Épreuve de Mathématiques 5

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.

Ne pas utiliser de correcteur.

Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1

Soit n un entier supérieur ou égal à 3.

On note $E_n = \mathbb{R}^n$ muni de sa structure euclidienne canonique et $\mathscr{B} = (e_1, \dots, e_n)$ sa base canonique. On considère les endomorphismes f et g de E_n définis par :

$$\left(f(e_1) = \sum_{i=1}^n e_i \text{ et } \forall j \in [2, n], f(e_j) = e_1 + e_j\right) \text{ et } (g = f - id_{E_n}).$$

- 1) Donner, dans la base \mathcal{B} , A et B les matrices respectives des endomorphismes f et g.
- 2) Justifier que f et g sont diagonalisables.
- 3) Diagonalisation de f et de g dans une même base
 - a) Déterminer une base \mathcal{B}_1 de $\mathrm{Im}(g)$, le rang de g et une base \mathcal{B}_2 de $\mathrm{Ker}(g)$.
 - b) Montrer que Im(g) et Ker(g) sont supplémentaires orthogonaux dans E_n .
 - c) Démontrer que le spectre de l'endomorphisme g est : $\mathbf{Sp}(g) = \{0, \lambda_1, \lambda_2\}$ où les deux réels λ_1 et λ_2 sont non nuls et vérifient la relation $\lambda_1 + \lambda_2 = 0$. On choisira $\lambda_1 > 0$.
 - d) On se propose de déterminer λ_1 et λ_2 par deux méthodes :
 - i) Méthode 1
 - A. Démontrer que Im(g) et Ker(g) sont stables par g.
 - B. Déterminer la matrice C dans la base \mathcal{B}_1 de l'endomorphisme h de $\mathrm{Im}(g)$ induit par g.
 - C. Déterminer les valeurs propres et sous-espaces propres associés de h.
 - D. En déduire, en le justifiant soigneusement, les valeurs de λ_1 et λ_2 .
 - ii) Méthode 2
 - A. Montrer que le spectre de $g^2 = g \circ g$ est : $\mathbf{Sp}\left(g^2\right) = \{0, \lambda_1^2, \lambda_2^2\}.$
 - B. Déterminer la matrice de l'endomorphisme g^2 dans la base \mathscr{B} .
 - C. En déduire, en fonction de n, la valeur de $\lambda_1^2 + \lambda_2^2$.

DST 5

D. Retrouver alors les valeurs de λ_1 et λ_2 obtenues par la méthode 1.

e) Déterminer une matrice
$$P \in GL_n(\mathbb{R})$$
 sous la forme $P = \begin{pmatrix} * & \cdots & * & * \\ 1 & * & \cdots & * \\ \vdots & & & \\ 1 & * & \cdots & * \end{pmatrix}$

telle que $P^{-1}BP = \operatorname{diag}(\lambda_1, \lambda_2, 0, \cdots, 0)$. On ne demande pas de déterminer P^{-1}

f) Justifier que la matrice $P^{-1}AP$ est diagonale.

Exercice 2 (Étude d'un endomorphisme sur un espace de polynômes) Présentation générale

On rappelle le théorème de la division euclidienne pour les polynômes : si $U \in \mathbb{C}[X]$ et $V \in \mathbb{C}[X]$ sont deux polynômes avec $V \neq 0$, alors il existe un unique couple $(Q, R) \in \mathbb{C}[X]^2$ tel que :

$$U = VQ + R$$
 avec $(R = 0$ ou $\deg(R) < \deg(V))$.

Les polynômes Q et R sont respectivement appelés le quotient et le reste dans la division euclidienne du polynôme U par V.

Dans cet exercice, on se donne un entier $n \in \mathbb{N}^*$ et un couple $(A, B) \in \mathbb{C}_n[X] \times \mathbb{C}[X]$ tel que $\deg(B) = n + 1$. On considère également l'application φ définie sur $\mathbb{C}_n[X]$ qui à un polynôme $P \in \mathbb{C}_n[X]$ associe le reste dans la division euclidienne de AP par B.

Par exemple, si on suppose que l'on a :

$$n = 2$$
, $A = X^2$, $B = X^3 - X$, $P = X^2 + X + 1$,

alors, en effectuant la division euclidienne de AP par B, on obtient :

$$AP = X^4 + X^3 + X^2 = BQ + R$$
 avec $Q = X + 1$ et $R = 2X^2 + X$,

donc on a $\varphi(P) = 2X^2 + X$.

Partie I - Généralités sur l'application φ

Dans cette partie, on démontre que l'application φ est un endomorphisme de $\mathbb{C}_n[X]$.

Q1. Justifier que pour tout polynôme $P \in \mathbb{C}_n[X]$, on a $\varphi(P) \in \mathbb{C}_n[X]$.

On considère deux polynômes $P_1 \in \mathbb{C}_n[X]$ et $P_2 \in \mathbb{C}_n[X]$. Par le théorème de la division euclidienne rappelé dans la présentation, il existe $(Q_1, R_1) \in \mathbb{C}[X] \times \mathbb{C}_n[X]$ et $(Q_2, R_2) \in \mathbb{C}[X] \times \mathbb{C}_n[X]$ tels que :

$$AP_1 = BQ_1 + R_1$$
 et $AP_2 = BQ_2 + R_2$.

Q2. Soit $\lambda \in \mathbb{C}$. Exprimer le quotient et le reste dans la division euclidienne de $A(P_1 + \lambda P_2)$ par B en fonction de λ et des polynômes Q_1 , Q_2 , R_1 et R_2 en justifiant votre réponse. En déduire que φ est un endomorphisme de l'espace vectoriel $\mathbb{C}_n[X]$.

Partie II - Étude d'un premier exemple

Dans cette partie uniquement, on suppose que:

$$n = 2$$
, $A = X^2 + 2X$ et $B = X^3 + X^2 - X - 1$.

Q3. Montrer que la matrice de l'endomorphisme φ de $\mathbb{C}_2[X]$ dans la base $(1, X, X^2)$ est :

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

DST 5

- $\mathbf{Q4.}$ Déterminer les valeurs propres et les sous-espaces propres de la matrice M.
- **Q5.** Justifier que l'endomorphisme φ est diagonalisable. Déterminer une base de $\mathbb{C}_2[X]$ formée de vecteurs propres de φ .

Partie III - Étude d'un second exemple

Dans cette partie uniquement, on suppose que n=2 et que $B=X^3$. Comme A est un élément de l'espace vectoriel $\mathbb{C}_2[X]$, il existe $(\alpha, \beta, \gamma) \in \mathbb{C}^3$ tel que $A=\alpha+\beta X+\gamma X^2$.

Q6. Montrer que la matrice de l'endomorphisme φ de $\mathbb{C}_2[X]$ dans la base $(1, X, X^2)$ est :

$$T = \begin{pmatrix} \alpha & 0 & 0 \\ \beta & \alpha & 0 \\ \gamma & \beta & \alpha \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

Q7. Montrer que l'endomorphisme φ est diagonalisable si et seulement si le polynôme A est constant.

Partie IV - Étude du cas où B est scindé à racines simples

Dans cette partie, on ne suppose plus que n=2: le nombre n est un entier quelconque de \mathbb{N}^* . Jusqu'à la fin de l'exercice, on suppose que B est un polynôme scindé à racines simples. On note $x_0, \ldots, x_n \in \mathbb{C}$ les racines de B qui sont donc des nombres complexes distincts.

On définit les polynômes de Lagrange $L_0, \ldots, L_n \in \mathbb{C}_n[X]$ associés aux complexes x_0, \ldots, x_n par :

$$\forall k \in [0, n], \quad L_k = \prod_{\substack{i=0 \ i \neq k}}^n \frac{X - x_i}{x_k - x_i}.$$

IV.1 - Décomposition avec les polynômes de Lagrange

- **Q8.** Soit $P \in \mathbb{C}_n[X]$. Montrer que x_0, \dots, x_n sont des racines du polynôme $D = P \sum_{i=0}^n P(x_i) L_i$.
- **Q9.** Déduire de la question précédente que pour tout $P \in \mathbb{C}_n[X]$, on a $P = \sum_{i=0}^n P(x_i)L_i$.
- **Q10.** Montrer que (L_0, \ldots, L_n) est une base de $\mathbb{C}_n[X]$.

IV.2 - Réduction de l'endomorphisme φ

Pour tout entier $k \in [0, n]$, on désigne respectivement par $Q_k \in \mathbb{C}[X]$ et $R_k \in \mathbb{C}_n[X]$ le quotient et le reste dans la division euclidienne de AL_k par B.

- **Q11.** Soit $(j,k) \in [0,n]^2$. Montrer que $R_k(x_j) = 0$ si $j \neq k$ et que $R_k(x_k) = A(x_k)$.
- **Q12.** En utilisant **Q9**, en déduire pour tout $k \in [0, n]$ que $\varphi(L_k) = A(x_k)L_k$.
- **Q13.** Justifier que l'endomorphisme φ est diagonalisable et préciser ses valeurs propres.

Exercice 3

Notations:

Dans tout ce problème n est un entier naturel supérieur ou égal à 2 et E est un espace vectoriel de dimension finie n sur le corps \mathbb{R} des nombres réels.

 $\mathscr{L}(E)$ désigne l'algèbre des endomorphismes de E et GL(E) l'ensemble des endomorphismes de E qui sont bijectifs. On note 0 l'endomorphisme nul et id l'application identité.

DST 5

Étant donné $f \in \mathcal{L}(E)$ et $P \in \mathbb{R}[X]$ donné par $P(X) = \sum_{k=0}^{\ell} a_k X^k$, on définit $P(f) \in \mathcal{L}(E)$ par :

$$P(f) = \sum_{k=0}^{\ell} a_k f^k$$

où $f^0=$ id et pour $k\in\mathbb{N}^*,$ $f^k=\underbrace{f\circ\cdots\circ f}_{k\text{ fois}}.$ Si f_1,\ldots,f_q désignent q endomorphismes de E $(q\in\mathbb{N}^*)$, alors $\prod_{1\leqslant i\leqslant q}f_i$ désignera l'endomorphisme $f_1\circ\cdots\circ f_q.$

Partie I - Étude d'un exemple

Soit f et j les endomorphismes de \mathbb{R}^3 dont les matrices respectives A et J dans la base canonique sont données par

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad \text{et} \qquad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1) Montrer que f est diagonalisable.
- 2) Calculer par récurrence J^m pour tout entier $m \ge 1$.
- 3) En déduire que, pour tout $m \in \mathbb{N}^*$, $f^m = \mathrm{id} + \frac{1}{3}(4^m 1)j$. Cette relation est-elle encore valable pour
- 4) Montrer que f admet deux valeurs propres distinctes λ et μ telles que $\lambda < \mu$.
- a) À l'aide de la question 3, trouver des endomorphismes p et q tels que

$$\forall m \in \mathbb{N} \qquad f^m = \lambda^m p + \mu^m q \tag{1}$$

- b) Montrer que ce couple (p,q) est unique : $\exists ! (p,q) \in \mathcal{L}(E)^2$ vérifiant (1).
- c) Montrer que (p,q) forme une famille libre.
- d) Calculer p^2 et q^2 . Quelle est la nature des endomorphismes p et q? Calculer $p \circ q$ et $q \circ p$.
- 6) Racines carrées de f:
 - a) Trouver tous les endomorphismes $h = \alpha p + \beta q$, avec $(\alpha, \beta) \in \mathbb{R}^2$, qui vérifient $h^2 = f$.
 - b) Trouver une base de vecteurs propres de f. Écrire la matrice D de f, puis les matrices de p et de q, dans cette nouvelle base.
 - c) Déterminer une matrice K de $\mathcal{M}_2(\mathbb{R})$ non diagonale telle que $K^2=I_2$, puis une matrice Y de $\mathcal{M}_3(\mathbb{R})$ non diagonale telle que $Y^2 = D$.
 - d) En déduire qu'il existe un endomorphisme h de \mathbb{R}^3 vérifiant $h^2=f$ qui n'est pas combinaison linéaire de p et q.

Partie II - Généralisation : cas de deux valeurs propres

Soit f un endomorphisme de E. On suppose qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ et deux endomorphismes non nuls p et q de E tels que

id =
$$p+q$$

 $\lambda \neq \mu$ et $f = \lambda p + \mu q$
 $f^2 = \lambda^2 p + \mu^2 q$

- 1) En exprimant f^2 , f et id à l'aide de p et q, calculer $(f \lambda \operatorname{id}) \circ (f \mu \operatorname{id})$, puis en déduire que f est
- 2) En déduire que λ et μ sont les seules valeurs propres de f.
- 3) Exprimer $f \lambda$ id et $f \mu$ id à l'aide de p et q.

- 4) Calculer $p \circ q$, $q \circ p$, p^2 et q^2 . Nature de p et q. Montrer que Ker q = Im p.
- 5) On suppose jusqu'à la fin de cette partie que $\lambda \mu \neq 0$. Montrer que f est un isomorphisme, et écrire f^{-1} combinaison linéaire de p et q.
- **6)** Montrer par récurrence que, pour tout $m \in \mathbb{Z}$,

$$f^m = \lambda^m p + \mu^m q$$

Partie III - Cas général

Soit p_1, \ldots, p_m , m endomorphismes non nuls de E et $\lambda_1, \ldots, \lambda_m$, m nombres réels deux à deux distincts. Soit f un endomorphisme de E vérifiant pour tout entier $k \in \mathbb{N}$

$$f^k = \sum_{i=1}^m \lambda_i^k p_i$$

- 1) Montrer que, pour tout $P \in \mathbb{R}[X]$, on a : $P(f) = \sum_{i=1}^{m} P(\lambda_i) p_i$
- 2) En déduire que f est diagonalisable.
- 3) On considère les polynômes de Lagrange L_0, \ldots, L_m associés aux reels $\lambda_0, \ldots, \lambda_m$. Montrer que pour tout $\ell \in [1, m]$, $p_\ell = L_\ell(f)$. En déduire que $\operatorname{Im}(p_\ell) \subset \operatorname{Ker}(f - \lambda_\ell id)$, puis que le spectre de f est :

$$\operatorname{Sp}(f) = \{\lambda_1, \dots, \lambda_m\}.$$

4) Vérifier que pour tout couple d'entiers (i,j) tels que $1 \le i,j \le m$, on a :

$$p_i \circ p_j = \begin{cases} 0 & \text{si } i \neq j \\ p_i & \text{si } i = j. \end{cases}$$

- 5) Justifier le fait que la somme $\sum_{i=1}^{m} \operatorname{Ker}(f \lambda_i \operatorname{id})$ est directe et égale à E et que les projecteurs associés à cette décomposition de E sont les p_i .
- 6) On suppose que $u \in \mathcal{L}(E)$ est diagonalisable et que son spectre est $\{\lambda_1, \dots, \lambda_m\}$. Montrer qu'il existe des projecteurs de E, $(q_j)_{j \in [\![1,m]\!]}$ non nuls, tels que :

$$\forall k \in \mathbb{N}, \quad u^k = \sum_{j=1}^m \lambda_j^k q_j.$$

FIN DE L'ÉPREUVE