Épreuve de Mathématiques 6

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.

Ne pas utiliser de correcteur.

Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1

Un sauteur tente de franchir des hauteurs successives numérotées $1, 2, \ldots, n, \cdots$

Il ne peut tenter de passer la hauteur n+1 que s'il a réussi les sauts de hauteurs $1,2,\ldots,n$.

En supposant que le sauteur a réussi tous les sauts précédents, la probabilité de succès au n-ième saut est $p_n = \frac{1}{n}$. Ainsi le premier saut est toujours réussi.

Pour tout $k \in \mathbb{N}^*$, on note S_k l'événement : «le sauteur a réussi son k-ième saut» et on note X la variable aléatoire égale au numéro du dernier saut réussi.

On admet que,

$$\forall x \in \mathbb{R}, \qquad \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
 converge et vaut e^x

- 1) Rappeler sans démonstration la formule des probabilités composées.
- 2) Déterminer l'ensemble des valeurs prises par la variable aléatoire X.
- 3) Déterminer $\mathbb{P}([X=1])$.
- 4) Justifier que $[X=2]=S_1\cap S_2\cap \overline{S_3}$. En déduire $\mathbb{P}([X=2])$
- 5) Pour tout entier $n \ge 2$, exprimer l'évènement [X = n] en fonction d'évènements du type S_k .
- 6) Déterminer la loi de X.
- 7) Vérifier par le calcul que : $\sum_{n=1}^{+\infty} \mathbb{P}([X=n]) = 1$.
- 8) Montrer que X possède une espérance et la calculer.

Exercice 2

Notations:

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.

On utilisera les notations matricielles classiques.

diag (a_1, \ldots, a_n) désigne la matrice diagonale dont les coefficients diagonaux sont a_1, \ldots, a_n dans cet ordre;

DST 6

Le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ est donné par $(U|V)=U^TV$, et la norme euclidienne canonique est notée ||U||.

Les variables aléatoires considérées sont définies sur un espace probabilisé $(\Omega, \mathcal{B}, \mathbb{P})$. On suppose que, pour tout $p \in]0,1[$, il existe une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires de Bernoulli de paramètre p mutuellement indépendantes définies sur Ω .

Si X et Y sont deux variables aléatoires réelles discrètes définies sur Ω , on note E(X), V(X) et Cov(X,Y) respectivement l'espérance de X, la variance de X et la covariance de X et Y, lorsqu'elles sont définies. On rappelle la formule

$$Cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Une matrice A de $\mathcal{M}_n(\mathbb{R})$ est dite orthodiagonalisable s'il existe une matrice diagonale D et une matrice orthogonale P telles que $A = PDP^T$.

Orthodiagonaliser A revient à déterminer un couple de telles matrices (D, P).

1) Démontrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthodiagonalisable si et seulement si elle est symétrique.

2) Un exemple dans
$$\mathcal{M}_3(\mathbb{R})$$
 : On pose $A_1 = \begin{pmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{pmatrix}$

- a) En observant la première et la dernière colonne de A_1 , déterminer un vecteur propre de A_1 et la valeur propre λ_1 associée.
- b) Déterminer le sous-espace propre de A_1 associé à la valeur propre λ_1 et en déduire le spectre de A_1 .
- c) Orthodiagonaliser A_1 .
- 3) Un exemple dans $\mathcal{M}_n(\mathbb{R})$:
 - a) Montrer que l'application $\varphi:(P,Q)\mapsto \varphi(P,Q)=\int_0^1 P(t)Q(t)\,\mathrm{d}t\,\mathrm{d}\acute{\mathrm{e}}$ finit un produit scalaire sur $\mathbb{R}_{n-1}[X]$.
 - b) Écrire la matrice H de ce produit scalaire dans la base canonique de $\mathbb{R}_{n-1}[X]$, c'est-à-dire la matrice de terme général $h_{ij} = \varphi(X^i, X^j)$, où les indices i et j varient entre 0 et n-1.
 - c) Soit $U \in \mathcal{M}_{n,1}(\mathbb{R})$. Exprimer $U^T H U$ à l'aide de φ et des coefficients de U.
 - **d)** Montrer que $H \in \mathscr{S}_n^{++}(\mathbb{R})$.

Matrice de covariance

Dans la suite du problème, on considère n variables aléatoires discrètes Y_1, \ldots, Y_n définies sur $(\Omega, \mathcal{B}, \mathbb{P})$ à valeurs réelles et on définit la fonction Y de Ω dans $\mathcal{M}_{n,1}(\mathbb{R})$ en posant

$$\forall \omega \in \Omega, \qquad Y(\omega) = \begin{pmatrix} Y_1(\omega) \\ \dots \\ Y_n(\omega) \end{pmatrix}$$

Un tel vecteur aléatoire est dit constant si la fonction Y est constante.

Si chacune des variables aléatoires discrètes Y_i admet une espérance finie, on définit le vecteur espérance de Y en posant

$$E(Y) = \begin{pmatrix} E(Y_1) \\ \dots \\ E(Y_n) \end{pmatrix}$$

Si toutes les covariances existent, la matrice de covariance de Y est la matrice de $\mathcal{M}_n(\mathbb{R})$, notée Σ_Y , de terme général $\sigma_{i,j} = \text{Cov}(Y_i, Y_j)$.

La variance totale de Y est définie par $V_T(Y) = \sum_{i=1}^n V(Y_i)$.

Dans la suite du problème, on suppose que E(Y) et Σ_Y sont bien définies.

On admet que Y est une variable aléatoire discrète sur $(\Omega, \mathcal{B}, \mathbb{P})$ à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$.

On admet aussi que $(Y - E(Y))(Y - E(Y))^T$ est une variable aléatoire discrète, à valeurs dans $\mathcal{M}_n(\mathbb{R})$, dont l'espérance, par définition, est également calculée terme à terme.

DST 6

- 4) a) Exprimer Tr Σ_Y en terme de variance.
 - b) Vérifier que Σ_Y est une matrice symétrique, que

$$\Sigma_Y = E((Y - E(Y))(Y - E(Y))^T)$$

et que, si U est un vecteur constant dans $\mathcal{M}_{n,1}(\mathbb{R})$, alors

$$\Sigma_{Y+U} = \Sigma_Y$$

c) Soient $p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{pn}(\mathbb{R})$. On définit la variable aléatoire discrète Z = MY, à valeurs dans $\mathcal{M}_{p,1}(\mathbb{R})$.

Justifier que Z admet une espérance et exprimer E(Z) en fonction de E(Y). Montrer que Z admet une matrice de covariance Σ_Z et que

$$\Sigma_Z = M \Sigma_Y M^T$$

5) On note P la matrice de passage de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ à une base orthonormée formée de vecteurs propres de Σ_Y .

On définit la variable aléatoire discrète $X = P^T Y = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$.

- a) Démontrer que Σ_X est une matrice diagonale.
- b) En déduire que les valeurs propres de Σ_Y sont toutes positives.
- c) Démontrer que la variance totale de X est égale à celle de Y.
- d) Soit $\lambda \in \mathbb{R}$. Démontrer l'existence d'une variable aléatoire discrète Z_{λ} de variance λ .
- e) Soit $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ une matrice diagonale dont les coefficients diagonaux λ_i sont tous positifs.

Démontrer l'existence d'une variable aléatoire discrète Z à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$ telle que $\Sigma_Z=D$

- f) Soit $A \in \mathscr{S}_n^+(\mathbb{R})$ une matrice symétrique positive. Démontrer l'existence d'une variable aléatoire discrète Y à valeur dans $\mathscr{M}_{n,1}(\mathbb{R})$ telle que $\Sigma_Y = A$.
- g) Démontrer que le noyau et l'image de Σ_Y sont supplémentaires orthogonaux dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Exercice 3

On note, pour tout entier naturel n non nul, $\mathcal{M}_{n,1}(\mathbb{R})$ l'ensemble des matrices réelles colonnes de taille n, et tX la transposée de $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne standard où le produit scalaire de deux matrices colonnes X et Y est ${}^{t}XY$. On note

$$\mathscr{C} = \{ X \in \mathscr{M}_{n,1}(\mathbb{R}) ; {}^t XX = 1 \}$$

On note $S_n(\mathbb{R})$ l'ensemble des matrices réelles carrées d'ordre n et symétriques. On note, pour tout entier naturel n non nul et pour toute matrice $A \in S_n(\mathbb{R})$,

$$\begin{split} R\left(A\right) &= \{^{\mathsf{t}} X A X \, ; \, X \in \mathscr{C} \} \\ &= \{^{\mathsf{t}} X A X \, ; \, X \in \mathscr{M}_{n,1}(\mathbb{R}) \text{ et } {}^{\mathsf{t}} X X = 1 \} \end{split}$$

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthogonalement semblable à une matrice $B \in \mathcal{M}_n(\mathbb{R})$ s'il existe une matrice $P \in O_n(\mathbb{R})$ (i.e. vérifiant l'égalité ${}^t\!PP = I_n$) pour laquelle $B = {}^t\!PAP$.

- 1) Préliminaires.
 - a) Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$. Montrer que, si A et B sont semblables, alors Tr A = Tr B.
 - b) Soit $P \in O_n(\mathbb{R})$ et $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et Y = PX. Montrer que ${}^t XX = 1$ si et seulement si ${}^t YY = 1$.

DST 6

- 2) Soit $(A, B) \in S_n(\mathbb{R})^2$. On suppose que A est orthogonalement semblable à B. Prouver l'égalité : R(A) = R(B).
- 3) Soit $n \in \mathbb{N}^*$ et $A \in S_n(\mathbb{R})$. On note $\lambda_1, \lambda_2, \ldots, \lambda_n$ les valeurs propres de A rangées dans l'ordre croissant, i.e. $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$.
 - a) La matrice A est-elle diagonalisable?
 - b) Si B est une matrice diagonale et $X \in \mathcal{M}_{n,1}(\mathbb{R})$, calculer tXBX .
 - c) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Montrer que

$$\lambda_1^{\mathsf{t}} X X \leqslant {}^{\mathsf{t}} X A X \leqslant \lambda_n^{\mathsf{t}} X X$$

- **d)** Prouver l'inclusion : $R(A) \subset [\lambda_1, \lambda_n]$.
- e) Pour $\theta \in \mathbb{R}$, montrer que $X = \begin{pmatrix} \cos \theta \\ 0 \\ \vdots \\ 0 \\ \sin \theta \end{pmatrix}$ est de norme 1. Établir l'égalité :

$$R(A) = [\lambda_1, \lambda_n]$$

f) Montrer que si la matrice A est de trace nulle, alors 0 est élément de R(A). Dans le cas où n=2, la réciproque est-elle vraie?

On appelle diagonale d'une matrice $M := (m_{i,j})_{1 \leq i,j \leq n}$ la liste $(m_{1,1}, m_{2,2}, \dots, m_{n,n})$ de ses éléments diagonaux.

- 4) Soit $n \in \mathbb{N}^*$ et $A \in S_n(\mathbb{R})$. On suppose qu'on dispose d'une matrice $P \in O_n(\mathbb{R})$ pour laquelle tPAP a pour diagonale (Tr $A, 0, \ldots, 0$) (où Tr A désigne la trace de A). Vérifier que Tr A est élément de R(A).
- 5) a) Donner un exemple de matrice $A \in S_2(\mathbb{R})$ dont la trace n'est pas élément de R(A).
 - b) Soit $A \in S_2(\mathbb{R})$. Montrer que Tr $A \in R(A)$ si et seulement si $0 \in R(A)$.
- **6)** a) Soit (X_1, X_2) une base orthonormée de $\mathcal{M}_{2,1}(\mathbb{R})$. Montrer que la matrice blocs $(X_1|X_2)$ est orthogonale. Calculer tPAP en fonction des tX_iAX_j (où $i, j \in \{1, 2\}$).
 - b) Montrer que Tr $A \in R(A)$ si et seulement si il existe $X_2 \in \mathcal{M}_{2,1}(\mathbb{R})$ non nul tel que ${}^tX_2AX_2 = 0$.
 - c) Soit $A \in S_2(\mathbb{R})$. On suppose que Tr $A \in R(A)$. Montrer que A est orthogonalement semblable à une matrice dont la diagonale est (Tr A, 0).
- 7) Soit n un entier avec $n \ge 2$. On suppose que toute matrice $A \in S_n(\mathbb{R})$ telle que Tr $A \in R(A)$ est orthogonalement semblable à une matrice ayant pour diagonale (Tr $A, 0, \ldots, 0$). Soit $A \in S_{n+1}(\mathbb{R})$ telle que Tr $A \in R(A)$.
 - a) Justifier l'existence d'une matrice colonne $C \in \mathcal{M}_{n,1}(\mathbb{R})$, d'une matrice ligne $L \in \mathcal{M}_{1,n}(\mathbb{R})$ et d'une matrice $B \in S_n(\mathbb{R})$ pour lesquelles la matrice A est orthogonalement semblable à la matrice par blocs $\begin{pmatrix} \operatorname{Tr} A & L \\ C & B \end{pmatrix}$.
 - **b)** Que vaut Tr B? En déduire que Tr $B \in R(B)$.
 - c) Conclure que la matrice A est orthogonalement semblable à une matrice de diagonale (Tr $A, 0, \ldots, 0$).
- 8) Soit $A \in S_n(\mathbb{R})$.
 - a) S'il existe un réel a pour lequel la matrice A est orthogonalement semblable à une matrice dont tous les coefficients diagonaux sont égaux à a, que vaut a?
 - b) Construire $B \in S_n(\mathbb{R})$, à partir de A et I_n , de trace nulle.
 - c) Soit $A \in S_n(\mathbb{R})$. Montrer qu'il existe un réel a pour lequel la matrice A est orthogonalement semblable à une matrice dont tous les coefficients diagonaux sont égaux à a.

FIN DE L'ÉPREUVE