Lycée St Joseph Lundi 15 décembre 2025
Classe de PC

Epreuve de Mathématiques 5

Correction

Exercice 1 (extrait de Epita 2025)

1) Polynome caractéristique :

XA(ZL‘) = det(:v[;:, — A) Cl — 01 — 03
r -1 -2 r -1 =2
=|-1 z -1 =@=-2)-1 = -1
2 1 =z Ls— Ls+ L, 1 0 1
T 1 9 x+2 -1 -2
| _ . =(rx—2 0 z -1
= 1 x 1
2—2 0 z-2 c 0 1

=(zr—-2)(x+2)x Matrice triangulaire

Conclusion :

Les valeurs propres sont :
e )\ =0 de multiplicité a = 1;
e )\ =2 de multiplicité o = 1;
e )\ = —2 de multiplicité o = 1;
Vérification avec la trace : Tr(A) =0=2—-2+0.
Diagonalisation : La matrice 3 x 3 A admet 3 valeurs propres distinctes : d’apres la condition suffisante
de diagonalisation, elle est donc diagonalisable :

00 O
A est diagonalisable, semblable a D= [0 2 0
00 -2

Sous-espaces propres et P :

o Fy=Ker A:
x T=—z
X=|ly|leKer A <= AX =0 <:>{y:—22
: x —z
y+22=0 — X=|y|=]|-2=2
= z+2=0 z z
2z —y =0 Ls+— L3 —2Lo -1
r42=0 < X € Vect | -2
= y+22=0 1
—y—22=0
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Conclusion :

-1
Ker f = Vect | —2
1
L] E2 :Ker(2I3—A) :
x 2 -1 =2\ [z x=52/3
<~
X=|yl€eb < [-1 2 -1 y| =0 y=4z/3
z -2 1 2 z . 52/3
20 —y—22=0 Ly +— L1+ 2Ly = X=|y|=142/3
= —zrz+2y—2z2=0 Z z
—2r4+y+2:2=0 Ls=-1L, 5
42 —2=0 <= X € Vect |4
<~ 3
{ 3y—4z=20
Conclusion :
5
Ker f = Vect |4
3
o £ 9=Ker(—-2I3—A):
T -2 -1 -2 T Tr=—z
X=|yler = [-1 —2 1| |y|=0 T \y=0
z -2 1 =2 z
x —z
204y +22=0 L;+— L1 —2L, — X=|y|= 0
— rT+2y+2=0 z z
20 —y+22=0 L3s<+— L3 — 2L, —1
r+2y+2=0 <= X¢cVect | 0
1
= -3y =0
—52=0
Conclusion :
-1
Ker f =Vect | 0
1
-1 5 -1
Ainsi, & = —21,141,]1 0 est une base de vecteurs propres pour A. En conclusion,
1 3 1
-1 5 -1
Avec P=|-2 4 0 |, A=PDP!
1 3 1

2) Soit M’ € .#5(R).

M"? =D = PM?P~' = PDP™!

— (PM'P71)? =4

(PM'P~1)? = A— PM"”P~' = PDP!
— M? =D
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3)

4)

5)

Donc, avec M = PM'P~1,
M?*=A < M?=D

Donc M"? = D et M? = A ont exactement le méme nombre de solutions.

al b1 C1
Résolution de M'> = D : Soit M' = [ay by ¢y | telle que M 2 = D.
as b3 C3

M'D=M"=DM

Ce qui s’écrit, apres calcul des produits,

0 20y —2¢ 0 0 0
0 2b2 —262 == 2&2 2b2 202
0 2b3 —203 —2@3 —2b3 —203
al 0 0
D’Oflbl261:a2262:a3:b3:0,etM: 0 bQ 0
0 0 C3
a? =0
Ainsi, M"? = D s’écrit { b3 =2
c% =-2

e Si K =R, la derniére équation n’a pas de solution, donc M’> = D non plus, et M2 = A non plus.

e Si K = C, la premiere équation a une solution, et les deux autres 2 solutions distinctes. Ainsi,
M"? = D (et donc M? = A) ont exactement 1 x 2 x 2 = 4 solutions.

Conclusion :
‘ K =R : 0 solutions. K = C : 4 solutions. ‘
Soit X une colonne propre de A pour la valeur propre A : AX = \X.
AMX = MAX Car AM =MA
= M(\X) Car AX = )\X
=\MX

Donc M X € Ey. Or A admet n valeurs propres distinctes, ce qui entraine dim Ey = 1.
Ainsi, F\ = Vect (X), et M X € F) signifie qu’il existe u € K tel que M X = pX. Finalement,

‘ Toute colonne propre X de A est aussi colonne propre de M ‘

Comme A de taille n posséde n valeurs propres distinctes, A est diagonalisable. Soit &' = (X1, ..., X},)
une base de colonnes propres, et P = (X3 | --- | X,;) la matrice de passage associée. D’apres la question
3, #' est aussi une base de colonnes propres pour M : M = PDy;P~! avec Dy, diagonale. Ainsi,

Il existe P € M, (K) inversible telle que P~'AP et P~'M P soient toutes les deux diagonales

Soit P la matrice de passage diagonalisant A. Notons M’ € .#5(C) et M = PM'P~!. De méme qu’a
la question 2, M? = A <= M'? = D, et, en notant y; les coefficients diagonaux de M’ et \; ceux de
D, il vient

Vi e [1,n], 12 =\

L’équation X2 = )\; a toujours au moins une solution, car C est algébriquement clos. Il y a 2 solutions
distinctes si et seulement si \; # 0, et une seule solution (de multiplicité 2) si \; = 0.

Si oy est la multiplicité de 0 comme valeurs propre, M? = A a 2"~™ solutions
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Exercice 2 (CCINP PC 2025)

Présentation générale

Dans tout l’exercice, on considére un entier n € N*. Pour toute matrice A € M,,(C), on note
w4 Mp(C) — M, (C)

définie par ¢4 : M — AM. En particulier, on remarque qu’en notant 0,, la matrice nulle de M, (C) et I, la
matrice identité de M, (C), alors g, est I'application nulle de M,,(C) et ¢y, est application identité de
M, (C).

L’objectif de cet exercice est d’étudier quelques propriétés de I’application ¢ 4.

Partie I - Généralités

1) Montrer pour tout A € M, (C) que 'application ¢4 est un endomorphisme de M,,(C).
2) Montrer pour tout (A4, B) € M,,(C)? que ¢4 0 ¢op = wap.

3) Soit A € M,,(C). Déduire de la question précédente que v 4 est un isomorphisme si et seulement si la
matrice A est inversible.

Indication : st w4 est un isomorphisme, on pourra considérer un antécédent par wa de la matrice
identité de My (C).

Partie II - Etude d’un exemple

Dans cette partie uniquement, on suppose que n = 2. On considere un nombre a € C et la matrice :

A= (é i) € My(C)

4) Déterminer une condition nécessaire et suffisante sur le nombre a € C pour que la matrice A soit
diagonalisable.

, . . ({1 0 0 1 00 0 0
5) Déterminer la matrice de ¢4 dans la base C = ((O 0) ) <0 0) ) <1 0) ) (0 1)) de M5(C).

6) En déduire les valeurs propres de @4, puis déterminer la dimension de chaque sous-espace propre de
w4 en fonction de a € C.

7) Déterminer une condition nécessaire et suffisante sur a € C pour que @4 soit diagonalisable.

Partie III - Réduction de ¢4 si A est diagonalisable

Dans cette partie, on considére une matrice A € M,,(C). Nous allons étudier les propriétés liant les éléments
propres de la matrice A et ceux de ’endomorphisme ¢ 4.

8) Montrer pour tout k£ € N que gof% = P Ak-
9) En déduire pour tout polynome P € C[X] que P(¢a) = ¢p(a)-
10) Rappeler la caractérisation de la diagonalisabilité d’une matrice ou d’un endomorphisme a ’aide d’un

polyndéme annulateur. En déduire que la matrice A est diagonalisable si et seulement si I’endomor-
phisme ¢ 4 est diagonalisable.

11) On note x4 le polyndéme caractéristique de A. Montrer que x4(¢4) est 'endomorphisme nul. En
déduire une inclusion entre I’ensemble des valeurs propres de A et I’ensemble des valeurs propres de
©A, puis que la matrice A et 'endomorphisme ¢4 ont les mémes valeurs propres.

12) Soit A € C une valeur propre de A. Montrer qu'une matrice M € M, (C) est dans le sous-espace
propre E)(¢4) de ¢4 pour la valeur propre A si et seulement si chaque colonne de la matrice M est
dans le sous-espace propre F)(A) de la matrice A pour la valeur propre \.
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On déduit directement de la question précédente que pour toute valeur propre A € C de la matrice A,
lapplication qui & toute matrice de M,,(C) associe le n-uplet de ses colonnes :

mi1 o Min mi,1 min

5

Mp1 - Mnn Mn,1 Mnpn

) )

est un isomorphisme du sous-espace propre Ey(¢4) sur (Ey(A))".

13) Dans le cas ou la matrice A est diagonalisable, déduire des résultats de cette partie une expression du
déterminant et de la trace de ¢4 en fonction du déterminant et de la trace de A.

Exercice 3 (D’apres banque PT)

On identifie dans tout ce probleme R" avec I’ensemble des matrices colonnes a n lignes.

On note E* l'espace Z(E,R) des formes linéaires sur E. Par exemple ., (R)* sera I’ensemble des applica-
tions linéaire de ., (R) dans R.

Dans tout le probleme, pour A € ., (R), on consideére les applications suivantes :

TA: Mp(R) — R et va: Mp(R) — M (R)
M s Tr(AM) M s AM — MA

Partie 1 (Questions préliminaires) 1) Vérifier que, pour toute matrice A € .#,(R) fixée, les applica-
tions 74 et 4 sont linéaires.

2) Donner la dimension de ., (R) et celle de ., (R)*.
Partie 2 (Une caractérisation des matrices nilpotentes)
Soit n € N* et A € #,(R). La matrice A est dite nilpotente s’il existe un entier p tel que A? = 0.

1) Montrer que si A est une valeur propre (éventuellement complexe) de A, alors, pour tout k € N*, AF
est une valeur propre de A*.

2) On suppose A nilpotente.
a) Montrer que la seule valeur propre de A est 0.
b) Montrer que Tr A = 0.
3) On suppose toujours A nilpotente.
a) Soit M une matrice telle que AM = M A. Montrer que la matrice AM est encore nilpotente.

b) En déduire que Ker v4 C Ker 74.
On admettraEI qu’il existe alors w : #,(R) — R linéaire telle que 74 = w o y4.

c) i) Si Bj; € #,(R) est la matrice ayant un 1 en i-eme ligne, j-eme colonne, et 0 ailleurs, et
U = (uij) € Mn(R) quelconque, calculer le produit UE;; puis Tr (U E;;).

ii) Montrer que l'application f: #,(R) — #,(R)* est linéaire et injective.
U — 1y
En déduire que f est un isomorphisme.

iii) En déduire qu’il existe une matrice B € .#,(R) telle que 74 = 75 0 v4.
d) Montrer que A = BA — AB.
4) On suppose maintenant qu’il existe une matrice B telle que A = BA — AB.
a) Montrer que, pour tout k € N*, BAF — AFB = kA*.
b) A quelle condition la matrice AF est-elle un vecteur propre de yp ?
¢) En déduire que A est nilpotente.

5) Quelle caractérisation des matrices nilpotentes a-t-on obtenue ?

FIN DE L’EPREUVE

1. Ce théoréme de factorisation, présent dans le sujet d’origine, est I’exercice 21 de la feuille d’algebre linéaire.



