Épreuve de Mathématiques 2

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Exercice 1

Pour tout $t \in [0, +\infty[$ et tout $n \in \mathbb{N}^*$, on pose

$$f_n(t) = \left(1 + \frac{t^2}{n}\right)^{-n}$$

- 1) Déterminer la limite f de la suite (f_n) pour la convergence simple sur l'intervalle $[0, +\infty[$.
- 2) Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $t \in [0, +\infty[$,

$$\left(1 + \frac{t^2}{n}\right)^n \geqslant 1 + t^2$$

- **3)** Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n = \int_0^{+\infty} \left(1 + \frac{t^2}{n}\right)^{-n} dt$ converge.
- 4) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite que l'on exprimera à l'aide d'une intégrale.
- 5) Soit $n \in \mathbb{N}^*$. On rappelle que pour tout $x \in \mathbb{R} \setminus \pi \mathbb{Z}$, $\cot n(x) = \frac{1}{\tan x}$. En effectuant le changement de variable $t = \sqrt{n} \cot u$, montrer que $\int_0^{+\infty} \left(1 + \frac{t^2}{n}\right)^{-n} dt$ peut s'exprimer en fonction de $\int_0^{\pi/2} \sin^{2n-2} u \, du$.

DST 2

6) Admettons le résultat suivant sur les intégrales de Wallis : lorsque N tends vers $+\infty$,

$$\int_0^{\pi/2} \sin^N u \, \mathrm{d}u \sim \sqrt{\frac{\pi}{2N}}$$

En déduire la valeur des intégrales $I = \int_0^{+\infty} e^{-t^2} dt$, $J = \int_{-\infty}^{+\infty} e^{-t^2} dt$ et $K = \int_0^{+\infty} e^{-\frac{t^2}{2}} dt$.

Exercice 2

Préambule.

1) Étudier la convergence des intégrales :

$$\int_0^{+\infty} \frac{\mathrm{d}t}{t^4 + 1} \quad \text{et} \quad \int_0^{+\infty} \frac{t^2}{t^4 + 1} \, \mathrm{d}t$$

- 2) Énoncer le théorème de changement de variable pour les intégrales généralisées.
- 3) Comparer (sans les calculer):

$$\int_0^{+\infty} \frac{t^2}{t^4 + 1} dt \quad \text{et} \quad \int_0^{+\infty} \frac{dt}{t^4 + 1}$$

(On pourra utiliser le changement de variable $x = \frac{1}{t}$.)

Partie I.

1) Déterminer le domaine de définition D_h de la fonction h qui, à tout réel $t \in D_h$ associe

$$h(t) = \frac{2t - \sqrt{2}}{t^2 + 1 - \sqrt{2}t}.$$

- 2) Soit $X \geqslant 0$. Calculer $\int_0^X h(t) dt$ puis en déduire $\int_0^X h(-t) dt$.
- 3) Que vaut :

$$\lim_{X \to +\infty} \int_0^X (h(t) + h(-t)) dt?$$

4) Déterminer une primitive sur \mathbb{R} de la fonction φ qui, à $t \in \mathbb{R}$, associe

$$\varphi(t) = \frac{2}{2\left(t - \frac{1}{\sqrt{2}}\right)^2 + 1}.$$

5) On considère g définie sur D_g par

$$g(t) = \frac{\sqrt{2}}{t^2 + 1 - \sqrt{2}t}.$$

Montrer que $D_g = D_h$, puis déterminer une primitive G de g sur D_g .

6) Utiliser la primitive de g pour calculer, pour tout $X \ge 0$:

$$\int_0^X g(-t) \, \mathrm{d}t.$$

7) Déterminer :

$$\lim_{X \to +\infty} \int_0^X (g(t) + g(-t)) dt.$$

8) Calculer, pour tout $t \ge 0$:

$$h(t) + h(-t) + g(t) + g(-t)$$

9) a) Que vaut

$$\int_0^{+\infty} \frac{t^2}{t^4 + 1} \, \mathrm{d}t ?$$

b) En déduire, avec le Préambule, la valeur de

$$\int_0^{+\infty} \frac{\mathrm{d}t}{t^4 + 1}.$$

10) Calculer

$$\int_0^{1/\sqrt{2}} \frac{t^2}{t^4 + 1} \, \mathrm{d}t$$

en donnant la réponse en fonction de Arctan 2 et ln(5).

Partie II.

Pour X > 0, on pose :

$$I(X) = \int_{1}^{X} \cos(t^{2}) dt, \qquad J(X) = \int_{1}^{X} \sin(t^{2}) dt.$$

1) Montrer la convergence de

$$\int_0^{+\infty} e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}.$$

2) Étudier la convergence de

$$\int_{1}^{+\infty} \frac{\sin(t^2)}{t^2} dt, \qquad \int_{1}^{+\infty} \frac{\cos(t^2)}{t^2} dt.$$

3) Montrer par intégration par parties que $\lim_{X\to+\infty}I(X)$ et $\lim_{X\to+\infty}J(X)$ existent et sont finies.

4) Montrer la convergence de

$$\int_{1}^{+\infty} e^{it^2} \, \mathrm{d}t.$$

5) On définit:

$$f(x) = \int_0^{+\infty} \frac{e^{-(t^2+i)x^2}}{t^2+i} dt.$$

a) Déterminer le domaine de définition D_f de f: pour quels $x \in \mathbb{R}$ l'expression f(x) existe et appartient à \mathbb{C} . En particulier, l'intégrale doit converger.

b) Montrer que, pour x > 0:

$$\int_0^{+\infty} e^{-t^2 x^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2x}.$$

c) En déduire:

$$\lim_{x \to +\infty} f(x).$$

d) On admet que f est dérivable sur \mathbb{R}_+^* et que, pour tout x > 0, $f'(x) = -\sqrt{\pi}e^{-ix^2}$. En déduire, à l'aide de la Partie I, les valeurs de

$$\int_0^{+\infty} e^{-ix^2} dx, \qquad \int_0^{+\infty} \cos(x^2) dx \qquad \int_0^{+\infty} \sin(x^2) dx.$$

Dans ce problème, on calcule, à l'aide d'intégrales généralisées, la valeur de l'intégrale (complexe) $\int_0^{+\infty} e^{-ix^2} dx$, connue comme l'expression complexe des intégrales (réelles) de Fresnel, qui interviennent dans les phénomènes de diffraction. La somme pour toutes les valeurs de x peut s'interpréter intuitivement (et de façon très simplifiée) comme le fait qu'à chaque fois qu'une onde lumineuse se propage, une infinité de rayons sont à prendre en compte – et on somme les effets de cette infinité de rayons, en lien avec le principe de superposition de Huygens-Fresnel, en physique.

FIN DE L'ÉPREUVE