Épreuve de Mathématiques 3

Correction

Exercice 1 (Centrale PSI 2025)

Soit f la fonction définie par $f(x) = \sum_{n=0}^{+\infty} e^{-nx}$, où $x \in \mathbb{R}$.

1) Soit $x \in \mathbb{R}$ fixé. La série $\sum (e^{-x})^n$ est une série géométrique, qui converge si et seulement si $q = e^{-x} \in]-1,1[$. Ainsi,

$$\mathscr{D}_f =]0, +\infty[$$

Et, pour tout x > 0,

$$f(x) = \sum_{n=0}^{+\infty} (e^{-x})^n = \frac{1}{1 - e^{-x}}$$

2) Comme quotient de fonctions usuelles \mathscr{C}^1 dont le dénominateur ne s'annule pas, f est \mathscr{C}^1 sur \mathscr{D}_f et

$$\forall x > 0, \quad f'(x) = -\frac{e^{-x}}{(1 - e^{-x})^2}$$

3) Nous avons:

$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{3!} + o(x^3)$$
$$(1 - e^{-x})^2 = \left(x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)\right)^2 = x^2 \left(1 - \frac{x}{2} + \frac{x^2}{6} + o(x^2)\right)^2$$

Donc

$$\frac{e^{-x}}{(1 - e^{-x})^2} = \frac{1}{x^2} \times \frac{1 - x + x^2/2 + o(x^2)}{(1 - x/2 + x^2/6 + o(x^2))^2}$$

 ${\rm Or}\ \frac{1}{(1-u)^2}=1+2u+3u^2+o(u^2)\ (ou\ en\ développant\ le\ carr\'e\ au\ pr\'ealable\ puis\ DL\ de\ \frac{1}{1-u})$

Donc, avec $u = x/2 - x^2/6 + o(x^2) \xrightarrow[x \to 0]{} 0$,

$$\frac{1}{(1-x/2+x^2/6+o(x^2))^2} = 1 + 2\left[\frac{x}{2} - \frac{x^2}{6} + o(x^2)\right] + 3\left(\frac{x}{2}\right)^2$$

$$= 1 + x + x^2\left(-\frac{1}{3} + \frac{3}{4}\right) + o(x^2)$$

$$\frac{e^{-x}}{(1-e^{-x})^2} = \frac{1}{x^2}\left(1 - x + \frac{x^2}{2} + o(x^2)\right)\left(1 + x + \frac{5}{12}x^2 + o(x^2)\right)$$

$$= \frac{1}{x^2}\left(1 - x + \frac{x^2}{2} + x - x^2 + \frac{5}{12}x^2 + o(x^2)\right)$$

$$= \frac{1}{x^2}\left(1 - \frac{x^2}{12} + o(x^2)\right)$$

$$= \frac{1}{x^2} - \frac{1}{12} + o(1)$$

Donc a = 1, b = 0 et c = -1/12:

$$\boxed{\frac{e^{-x}}{(1-e^{-x})^2} = \frac{1}{x^2} - \frac{1}{12} + o(1)}$$

4) Pour tout $n \in \mathbb{N}$, posons $f_n : \mathbb{R}_+^* \to \mathbb{R}$ définie par $f_n(x) = e^{-nx}$. La fonction f_n est \mathscr{C}^1 sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $f'_n(x) = -ne^{-nx}$.

• Montrons que $\sum f'_n$ converge normalement sur tout segment de \mathbb{R}^*_+ : Soit $[a,b] \subset \mathbb{R}^*_+$ un segment de \mathbb{R}^*_+ . Soit $n \in \mathbb{N}$ fixé. Par décroissance de $|f'_n|$,

$$||f_n'||_{\infty} = ne^{-na}$$

De plus, par croissance comparée (a > 0), $\lim_{n \to +\infty} n^2 ||f'_n||_{\infty} = 0$. Donc

$$||f_n'||_{\infty} = o(1/n^2)$$

Or $\sum \frac{1}{n^2}$ converge (Riemann, $\alpha = 2 > 1$), donc, par théorème de comparaison, $\sum \|f'_n\|_{\infty}$ converge. Ainsi,

La série $\sum f'_n$ converge normalement sur tout segment de \mathbb{R}_+^* .

- Théorème de dérivation terme à terme : Soit $I = \mathbb{R}_+^*$.
 - Pour tout $n \in \mathbb{N}$, f_n est \mathscr{C}^1 sur I.
 - La série $\sum f_n$ converge simplement sur I d'après 1).
 - La série $\sum f'_n$ converge normalement donc uniformément sur tout segment de I d'après ci-dessus.

Donc, d'après le théorème de dérivation terme à terme des séries de fonctions, f est \mathscr{C}^1 sur I (ce que l'on savait déjà) et

$$\forall x \in I, \quad f'(x) = \sum_{n=0}^{+\infty} f'_n(x)$$

Ainsi, pour tout x > 0,

$$-\frac{1}{x^2} + \sum_{n=0}^{+\infty} n e^{-nx} = -\frac{1}{x^2} - \sum_{n=0}^{+\infty} f'_n(x)$$

$$= -\frac{1}{x^2} - f'(x)$$
 D'après ci-dessus
$$= -\frac{1}{x^2} + \frac{e^{-x}}{(1 - e^{-x})^2}$$
 D'après 2
$$= -\frac{1}{12} + o(1)$$
 D'après 3

Finalement,

$$\lim_{x \to 0} \left(-\frac{1}{x^2} + \sum_{n=0}^{+\infty} ne^{-nx} \right) = -1/12$$

Le 23 février 1913 Srinivasa Ramanujan écrivit une lettre au mathématicien Godfrey Hardy dans laquelle il présenta une théorie selon laquelle la somme infinie $1+2+\cdots+n+\ldots$ vaut -1/12. S'en est suivi tout un ensemble de recherches sur ce sujet...

Si on cherche à attribuer une valeur finie à la somme divergente (infinie) $\sum_{n=1}^{+\infty} n$, différentes techniques (une seule est présentée ici) font apparaître « -1/12 », qui ne semble donc pas être fortuit.

Exercice 2 (CCINP PC 2021)

Partie I - Existence et unicité de la solution du problème (P)

I.1 - Existence de la solution

1) Soit x > 0 fixé.

$$|\varphi_k(x)| = \frac{1}{(x+k)^2} \sim \frac{1}{k^2}$$

Or $\sum \frac{1}{k^2}$ converge (Riemann, $\alpha = 2 > 1$), donc, par théorème de comparaison, $\sum \varphi_k(x)$ converge absolument donc converge. Conclusion :

La série de fonctions $\sum_{k\geqslant 0} \varphi_k$ converge simplement sur $]0,+\infty[$

2) Soit $x \in]0, +\infty[$,

$$\varphi(x+1) + \varphi(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)^2} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k)^2}$$
$$= \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{(x+k)^2} - \sum_{k=0}^{+\infty} \frac{(-1)^{k-1}}{(x+k)^2}$$
$$= \frac{1}{x^2}$$

Conclusion:

$$\forall x \in]0, +\infty[, \quad \varphi(x+1) + \varphi(x) = \frac{1}{x^2}$$

3) Soit x > 0 fixé.

- Pour tout $k \in \mathbb{N}$, $\varphi_k(x) = (-1)^k \frac{1}{(x+k)^2}$ avec $\frac{1}{(x+k)^2} \geqslant 0$. Donc $\sum \varphi_k(x)$ est une série alternée.
- $\left(\frac{1}{(x+k)^2}\right)_k$ est une suite décroissante car $u\mapsto \frac{1}{u^2}$ est décroissante sur \mathbb{R}_+^* .
- $\bullet \lim_{k \to +\infty} \frac{1}{(x+k)^2} = 0.$

Donc, d'après le théorème spécial des séries alternées, $\sum_k \varphi_k(x)$ converge (ce que l'on savait déjà), et le reste d'ordre n est majoré par $|\varphi_{n+1}(x)|$. Ce qui s'écrit

$$\forall x \in]0, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leq \frac{1}{(x+n+1)^2}$$

- **4)** Montrons que $\lim_{x\to +\infty} \varphi(x) = 0$:
 - Méthode 1 : une majoration. La majoration précédente, en n=0, s'écrit :

$$\forall x > 0, \qquad \left| \varphi(x) - \frac{1}{x^2} \right| \leqslant \frac{1}{(x+1)^2}$$

Ainsi, comme $\lim_{x \to +\infty} \frac{1}{(x+1)^2} = 0$, par majoration, $\lim_{x \to +\infty} \varphi(x) - \frac{1}{x^2} = 0$.

Puis
$$\lim_{x\to +\infty} \frac{1}{x^2} = 0$$
 entraı̂ne $\lim_{x\to +\infty} \varphi(x) = 0$

• Méthode 2 : théorème de la double limite. Montrons que $\sum \varphi_k$ converge uniformément sur $]0, +\infty[$: D'après la question 3,

$$\|\sum_{k=n+1}^{+\infty} \varphi_k\|_{\infty} \leqslant \frac{1}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0$$

Donc, par majoration, $\lim_{n\to+\infty} \|\varphi - \sum_{k=0}^n \varphi_k\|_{\infty} = 0$, et $\sum \varphi_k$ converge uniformément sur $]0, +\infty[$.

Pour une version plus détaillée de la convergence uniforme, voir la question 7.

Appliquons le théorème de la double limite :

- La série $\sum \varphi_k$ converge uniformément sur $]0, +\infty[$ vers φ .
- Pour tout $k \in \mathbb{N}$, $\lim_{x \to +\infty} \varphi_k(x) = 0 = \ell_k$.

Donc, d'après le théorème de la double limite, $\sum \ell_k$ converge et $\lim_{x \to +\infty} \varphi(x) = 0 = \sum_{k=0}^{+\infty} \ell_k$

De plus, d'après I.2, φ vérifie la seconde relation de (P). Conclusion :

La fonction φ est une solution de (P)

I.2 - Unicité de la solution

5) Soit x > 0 fixé. Montrons par récurrence que la propriété :

$$\mathcal{H}_n: f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^n \frac{(-1)^k}{(x+k)^2}$$

est vraie pour tout $n \ge 0$.

- $\underline{\mathcal{H}}_0$: s'écrit $f(x) = -f(x+1) + \frac{1}{x^2}$. C'est vraie par définition de la propriété (P).
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons \mathcal{H}_n vraie.

$$f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$$
 d'après \mathcal{H}_n

$$= (-1)^{n+1} \Big(-f(x+n+2) + \frac{1}{(x+n+1)^2} \Big) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$$
 en appliquant (P) en $x+n+1$

$$= (-1)^{n+2} f(x+n+2) + \sum_{k=0}^{n+1} \frac{(-1)^k}{(x+k)^2}$$

Donc \mathcal{H}_{n+1} est vraie.

- <u>Conclusion</u>: $\forall n \ge 0$ $f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$
- 6) D'après (P), $\lim_{n\to+\infty} f(x+n+1) = \lim_{t\to+\infty} f(t) = 0$. Donc, en passant à la limite quand $n\to+\infty$ dans l'égalité précédente, il vient $f=\varphi$. Ainsi, f solution de (P) implique $f=\varphi$. Réciproquement, à la question 4 nous avons montré que φ était solution de (P). Conclusion :

La fonction φ est l'unique solution de (P)

Partie II - Etude de la solution du problème (P)

7) <u>Calcul de norme infinie</u>: Soit $n \in \mathbb{N}^*$ fixé. Notons, pour tout x > 0,

$$S_n(x) = \sum_{k=0}^n \varphi_k(x)$$
 et $R_n(x) = \varphi(x) - S_n(x) = \sum_{k=n+1}^{+\infty} \varphi_k(x)$

D'après la question 3,

$$\forall x \geqslant \varepsilon, \qquad |R_n(x)| \leqslant \frac{1}{(x+n+1)^2}$$

Or $x \mapsto \frac{1}{(x+n+1)^2}$ est décroissante sur $]0,+\infty[$, donc sa borne supérieure est $\frac{1}{(n+1)^2}$ (on pouvait aussi prendre la borne sup sur $[\varepsilon,+\infty[$) et :

$$\forall x > 0, \qquad |R_n(x)| \leqslant \frac{1}{(n+1)^2}$$

En passant à la borne supérieure sur $[\varepsilon, +\infty[$, il vient

$$||R_n||_{\infty} \leqslant \frac{1}{(n+1)^2}$$

Convergence uniforme:

Par majoration, $\lim_{n\to+\infty} ||R_n||_{\infty} = 0$. Comme $R_n = \varphi - S_n$, nous venons de montrer

La série de fonctions
$$\sum_{k\geqslant 0} \varphi_k$$
 converge uniformément sur $[\varepsilon,+\infty[$

Pour montrer la convergence uniforme en majorant R_n , il n'est pas nécessaire de se placer sur $[\varepsilon, +\infty[$: on peut se placer sur $]0, +\infty[$, et prendre $n \ge 1$: la différence $\varphi - S_n$ fait disparaître le problème de $\varphi_0: x \mapsto \frac{1}{x^2}$ non bornée sur $]0, +\infty[$.

On pouvait aussi montrer la convergence normale, en calculant $\|\varphi_k\|_{\infty} = |\varphi_k(\varepsilon)| = \frac{1}{(\varepsilon + k)^2}$, et en montrant que $\sum \|\varphi_k\|_{\infty}$ converge (Riemann, ou la convergence simple absolue de la question 1 en $x = \varepsilon$). Puis la convergence normale entraîne la convergence absolue.

- 8) Pour tout $n \in \mathbb{N}$, φ_n est continue sur $]0, +\infty[$.
 - D'après 7, $\sum \varphi_k$ converge uniformément sur tout intervalle de la forme $[\varepsilon, +\infty[$ de $]0, +\infty[$, donc sur tout segment de $]0, +\infty[$.

Donc, d'après le théorème de continuité,

La fonction
$$\varphi$$
 est continue sur $]0, +\infty[$

Comme φ est solution de (P),

$$\forall x > 0, \qquad \varphi(x) = \frac{1}{x^2} - \varphi(x+1)$$

Or, d'après ci-dessus, φ est continue en 1 : lorsque $x \to 0$, $\varphi(x+1) = \varphi(1) + o(1)$.

Donc
$$\varphi(x) = \frac{1}{x^2} - \varphi(1) + o(1)$$
:

$$\varphi(x) \sim \frac{1}{x^2}$$

9) Convergence uniforme de $\sum \varphi'_k$: Soit $\varepsilon > 0$, et $n \in \mathbb{N}$ fixé. La fonction φ_n est dérivable sur $]0, +\infty[$, et

$$\forall x > 0, \qquad phi'_n(x) = \frac{2(-1)^{k+1}}{(x+k)^3}$$

Par décroissance de $|\varphi'_n|$ sur $]0, +\infty[$,

$$\|\varphi_n'\|_{\infty} = \frac{1}{(\varepsilon + n)^3}$$

Ainsi, $\|\varphi_n'\|_{\infty} \sim \frac{1}{n^3}$.

Comme $\sum \frac{1}{n^3}$ converge (Riemann, $\alpha = 3 > 1$), par théorème de comparaison, $\sum \|\varphi_n'\|_{\infty}$ converge :

La série $\sum \varphi_k'$ converge normalement donc uniformément sur $[\varepsilon, +\infty[$

Dérivée de φ :

- Pour tout $n \in \mathbb{N}$, φ_n est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- La série $\sum \varphi_n$ converge simplement sur $]0, +\infty[$ d'après 1.
- La série $\sum \varphi'_n$ converge uniformément sur tout segment de $]0, +\infty[$.

Donc, d'après le théorème de dérivation terme à terme des séries de fonctions,

$$\varphi$$
 est dérivable sur $]0, +\infty[$ et $\forall x \in]0, +\infty[$, $\varphi'(x) = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}$

10) Le théorème des séries alternées s'applique à la série $\sum \varphi'_n$, comme il s'appliquait à $\sum \varphi_n$ lors de la question 3. Une des conséquences est que le signe du reste est celui du premier terme négligé. En considérant $R_{-1} = \varphi'$ et $\varphi'_{-1+1} = \varphi'_0$, la fonction φ' est du signe de $\varphi'_0(x) = -\frac{2}{x^3} < 0$. Donc $\varphi' < 0$ sur $]0, +\infty[$:

La fonction
$$\varphi$$
 est décroissante sur $]0, +\infty[$

11) Encadrons φ :

$$\forall x \in]1, +\infty[, \qquad \varphi(x+1) \leqslant \varphi(x) \leqslant \varphi(x-1) \qquad \text{décroissance de } \varphi \text{ sur }]0, +\infty[$$

$$\Longrightarrow \forall x \in]1, +\infty[, \qquad \varphi(x+1) + \varphi(x) \leqslant 2\varphi(x) \leqslant \varphi(x) + \varphi(x-1)$$

$$\Longrightarrow \forall x \in]1, +\infty[, \qquad \frac{1}{x^2} \leqslant 2\varphi(x) \leqslant \frac{1}{(x-1)^2}$$

$$(P)$$

Ainsi

$$\forall x \in]1, +\infty[, \quad \frac{1}{x^2} \leqslant 2\varphi(x) \leqslant \frac{1}{(x-1)^2}$$

Puis

$$\forall x \in]1, +\infty[, \quad 1 \leqslant 2x^2 \varphi(x) \leqslant \frac{x^2}{(x-1)^2}$$

Par encadrement, $\lim_{x\to +\infty} 2x^2 \varphi(x) = 1$:

$$\varphi(x) \sim \frac{1}{2x^2}$$

Partie III - Expression intégrale de la solution du problème (P)

12) Soit $k \in \mathbb{N}$. La fonction $f: t \mapsto t^{x+k-1} \ln(t)$ est continue donc continue par morceaux sur]0,1]. Étude en $0: \text{Si } k \geqslant 1, \ x+k-1 \geqslant x > 0$, donc, par croissance comparée,

$$\lim_{t \to 0} f(t) = 0$$

Ainsi, f est prolongeable par continuité en 0, donc intégrable sur]0,1]. Si k=0, montrons que $f(t)=o(1/t^{1-x/2})$: par croissance comparée, comme x/2>0,

$$t^{1-x/2}f(t) = t^{x/2}\ln(t) \xrightarrow[t \to 0]{} 0$$

Ainsi, $f(t) = o(1/t^{1-x/2})$. Or $\int_0^1 \frac{1}{t^{1-x/2}} dt$ converge (Riemann en 0, $\alpha = 1 - x/2 < 1$).

Donc, par théorème de comparaison, $\int_0^1 f(t) dt$ converge. Conclusion :

Pour tout
$$k \in \mathbb{N}$$
, la fonction $t \mapsto t^{x+k-1} \ln(t)$ est intégrable sur $]0,1]$

Vous avez tout de suite reconnu les intégrales de Bertrand. Pour les reconnaître : lorsque vous avez du t et du $\ln(t)$ qui interviennent (ici, $\frac{1}{t^{\alpha}(\ln t)^{\beta}}$ avec $\alpha = -(x+k-1)$ et $\beta = -1$).

Vous pouviez aussi effectuer l'intégration par parties de ε à 1, puis passer à la limite : vous prouvez en même temps la convergence, donc l'intégrabilité puisque la fonction est de signe constant (négatif).

Effectuons une intégration par parties : $\begin{cases} u = \frac{t^{x+k}}{x+k} & u' = t^{x+k-1} & (x+k \neq 0) \\ v = \ln(t) & v' = \frac{1}{t} \end{cases}$ Comme x + k > 0 $\lim uv = 0$ par craises

Comme x+k>0, $\lim_{t\to 0}uv=0$ par croissance comparée, et le théorème d'intégration par parties nous dit que les deux intégrales sont de même nature, donc convergente d'après ci-dessus. Et

$$\int_0^1 t^{x+k-1} \ln(t) dt = \left[\frac{t^{x+k}}{x+k} \ln(t) \right]_0^1 - \int_0^1 \frac{t^{x+k-1}}{x+k} dt$$
$$= -\frac{1}{x+k} \left[\frac{t^{x+k}}{x+k} \right]_0^1$$
$$= -\frac{1}{(x+k)^2}$$

Conclusion:

$$\int_0^1 t^{x+k-1} \ln(t) dt = -\frac{1}{(x+k)^2}$$

13) La fonction $t \mapsto \frac{t^{x-1}\ln(t)}{1+t}$ est continue sur]0,1] et, au voisinage de $t=0, \frac{t^{x-1}\ln(t)}{1+t} \sim t^{x-1}\ln(t)$. Or, d'après la question 12, la fonction $t\mapsto t^{x-1}\ln(t)$ est intégrable sur]0,1] (cas k=0). Donc, par théorème de comparaison,

La fonction
$$t \mapsto \frac{t^{x-1}\ln(t)}{1+t}$$
 est intégrable sur $]0,1]$

Soit $t\in]0,1].$ La série géométrique $\sum_k (-t)^k$ converge et

$$\sum_{k=0}^{+\infty} (-t)^k = \frac{1}{1+t}$$

Ainsi, en multipliant par $t^{x-1} \ln(t)$, il vient

$$\sum_{k=0}^{+\infty} (-1)^k t^{x+k-1} \ln(t) = \frac{t^{x-1} \ln(t)}{1+t}$$

Appliquons le théorème d'intégration terme à terme.

Pour tout $k \in \mathbb{N}$, posons $f_k :]0,1] \to \mathbb{R}$ définie par $f_k(t) = (-1)^k t^{x+k-1} \ln(t)$.

D'après la question 12, $\int_0^1 |f_k(t)| dt = \frac{1}{(x+k)^2} \sim \frac{1}{k^2}$. Or $\sum \frac{1}{k^2}$ converge (Riemann, $\alpha = 2 > 1$),

donc par théorème de comparaison $\sum \int_0^1 |f_k(t)| dt$ converge.

- Pour tout $k \in \mathbb{N}$, f_k est continue donc continue par morceaux sur]0,1].
- $\sum f_k$ converge simplement vers $f: t \mapsto \frac{t^{x-1}\ln(t)}{1+t}$ sur]0,1] d'après ci-dessus, et f est continue.
- La série $\sum \int_0^1 |f_k(t)| dt$ converge

Donc, d'après le théorème d'intégration terme à terme, f est intégrable sur]0,1] et

$$\int_0^1 f(t) \, dt = \sum_{k=0}^{+\infty} \int_0^1 f_k(t) \, dt$$

Or, d'après 12,
$$\int_0^1 f_k(t) dt = -\frac{(-1)^k}{(x+k)^2}$$
, et $\varphi(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k)^2}$. Par conséquent,
$$\varphi(x) = -\int_0^1 \frac{t^{x-1} \ln(t)}{1+t} dt$$

Exercice 3 (CCINP PC 2021)

Partie I - Approximation de la racine carrée d'un réel positif

I.1 - Convergence de la suite $(f_k)_{k\in\mathbb{N}}$

1)

$$(f_k(x))^2 - x = \frac{1}{4} \left(f_{k-1}(x) + \frac{x}{f_{k-1}(x)} \right)^2 - x$$

$$= \frac{1}{4} \left(f_{k-1}^2(x) + 2x + \frac{x^2}{f_{k-1}^2(x)} - 4x \right)$$

$$= \frac{1}{4} \left(f_{k-1}^2(x) - 2x + \frac{x^2}{f_{k-1}^2(x)} \right)$$

$$= \frac{1}{4} \left(f_{k-1}(x) - \frac{x}{f_{k-1}(x)} \right)^2$$

$$\geqslant 0$$

Donc $(f_k(x))^2 \ge x$. Comme $x \ge 0$ et $f_k \ge 0$, il vient

$$\forall k \in \mathbb{N}^*, \qquad f_k(x) \geqslant \sqrt{x}$$

2) Si x = 0, pour tout $k \in \mathbb{N}$, $f_{k+1}(0) = \frac{1}{2}f_k(0)$: la suite est géométrique et décroissante. Et si $x \neq 0$? Que faire? C'est la question 2. Pas d'idées... la question 1 semblait sortie de nulle part : essayons de l'utiliser.

Si x > 0, d'après 1, $f_k(x) \ge \sqrt{x} > 0$. En passant à l'inverse,

$$\frac{1}{f_k(x)} \leqslant \frac{1}{\sqrt{x}}$$

$$\implies \frac{x}{f_k(x)} \leqslant \sqrt{x} \leqslant f_k(x) \qquad \text{toujours d'après 1}$$

$$\implies f_{k+1}(x) = \frac{1}{2} \left(f_k(x) + \frac{x}{f_k(x)} \right) \leqslant \frac{1}{2} (f_k(x) + f_k(x)) = f_k(x)$$

Ainsi,

La suite
$$(f_k(x))_{k\in\mathbb{N}^*}$$
 est décroissante

3) Soit $x \in \mathbb{R}_+$ fixé. La suite $(f_k(x))_k$ est décroissante (d'après 2) minorée par \sqrt{x} (d'après 1), donc, d'après le théorème de la limite monotone, elle converge. Notons $f(x) = \lim_{k \to +\infty} f_k(x)$ sa limite.

Si x > 0, la minoration $f(x) \ge \sqrt{x}$ nous donne f(x) > 0. En passant à la limite dans la relation de récurrence, il vient

$$f(x) = \frac{1}{2} \left(f(x) + \frac{x}{f(x)} \right)$$

D'où $f(x)^2 = x$, puis $f(x) = \sqrt{x}$.

Si x = 0, La suite géométrique $(f_k(0))$ de raison 2 converge vers $0 = \sqrt{0}$.

Finalement,

$$(f_k)_{k\in\mathbb{N}}$$
 converge simplement vers $f:\mathbb{R}_+\to\mathbb{R}$ définie par $f(x)=\sqrt{x}$ pour tout $x\in\mathbb{R}_+$

I.2 - Majoration de l'erreur

4) Soit $k \in \mathbb{N}$.

$$\frac{f_k(x) - \sqrt{x}}{2} \left(1 - \frac{\sqrt{x}}{f_k(x)} \right) = \frac{1}{2} \left(f_k(x) - \sqrt{x} - \sqrt{x} + \frac{x}{f_k(x)} \right) \quad \text{(développer plutôt que factoriser)}$$

$$= -\sqrt{x} + \frac{1}{2} \left(f_k(x) + \frac{x}{f_k(x)} \right)$$

$$= f_{k+1}(x) - \sqrt{x}$$

Il est rare d'obtenir une relation de récurrence (lien entre f_k et f_{k+1} , plus généralement entre la valeur au rang k et celle au rang k+1) par récurrence. Cette relation, par contre, servira pour faire des récurrence dans peu de temps

$$\forall k \in \mathbb{N}, \qquad f_{k+1}(x) - \sqrt{x} = \frac{f_k(x) - \sqrt{x}}{2} \left(1 - \frac{\sqrt{x}}{f_k(x)}\right)$$

5) Montrons par récurrence que la propriété:

$$\mathcal{H}_k: |f_k(x) - \sqrt{x}| \leqslant \frac{1+x}{2^k}$$

est vraie pour tout $k \ge 1$.

• $\underline{\mathcal{H}_1}$: Comme $f_0 = 1$, $f_1(x) = \frac{1}{2}(1 + \frac{x}{1})$, donc $\div \mathcal{H}_1$ est vraie.

• $\underline{\mathcal{H}_k \Longrightarrow \mathcal{H}_{k+1}}$: Supposons \mathcal{H}_k vraie. Comme $f_k(x) \geqslant \sqrt{x}$ (et $f_k > 0$), $\frac{\sqrt{x}}{f_k(x)} \leqslant 1$.

$$|f_{k+1}(x) - \sqrt{x}| = \frac{|f_k(x) - \sqrt{x}|}{2} \left| 1 - \frac{\sqrt{x}}{f_k(x)} \right|$$
 d'après 4
$$\leqslant \frac{1+x}{2^{k+1}} \left(1 - \frac{\sqrt{x}}{f_k(x)} \right)$$

$$\leqslant \frac{1+x}{2^{k+1}}$$
 car $1 - \frac{\sqrt{x}}{f_k(x)} \leqslant 1$

Donc \mathcal{H}_{k+1} est vraie.

• Conclusion: $\forall k \ge 1 \quad |f_k(x) - \sqrt{x}| \le \frac{1+x}{2^k}$

FIN DE L'ÉPREUVE