I) Préliminaires

Exercice 1 (Fonctions auxiliaires : distance)

Nous allons coder plusieurs fonctions qui serviront pour l'algorithme kNN, mais qui ne sont pas l'algorithme kNN.

- 1) Écrire une fonction d_carre (x, y) qui prend en arguments deux d-uplets x et y représentant des points de \mathbb{R}^d et retourne la distance entre x et y au carré.
 - On veut minorer la distance, pour ça il est inutile de calculer une racine carrée. Ici aussi, la norme euclidienne se manipule... au carré!
- 2) Écrire une fonction liste_dc (x, Ly) qui prends en arguments un d-uplet x, et une liste de d-uplets Ly. Elle retourne la liste des distances aux carrée : si on note L cette liste, L[i] contient $||x Ly[i]||_2^2$. Ly est une liste de points y de \mathbb{R}^d .

Exercice 2 (Fonctions auxiliaires : minima)

- 1) Écrire une fonction qui retourne l'indice du minimum dans une liste L.
- 2) On se donne une liste L et on considère la liste

```
M=[(i, L[i]) \setminus quad for i in range(len(L))].
```

Écrire une fonction tri_partiel (M, k) qui trie M définie précédemment, par ordre croissant sur la seconde composante, en s'arrêtant après avoir trié $k \in \mathbb{N}^*$ éléments : on se contente de placer correctement les k plus petits éléments de M (pour l'ordre sur la seconde composante).

La méthode de tri utilisé sera un tri par sélection. On pourra utiliser une version modifiée de la fonction codée à la question 1.

Si vous êtes bloqués à la dernière question, contournez la temporairement – pour la suite du TP – en utilisant l'instruction suivante pour trier M selon la seconde composante : sorted (M, key=lambda m : m[1]). Ce qui consiste à trier (sorted) en appliquant avant la fonction (lambda) « prendre l'élément d'indice 1 » à chaque élément de M.

Exercice 3 (Données d'apprentissage)

Nous allons importer les données \mathscr{E} d'apprentissage.

Dans cet exercice, ce sont des points choisis aléatoirement par python dans le carré $[-1,1]^2 \subset \mathbb{R}^2$. On étiquette en rouge (noté r=1) les points à l'intérieur du disque unité, et en bleu (noté r=0) ceux à l'extérieur.

- 1) À l'aide de l'instruction « from données_app_TP1 import * », importez les fonctions contenues dans données_app_TP1.py que vous avez reçues par mail. (Vous pouvez lire les fonctions pour comprendre ce qu'elles font).
- 2) Testez les deux fonctions :
 - Ly, labels = obtenir_disque()
 - affiche_donnees_disque(Ly, labels)

II) Algorithme kNN

Exercice 4 (Recherche des k plus proches voisins)

On utilisera les fonctions écrites dans les trois précédents exercices.

- 1) Écrire une fonction indice_voisins(x, Ly, k) qui prend en entrée un point x, une liste de points Ly et un entier k, et renvoie la liste des indices des k voisins de x dans Ly les plus proches. On s'aidera des fonctions liste_dc(x, Ly) et tri_partiel(M, k).
- 2) Écrire une fonction labels_voisins (Lindices, labels) qui retourne la valeur la plus fréquente dans la liste des labels[i] pour i parcourant Lindices.
 On pourra utiliser un dictionnaire.

Exercice 5 (Algorithme kNN)

Écrire une fonction kNN (x, Ly, labels, k) qui renvoie la valeur du label associée à x via l'algorithme des k-plus proches voisins.

Exercice 6 (Affichage du résultat)

En balayant [-1,1] à l'aide de np.linspace (-1,1,n), créer deux listes Ly_essai et labels_essai contenant respectivement des points de $[-1,1]^2$ et leur label déterminée par kNN.

Afficher le résultat (les arguments de affiche_donnees_disque doivent être des tableaux NumPy).

III) Amélioration : \mathscr{E}_A et \mathscr{E}_T , tests de différents k

Dans cette section, on cherche à tester notre algorithme sur une partie des données d'apprentissage \mathscr{E} . Il faut donc séparer ces données en deux ensemble \mathscr{E}_A , qui servira à l'apprentissage, et \mathscr{E}_T , qui servira aux tests.

Exercice 7 (Séparation des données)

Dans l'idéal, il faut faire la liste des points pour chaque label, et prendre la même proportion de points pour \mathcal{E}_T dans chaque label.

Nous allons faire plus simple.

- 1) À l'aide de np.random.shuffle, mélanger la liste list (range (len (Ly))), où Ly contient l'ensemble &. C'est une fonction en place.
- 2) Construire une fonction partage_donnees(Ly, labels, ratio) qui retourne un quadruplet (Ly_test, labels_test, Ly_app, labels_app), où une proportion ratio des données est dans (Ly_test, labels_test) et le reste dans (Ly_app, labels_app).

Exercice 8 (test)

Nous allons tester la qualité de l'algorithme : d'abord un pourcentage de données test bien étiquetées, puis la matrice de confusion.

- 1) Écrire une fonction prediction (Ly_app, labels_app, Ly_test, k), qui retourne une liste labels_kNN des labels calculées par kNN (x, Ly_app, labels_app, k).
- 2) Ecrire une fonction confusion (labels_test, labels_kNN) qui calcule la matrice de confusion.
- 3) Écrire une fonction pourcentage_reussite(labels_test, labels_kNN) qui prend en entrée les labels connues labels_test, ainsi que les labels labels_kNN prédies par l'algorithme kNN, et qui renvoie le pourcentage de bons labels.
- 4) Modifier la fonction obtenir_disque du fichier donnees_app_TP1.py:
 labels = [int(np.linalg.norm(x) <= 1) * (np.random.random_sample() *10 > 1) for
 x in Ly]

Cette instruction va rajouter du « bruit », des points bleus dans le disque rouge avec une probabilité de 1/10. En détail : np.random.random_sample () retourne un nombre au hasard entre 0 et 1, selon une loi uniforme. Donc (np.random.random_sample () *10 > 1) vaut 0 avec probabilité de 1/10, et vaut 1 sinon.

Faire un graphique qui affiche le pourcentage de bons labels pour les données test en fonction de la valeur k pour l'algorithme kNN.