Épreuve de Mathématiques 3

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1 (Une valeur de $1 + 2 + \cdots + n + \dots$)

Soit f la fonction définie par $f(x) = \sum_{n=0}^{+\infty} e^{-nx}$, où $x \in \mathbb{R}$.

- 1) Déterminer l'ensemble de définition \mathcal{D}_f de f, puis calculer f(x) pour tout $x \in \mathcal{D}_f$.
- 2) Montrer que f est de classe \mathscr{C}^1 sur \mathscr{D}_f et calculer f'(x) pour tout $x \in \mathscr{D}_f$.
- 3) À l'aide de développements limités en 0, déterminer trois constantes réelles a, b et c telles qu'au voisinage de 0,

$$\frac{e^{-x}}{(1 - e^{-x})^2} = \frac{a}{x^2} + \frac{b}{x} + c + o(1)$$

4) En déduire $\lim_{x\to 0} \left(-\frac{1}{x^2} + \sum_{n=0}^{+\infty} ne^{-nx}\right)$.

Exercice 2 (Résolution d'une équation fonctionnelle)

Dans cet exercice, on souhaite déterminer les fonctions $f:[0,+\infty[\to\mathbb{R}$ vérifiant les relations :

$$\lim_{x \to +\infty} f(x) = 0 \quad \text{et} \quad \forall x \in]0, +\infty[, \quad f(x+1) + f(x) = \frac{1}{x^2}. \quad (P)$$

Partie I - Existence et unicité de la solution du problème (P)

Dans cette partie, on démontre que le problème (P) admet une unique solution et on détermine une expression de celle-ci sous la forme d'une série de fonctions.

DST 3

I.1 - Existence de la solution

Pour tout $k \in \mathbb{N}$, on définit la fonction $\varphi_k :]0, +\infty[\to \mathbb{R} \text{ par } :$

$$\forall x \in]0, +\infty[, \quad \varphi_k(x) = \frac{(-1)^k}{(x+k)^2}.$$

1) Montrer que la série de fonctions $\sum_{k\geq 0} \varphi_k$ converge simplement sur $]0,+\infty[$.

Dans tout les reste de cet exercice, on note $\varphi:]0, +\infty[\to \mathbb{R}$ la somme de la série $\sum_{k>0} \varphi_k$.

- 2) Montrer que pour tout $x \in]0, +\infty[$, on a $\varphi(x+1) + \varphi(x) = \frac{1}{x^2}$.
- 3) En utilisant le théorème spécial des séries alternées, montrer que :

$$\forall x \in]0, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leqslant \frac{1}{(x+n+1)^2}.$$

4) Montrer que la fonction φ est une solution de (P).

I.2 - Unicité de la solution

5) Montrer que si $f:[0,+\infty[\to\mathbb{R}$ est une solution de (P), alors pour tout $n\in\mathbb{N}$, on a :

$$\forall x \in]0, +\infty[, \quad f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

6) En déduire que la fonction φ est l'unique solution de (P).

Partie II - Etude de la solution du problème (P)

Dans cette partie, on étudie quelques propriétés de l'unique solution $\varphi:]0, +\infty[\to \mathbb{R}$ du problème (P).

- 7) Soit $\varepsilon > 0$. Montrer que la série de fonctions $\sum_{k \ge 0} \varphi_k$ converge uniformément sur $[\varepsilon, +\infty[$.
- 8) Montrer que la fonction φ est continue sur $]0,+\infty[$. En utilisant le fait que φ est une solution du problème (P), en déduire un équivalent simple de φ au voisinage de 0^+ .
- 9) Justifier que la fonction φ est dérivable sur $]0, +\infty[$ et que l'on a :

$$\forall x \in]0, +\infty[, \quad \varphi'(x) = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}$$

- **10)** En déduire que la fonction φ est décroissante sur $]0, +\infty[$.
- 11) En utilisant le résultat de la question précédente et la relation (P), montrer que :

$$\forall x \in]1, +\infty[, \quad \frac{1}{x^2} \leqslant 2\varphi(x) \leqslant \frac{1}{(x-1)^2}.$$

En déduire un équivalent de φ en $+\infty$.

Partie III - Expression intégrale de la solution du problème (P)

Dans cette partie, on déterminer une expression de φ sous la forme d'une intégrale. On considère un élément $x \in]0, +\infty[$.

12) Pour tout $k \in \mathbb{N}$, montrer que la fonction $t \mapsto t^{x+k-1} \ln(t)$ est intégrable sur [0,1] et que l'on a :

$$\int_0^1 t^{x+k-1} \ln(t) \, \mathrm{d}t = -\frac{1}{(x+k)^2}.$$

DST 3

13) En déduire que la fonction $t\mapsto \frac{t^{x-1}\ln(t)}{1+t}$ est intégrable sur]0,1] et que :

$$\varphi(x) = -\int_0^1 \frac{t^{x-1} \ln(t)}{1+t} dt.$$

Exercice 3 (Approximation d'une racine carrées par la méthode de Héron) Partie I - Approximation de la racine carrée d'un réel positif

On considère la suite de fonctions $(f_k)_{k\in\mathbb{N}}$ définie par :

$$f_0: \mathbb{R}_+ \to \mathbb{R}$$
 et $\forall x \in \mathbb{R}_+, f_0(x) = 1$

et la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \quad f_k : \mathbb{R}_+ \to \mathbb{R} \quad \text{et} \quad \forall x \in \mathbb{R}_+, \quad f_k(x) = \frac{1}{2} \left(f_{k-1}(x) + \frac{x}{f_{k-1}(x)} \right).$$

On admet que la suite $(f_k)_{k\in\mathbb{N}}$ est correctement définie par les relations ci-dessus. Dans la suite, on pourra utiliser sans la démontrer l'inégalité :

$$\forall k \in \mathbb{N}, \quad \forall x \in \mathbb{R}_+, \quad f_k(x) > 0.$$

- I.1 Convergence de la suite $(f_k)_{k\in\mathbb{N}}$
 - 1) Soit $x \in \mathbb{R}_+$. En calculant $(f_k(x))^2 x$, montrer que $f_k(x) \ge \sqrt{x}$ pour tout $k \in \mathbb{N}^*$.
 - 2) Soit $x \in \mathbb{R}_+$. Montrer que la suite $(f_k(x))_{k \in \mathbb{N}^*}$ est décroissante.
 - 3) Déduire des deux questions précédentes que la suite de fonctions $(f_k)_{k\in\mathbb{N}}$ converge simplement vers la fonction $f: \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = \sqrt{x}$ pour tout $x \in \mathbb{R}_+$.
- I.2 Majoration de l'erreur
 - 4) Soit $x \in \mathbb{R}_+$. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$f_{k+1}(x) - \sqrt{x} = \frac{f_k(x) - \sqrt{x}}{2} \left(1 - \frac{\sqrt{x}}{f_k(x)} \right).$$

5) Soit $x \in \mathbb{R}_+$. En déduire que pour tout $k \in \mathbb{N}^*$, on a :

$$|f_k(x) - \sqrt{x}| \leqslant \frac{1+x}{2^k}.$$

FIN DE L'ÉPREUVE