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Épreuve de Mathématiques 5

Correction

Exercice 1 (extrait de Epita 2025)
1) Polynôme caractéristique :

χA(x) = det(xI3 −A)

=

∣∣∣∣∣∣∣
x −1 −2
−1 x −1
−2 1 x

∣∣∣∣∣∣∣ L3 ←− L3 + L1

=

∣∣∣∣∣∣∣
x −1 −2
−1 x −1
x− 2 0 x− 2

∣∣∣∣∣∣∣

C1 ←− C1 − C3

= (x− 2)

∣∣∣∣∣∣∣
x −1 −2
−1 x −1
1 0 1

∣∣∣∣∣∣∣
= (x− 2)

∣∣∣∣∣∣∣
x+ 2 −1 −2

0 x −1
0 0 1

∣∣∣∣∣∣∣
= (x− 2)(x+ 2)x Matrice triangulaire

Conclusion :
χA(x) = x(x− 2)(x+ 2)

Les valeurs propres sont :
• λ = 0 de multiplicité α = 1 ;
• λ = 2 de multiplicité α = 1 ;
• λ = −2 de multiplicité α = 1 ;

Vérification avec la trace : Tr (A) = 0 = 2− 2 + 0.
Diagonalisation : La matrice 3×3 A admet 3 valeurs propres distinctes : d’après la condition suffisante
de diagonalisation, elle est donc diagonalisable :

A est diagonalisable, semblable à D =

0 0 0
0 2 0
0 0 −2


Sous-espaces propres et P :
• E0 = Ker A :

X =

xy
z

 ∈ Ker A ⇐⇒ AX = 0

⇐⇒


y + 2z = 0
x+ z = 0

2x− y = 0 L3 ←− L3 − 2L2

⇐⇒


x+ z = 0
y + 2z = 0
−y − 2z = 0

⇐⇒
{
x = −z
y = −2z

⇐⇒ X =

xy
z

 =

 −z−2z
z


⇐⇒ X ∈ Vect

−1
−2
1


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Conclusion :

Ker f = Vect

−1
−2
1


• E2 = Ker (2I3 −A) :

X =

xy
z

 ∈ E2 ⇐⇒

 2 −1 −2
−1 2 −1
−2 1 2


xy
z

 = 0

⇐⇒


2x− y − 2z = 0
−x+ 2y − z = 0
−2x+ y + 2z = 0

L1 ←− L1 + 2L2

L3 = −L1

⇐⇒
{
−x+ 2y − z = 0

3y − 4z = 0

⇐⇒
{
x = 5z/3
y = 4z/3

⇐⇒ X =

xy
z

 =

5z/3
4z/3
z


⇐⇒ X ∈ Vect

5
4
3



Conclusion :

Ker f = Vect

5
4
3


• E−2 = Ker (−2I3 −A) :

X =

xy
z

 ∈ E2 ⇐⇒

−2 −1 −2
−1 −2 −1
−2 1 −2


xy
z

 = 0

⇐⇒


2x+ y + 2z = 0
x+ 2y + z = 0

2x− y + 2z = 0

L1 ←− L1 − 2L2

L3 ←− L3 − 2L2

⇐⇒


x+ 2y + z = 0

−3y = 0
−5z = 0

⇐⇒
{
x = −z
y = 0

⇐⇒ X =

xy
z

 =

−z0
z


⇐⇒ X ∈ Vect

−1
0
1



Conclusion :

Ker f = Vect

−1
0
1



Ainsi, B =


−1
−2
1

 ,
5

4
3

 ,
−1

0
1


 est une base de vecteurs propres pour A. En conclusion,

Avec P =

−1 5 −1
−2 4 0
1 3 1

, A = PDP−1

2) Soit M ′ ∈M3(R).

M ′2 = D =⇒ PM ′2P−1 = PDP−1 (PM ′P−1)2 = A =⇒ PM ′2P−1 = PDP−1

=⇒ (PM ′P−1)2 = A =⇒M ′2 = D
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Donc, avec M = PM ′P−1,
M2 = A ⇐⇒ M ′2 = D

Donc M ′2 = D et M2 = A ont exactement le même nombre de solutions.

Résolution de M ′2 = D : Soit M ′ =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 telle que M ′2 = D.

M ′D = M ′3 = DM ′

Ce qui s’écrit, après calcul des produits,0 2b1 −2c1
0 2b2 −2c2
0 2b3 −2c3

 =

 0 0 0
2a2 2b2 2c2
−2a3 −2b3 −2c3



D’où b1 = c1 = a2 = c2 = a3 = b3 = 0, et M =

a1 0 0
0 b2 0
0 0 c3

.

Ainsi, M ′2 = D s’écrit


a2

1 = 0
b2

2 = 2
c2

2 = −2
• Si K = R, la dernière équation n’a pas de solution, donc M ′2 = D non plus, et M2 = A non plus.
• Si K = C, la première équation a une solution, et les deux autres 2 solutions distinctes. Ainsi,
M ′2 = D (et donc M2 = A) ont exactement 1× 2× 2 = 4 solutions.

Conclusion :

K = R : 0 solutions. K = C : 4 solutions.

3) Soit X une colonne propre de A pour la valeur propre λ : AX = λX.

AMX = MAX Car AM = MA

= M(λX) Car AX = λX

= λMX

Donc MX ∈ Eλ. Or A admet n valeurs propres distinctes, ce qui entraîne dimEλ = 1.
Ainsi, Eλ = Vect (X), et MX ∈ Eλ signifie qu’il existe µ ∈ K tel que MX = µX. Finalement,

Toute colonne propre X de A est aussi colonne propre de M

4) Comme A de taille n possède n valeurs propres distinctes, A est diagonalisable. Soit B′ = (X1, . . . , Xn)
une base de colonnes propres, et P = (X1 | · · · | Xn) la matrice de passage associée. D’après la question
3, B′ est aussi une base de colonnes propres pour M : M = PDMP

−1 avec DM diagonale. Ainsi,

Il existe P ∈Mn(K) inversible telle que P−1AP et P−1MP soient toutes les deux diagonales

5) Soit P la matrice de passage diagonalisant A. Notons M ′ ∈M3(C) et M = PM ′P−1. De même qu’à
la question 2, M2 = A ⇐⇒ M ′2 = D, et, en notant µi les coefficients diagonaux de M ′ et λi ceux de
D, il vient

∀i ∈ J1, nK , µ2
i = λi

L’équation X2 = λi a toujours au moins une solution, car C est algébriquement clos. Il y a 2 solutions
distinctes si et seulement si λi 6= 0, et une seule solution (de multiplicité 2) si λi = 0.

Si α0 est la multiplicité de 0 comme valeurs propre, M2 = A a 2n−m solutions
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Exercice 2 (CCINP PC 2025)
Présentation générale

Dans tout l’exercice, on considère un entier n ∈ N∗. Pour toute matrice A ∈Mn(C), on note

ϕA :Mn(C)→Mn(C)

définie par ϕA : M 7→ AM . En particulier, on remarque qu’en notant 0n la matrice nulle deMn(C) et In la
matrice identité de Mn(C), alors ϕ0n est l’application nulle de Mn(C) et ϕIn est l’application identité de
Mn(C).
L’objectif de cet exercice est d’étudier quelques propriétés de l’application ϕA.

Partie I - Généralités

1) Montrer pour tout A ∈Mn(C) que l’application ϕA est un endomorphisme deMn(C).
2) Montrer pour tout (A,B) ∈Mn(C)2 que ϕA ◦ ϕB = ϕAB.
3) Soit A ∈Mn(C). Déduire de la question précédente que ϕA est un isomorphisme si et seulement si la

matrice A est inversible.
Indication : si ϕA est un isomorphisme, on pourra considérer un antécédent par ϕA de la matrice
identité deMn(C).

Partie II - Étude d’un exemple

Dans cette partie uniquement, on suppose que n = 2. On considère un nombre a ∈ C et la matrice :

A =
(

1 1
0 a

)
∈M2(C)

4) Déterminer une condition nécessaire et suffisante sur le nombre a ∈ C pour que la matrice A soit
diagonalisable.

5) Déterminer la matrice de ϕA dans la base C =
((

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
deM2(C).

6) En déduire les valeurs propres de ϕA, puis déterminer la dimension de chaque sous-espace propre de
ϕA en fonction de a ∈ C.

7) Déterminer une condition nécessaire et suffisante sur a ∈ C pour que ϕA soit diagonalisable.

Partie III - Réduction de ϕA si A est diagonalisable

Dans cette partie, on considère une matrice A ∈Mn(C). Nous allons étudier les propriétés liant les éléments
propres de la matrice A et ceux de l’endomorphisme ϕA.

8) Montrer pour tout k ∈ N que ϕkA = ϕAk .
9) En déduire pour tout polynôme P ∈ C[X] que P (ϕA) = ϕP (A).

10) Rappeler la caractérisation de la diagonalisabilité d’une matrice ou d’un endomorphisme à l’aide d’un
polynôme annulateur. En déduire que la matrice A est diagonalisable si et seulement si l’endomor-
phisme ϕA est diagonalisable.

11) On note χA le polynôme caractéristique de A. Montrer que χA(ϕA) est l’endomorphisme nul. En
déduire une inclusion entre l’ensemble des valeurs propres de A et l’ensemble des valeurs propres de
ϕA, puis que la matrice A et l’endomorphisme ϕA ont les mêmes valeurs propres.

12) Soit λ ∈ C une valeur propre de A. Montrer qu’une matrice M ∈ Mn(C) est dans le sous-espace
propre Eλ(ϕA) de ϕA pour la valeur propre λ si et seulement si chaque colonne de la matrice M est
dans le sous-espace propre Eλ(A) de la matrice A pour la valeur propre λ.

4



DST 5

On déduit directement de la question précédente que pour toute valeur propre λ ∈ C de la matrice A,
l’application qui à toute matrice deMn(C) associe le n-uplet de ses colonnes :

Ψ :

m1,1 · · · m1,n
... . . . ...

mn,1 · · · mn,n

 7→

m1,1

...
mn,1

 , . . . ,
m1,n

...
mn,n




est un isomorphisme du sous-espace propre Eλ(ϕA) sur (Eλ(A))n.
13) Dans le cas où la matrice A est diagonalisable, déduire des résultats de cette partie une expression du

déterminant et de la trace de ϕA en fonction du déterminant et de la trace de A.

Exercice 3 (D’après banque PT)
On identifie dans tout ce problème Rn avec l’ensemble des matrices colonnes à n lignes.
On note E∗ l’espace L (E,R) des formes linéaires sur E. Par exemple Mn(R)∗ sera l’ensemble des applica-
tions linéaire de Mn(R) dans R.
Dans tout le problème, pour A ∈Mn(R), on considère les applications suivantes :

τA : Mn(R) → R
M 7→ Tr (AM)

et γA : Mn(R) → Mn(R)
M 7→ AM −MA

Partie 1 (Questions préliminaires) 1) Vérifier que, pour toute matrice A ∈ Mn(R) fixée, les applica-
tions τA et γA sont linéaires.

2) Donner la dimension de Mn(R) et celle de Mn(R)∗.

Partie 2 (Une caractérisation des matrices nilpotentes)
Soit n ∈ N∗ et A ∈Mn(R). La matrice A est dite nilpotente s’il existe un entier p tel que Ap = 0.

1) Montrer que si λ est une valeur propre (éventuellement complexe) de A, alors, pour tout k ∈ N∗, λk
est une valeur propre de Ak.

2) On suppose A nilpotente.
a) Montrer que la seule valeur propre de A est 0.
b) Montrer que Tr A = 0.

3) On suppose toujours A nilpotente.
a) Soit M une matrice telle que AM = MA. Montrer que la matrice AM est encore nilpotente.
b) En déduire que Ker γA ⊂ Ker τA.

On admettra 1 qu’il existe alors w : Mn(R)→ R linéaire telle que τA = w ◦ γA.
c) i) Si Eij ∈ Mn(R) est la matrice ayant un 1 en i-ème ligne, j-ème colonne, et 0 ailleurs, et

U = (uij) ∈Mn(R) quelconque, calculer le produit UEij puis Tr (UEij).
ii) Montrer que l’application f : Mn(R) → Mn(R)∗

U 7→ τU

est linéaire et injective.

En déduire que f est un isomorphisme.
iii) En déduire qu’il existe une matrice B ∈Mn(R) telle que τA = τB ◦ γA.

d) Montrer que A = BA−AB.
4) On suppose maintenant qu’il existe une matrice B telle que A = BA−AB.

a) Montrer que, pour tout k ∈ N∗, BAk −AkB = kAk.
b) À quelle condition la matrice Ak est-elle un vecteur propre de γB ?
c) En déduire que A est nilpotente.

5) Quelle caractérisation des matrices nilpotentes a-t-on obtenue ?

FIN DE L’ÉPREUVE

1. Ce théorème de factorisation, présent dans le sujet d’origine, est l’exercice 21 de la feuille d’algèbre linéaire.
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