurs propres réelles possibles λ et μ de A.
- b) Vérifier que A est diagonalisable et en déduire que λ et μ sont bien valeurs propres de A.
- c) Justifier, sans les déterminer, que les sous-espace propre de f sont supplémentaires orthogonaux dans E.
- d) Utiliser ce résultat pour montrer que $f \in F$. On pourra écrire un vecteur x quelconque de E sous la forme x = y + z avec $y \in E_{\lambda} = \text{Ker}(\lambda \operatorname{id} f)$ et $z \in E_{\mu} = \text{Ker}(\mu \operatorname{id} f)$.
- 3) Quelques propriétés générales de l'ensemble F.
 - a) Vérifier que id n'appartient pas à F
 - b) Montrer que F n'est pas un sous-espace vectoriel. On pourra considérer λf avec $f \in F$ et $\lambda \in \mathbb{R}$ bien choisis.
 - c) Montrer que F est stable par la loi de composition des endomorphismes de E.
 - d) Montrer que, si $f \in F$ est un automorphisme, alors $f^{-1} \notin F$.
- 4) a) Montrer que F ne contient pas de projecteurs autres que le projecteur nul.
 - b) F contient-il des symétries?
- 5) Soit f un endomorphisme autoadjoint de E.
 - a) Montrer qu'en posant $k = \max\{|\lambda| \mid \lambda \in \operatorname{Sp}(f)\}$, on a : $\forall x \in E, \|f(x)\| \leq k\|x\|$.
 - **b)** En déduire que f appartient à F si et seulement si les valeurs propres de f appartiennent toutes à]-1,1[.

DST 6

6) Un deuxième exemple. Soit f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est :

$$A = \frac{1}{6} \begin{pmatrix} 0 & -2 & 2 \\ -2 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

- a) Déterminer le spectre de A.
- b) Montrer que $f \in F$, puis donner un réel $k \in [0,1[$ pour lequel on a :

$$\forall x \in E, \qquad ||f(x)|| \leqslant k||x||$$

Exercice 3 (Type Mines-Ponts)

Notations et résultats admis

- Dans tout le problème, n est un entier naturel supérieur ou égal à 2. On note $M_n(\mathbb{R})$ (resp. $M_{n,1}(\mathbb{R})$) l'ensemble des matrices de taille $n \times n$ (resp. $n \times 1$) à coefficients réels.
- La matrice identité de $M_n(\mathbb{R})$ est notée I_n .
- Si $A \in M_n(\mathbb{R})$, alors $\det(A)$ est le déterminant de la matrice A, $\operatorname{Tr}(A)$ sa trace, $\operatorname{Sp}(A)$ son spectre et A^{\top} sa transposée.
- On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques et à coefficients réels de taille $n \times n$.
- Sur $(M_{n,1}(\mathbb{R}))^2$, on définit l'application $\langle \cdot, \cdot \rangle$ par :

$$\forall (X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2, \quad \langle X,Y \rangle = X^{\top} Y$$

où X^{\top} est la transposée de X. On admet que l'on définit ainsi un produit scalaire sur $\mathrm{M}_{n,1}(\mathbb{R})$. On note $\|\cdot\|$ la norme associée.

- On admet que l'application $A \in \mathcal{M}_n(\mathbb{R}) \mapsto \|A\|_2 = \sqrt{\text{Tr}(A^\top A)}$ est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- On note $S_n^+(\mathbb{R})$ (resp. $S_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques $S \in S_n(\mathbb{R})$ telles que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad \langle SX, X \rangle \geqslant 0 \quad (\text{resp.} > 0).$$

- Soit C une partie non vide d'un \mathbb{R} -espace vectoriel E. On dit que C est convexe si : pour tous $x, y \in C$ et tout $t \in [0, 1], (1 t)x + ty \in C$.
- On admet que si C est une partie convexe d'un \mathbb{R} -espace vectoriel E, alors pour tout $p \in \mathbb{N} \setminus \{0\}$, pour tout $(x_1, \dots, x_p) \in C^p$ et pour tout $(\lambda_1, \dots, \lambda_p) \in (\mathbb{R}_+)^p$ tel que $\sum_{i=1}^p \lambda_i = 1$, on a : $\sum_{i=1}^p \lambda_i x_i \in C$.
- Une application $f: C \to \mathbb{R}$ définie sur une partie convexe C d'un \mathbb{R} -espace vectoriel E est dite convexe si :

$$\forall (x,y) \in C^2, \ \forall t \in [0,1], \ f((1-t)x+ty) \leq (1-t)f(x)+tf(y).$$

On rappelle que, si $f: I \to \mathbb{R}$ est \mathscr{C}^2 sur un intervalle I de \mathbb{R} , f est convexe si et seulement si $f'' \geqslant 0$.

• Une application $f: C \to \mathbb{R}$ définie sur une partie convexe C d'un \mathbb{R} -espace vectoriel est dite concave si son opposé, -f, est convexe, c'est-à-dire :

$$\forall (x,y) \in C^2, \ \forall t \in [0,1], \quad f((1-t)x + ty) \geqslant (1-t)f(x) + tf(y).$$

Partie 1 : Questions préliminaires

- 1) Soit $S \in S_n(\mathbb{R})$. Rappeler le théorème spectral.
- 2) Montrer qu'une matrice $S \in S_n(\mathbb{R})$ appartient à $S_n^+(\mathbb{R})$ si, et seulement si, $Sp(S) \subseteq \mathbb{R}_+$.

De même, on admettra dans la suite du problème que : $S \in S_n^{++}(\mathbb{R})$ si, et seulement si, $Sp(S) \subseteq \mathbb{R}_+^*$.

DST 6

3) Montrer que $S_n^+(\mathbb{R})$ et $S_n^{++}(\mathbb{R})$ sont des parties convexes de $M_n(\mathbb{R})$. Sont-elles des sous-espaces vectoriels de $M_n(\mathbb{R})$?

- **4)** Montrer que, si $A \in \mathcal{S}_n^{++}(\mathbb{R})$, il existe $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que : $A = S^2$.
- **5)** Soit $M \in S_n(\mathbb{R})$. Exprimer $||M||_2$ en fonction des valeurs propres de M.
- 6) Soit I un intervalle de \mathbb{R} . Soit $f: I \to \mathbb{R}$ une fonction convexe.

Montrer l'inégalité de Jensen : pour tout $p \in \mathbb{N} \setminus \{0\}$, pour tout $(\lambda_1, \dots, \lambda_p) \in (\mathbb{R}_+)^p$ tel que $\sum_{i=1}^p \lambda_i = 1$ et pour tout $(x_1, \dots, x_p) \in I^p$, on a :

$$f\left(\sum_{i=1}^{p} \lambda_i x_i\right) \leqslant \sum_{i=1}^{p} \lambda_i f(x_i).$$

Indication : on pourra procéder par récurrence sur p, et poser $t = \sum_{i=1}^{p} \lambda_i$.

Partie 2 : Une première inégalité de convexité

- 7) Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale à coefficients positifs. Montrer l'inégalité $\frac{\operatorname{Tr}(M)}{n} \geqslant (\det(M))^{\frac{1}{n}}$. Indication: on pourra montrer que $x \mapsto -\ln(x)$ est convexe sur \mathbb{R}_+^* .
- 8) Soit $M \in \mathcal{S}_n^+(\mathbb{R})$ une matrice non nulle. Montrer l'inégalité $\frac{\operatorname{Tr}(M)}{n} \geqslant (\det(M))^{\frac{1}{n}}$.

Partie 3 : On continue avec de la convexité

- 9) Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$.
 - a) Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer que S est inversible, puis que $S^{-1}BS^{-1} \in \mathcal{S}_n(\mathbb{R})$.
 - b) Montrer qu'il existe une matrice diagonale $D \in M_n(\mathbb{R})$ et $Q \in GL_n(\mathbb{R})$ telles que $B = QDQ^{\top}$ et $A = QQ^{\top}$. Indication: on pourra utiliser la question 4.
 - c) Que dire des éléments diagonaux de D si $B \in S_n^{++}(\mathbb{R})$?
- **10)** Étudier la convexité de la fonction $t \mapsto \ln (1 + e^t)$.
- 11) Montrer l'inégalité :

$$\forall (A, B) \in (S_n^{++}(\mathbb{R}))^2, \quad (\det(A+B))^{\frac{1}{n}} \geqslant (\det(A))^{\frac{1}{n}} + (\det(B))^{\frac{1}{n}}.$$

Indication : Commencer par le cas $A = I_n$ et B diagonale.

Partie 4 : Encore de la convexité!

Soit $A \in S_n^{++}(\mathbb{R})$ et soit $g: t \mapsto \det(I_n + tA)$.

- 12) Pour tout $t \in \mathbb{R}$, exprimer g(t) en fonction des valeurs propres de A. En déduire que g est de classe C^{∞} sur \mathbb{R} .
- **13)** Soit $f: t \mapsto \ln(\det(I_n + tA))$. Montrer que:

$$\forall t \in \mathbb{R}_+, \quad \ln\left(\det\left(\mathbf{I}_n + tA\right)\right) \leqslant \operatorname{Tr}(A)t.$$

FIN DE L'ÉPREUVE