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Abstract Under triaxial deviatoric loading at stresses below failure, rocks generally exhibit
nonlinearity and hysteresis in the stress-strain curve. In 1965, Walsh first explained this behavior in terms
of frictional sliding along the faces of closed microcracks. The hypothesis is that crack sliding is the
dominant mode of rock inelasticity at moderate compressive stresses for certain rock types. Here we extend
the model of David et al. (2012, https://doi.org/10.1016/j.ijrmms.2012.02.001) to include (i) the effect of
the confining stress; (ii) multiple load-unload cycles; (iii) calculation of the dissipated strain energy upon
unload-reload; (iv) either frictional or cohesive behavior; and (v) either aligned or randomly oriented
cracks. Closed-form expressions are obtained for the effective Young's modulus during loading, unloading,
and reloading, as functions of the mineral's Young's modulus, the crack density, the crack friction
coefficient and cohesion for the frictional and cohesive sliding models, respectively, and the crack
orientation in the case of aligned cracks. The dissipated energy per cycle is quadratic and linear in stress
for the frictional and cohesive models, respectively. Both models provide a good fit to a cyclic loading data
set on polycrystalline antigorite, based on a compilation of literature and newly acquired data, at various
pressures and temperatures. At high pressure, with increasing temperature, the model results reveal a
decrease in friction coefficient and a transition from a frictionally to a cohesively controlled behavior. New
measurements of fracture toughness and tensile strength provide quantitative support that inelastic
behavior in antigorite is predominantly caused by shear crack sliding and propagation without dilatancy.

1. Introduction
It is well known that the mechanical behavior of polycrystalline brittle rocks under confined compressive
loading is to a great extent controlled by the presence of crack-like flaws or voids located within grains and
along grain boundaries. This applies to both processes of elastic and inelastic deformation, as well as rock
failure (Paterson & Wong, 2005). These features are also observed in other brittle materials such as ceramic
composites (Marshall & Oliver, 1987) or concrete (Shah et al., 1995).

We examine here the hypothesis that, under deviatoric loading, inelastic deformation is predominantly
accommodated by shear-induced sliding of preexisting microcracks, without in- or out-of-plane crack
growth. This hypothesis seems valid for stress conditions and rock types as follows: (a) The confining pres-
sure should be sufficiently high so that most preexisting microcracks are closed (typically a few hundred
of MPa in rocks) with their surfaces in contact. (b) The compressive loading stress should be below that
required for the onset of crack propagation. (c) Rock types are low-porosity rocks that contain microcracks
or, more generally, “planar” surfaces amenable for sliding under shear. (d) Crack propagation and notably
the possible onset of dilatancy seem to occur at stresses substantially greater than the yield point.

The recent cyclic loading experiments of David et al. (2018) on axially loaded polycrystalline antigorite pro-
vide motivation for this hypothesis. To about 90% of the failure stress, the load-unload stress-strain curve
(e.g., Figure 4e of that publication) can be divided into four regimes and interpreted as follows. Initially,
during loading at low stress, the behavior is linear elastic with a Young's modulus equal to the “intrinsic”
modulus, that is, that of the uncracked solid. At higher stress, the behavior deviates from linear elasticity and
becomes nonlinear, with a Young's modulus that is stress dependent and reduced compared to that of the
uncracked solid, owing to sliding on the crack interfaces (without crack growth). At the beginning of unload-
ing, the behavior is linear with a Young's modulus again equal to the intrinsic modulus, which reflects a
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transient delay in crack “reverse” or “back” sliding, producing hysteresis in the stress-strain curve. At lower
stresses during unloading, the onset of reverse sliding on cracks is associated with nonlinear behavior, with
a tangent modulus that is again stress dependent and lower than the intrinsic modulus. The initial delay
in activating reverse sliding on the cracks causes the tangent modulus to be even lower than during for-
ward sliding. However, the strain does not return to the origin when stress is removed, and a non-negligible
amount of “permanent” strain is created. The measurements of volumetric strain and seismic velocities by
David et al. (2018), combined with microstructural observations, reveal that such behavior is observed with-
out detectable dilatancy or crack growth. In addition, such observations are made at the highest available
confining pressure (150 MPa) which appears to be sufficient to close most microcracks (David et al., 2018).
To a broader scope, the hypothesis of “Mode II,” nondilatant shear crack sliding seems relevant to the inelas-
tic behavior of phyllosilicates generally, such as lizardite (Escartín et al., 1997) or talc (Escartín et al., 2008).
The transition from “Mode I” to “Mode II” microcracking at increasing pressure is also considered as an
important mechanism involved in the brittle-plastic transition, for example, as observed in quartz (Hirth &
Tullis, 1994).

The first analytical model quantitatively accounting for the effect of frictional sliding on closed microcracks
in rocks was proposed by McClintock and Walsh (1962) to modify Griffith's theory for rock failure, followed
by a fundamental paper by Walsh (1965) who considered both crack closure and frictional sliding on closed
cracks, and calculated the stress-dependent Young's modulus and stress-strain curve during unaxial loading
for a rock containing randomly oriented cracks. Useful analysis of backsliding on cracks during unloading
was also given in that paper. Kachanov (1982a) proposed a rigorous three-dimensional analysis on a rock
containing closed microcracks and extended Walsh's model to triaxial state of stress. However, no quantita-
tive analysis of the rock behavior during unloading was given. Horii and Nemat-Nasser (1983) considered
both crack closure and crack frictional sliding under triaxial stress, this time accounting for crack inter-
actions by using the self-consistent theory, but again did not consider the unloading process. Lehner and
Kachanov (1995) extended Kachanov's analysis to the unloading and reloading process, but their model was
not tested against experimental data. A complete analysis of unloading and reloading of a material contain-
ing closed microcracks was given by Lawn and Marshall (1998). They added a cohesive term to the frictional
constitutive law for crack sliding. However, their solutions were only given for uniaxial compression, and
no experimental data were analyzed. David et al. (2012) extended Walsh's model to an entire load-unload
cycle during uniaxial compression by accounting for both crack closure and frictional sliding and fitted the
model to stress-strain data on sandstone and granite. Bruno and Kachanov (2013) incorporated the effect
of the nonclosable pores in addition to crack closure and frictional sliding during a uniaxial load-unload
cycle. Their model, which uses approximate schemes to account for crack and pore interactions, was applied
to stress-strain as well as microstructural data on ceramic. In parallel, a large number of micromechanical
crack-based models for the inelasticity of brittle materials have coupled the “sliding crack mechanism” with
either the dilatancy associated with the growth of Mode I tension cracks or kinks at the crack tips (Ashby
& Sammis, 1990; Basista & Gross, 1998; Kachanov, 1982b; Lehner & Kachanov, 1996; Moss & Gupta, 1982;
Nemat-Nasser & Horii, 1982; Nemat-Nasser & Obata, 1988; Stevens & Holcomb, 1980) or self-similar crack
growth (Fanella & Krajcinovic, 1988; Gambarotta & Lagomarsino, 1993), some of which were successfully
fit to experimental data. While the main emphasis of these models was on stress-induced crack growth, it is
difficult to extract closed-form expressions for the simplified case of sliding without crack propagation from
these publications. In addition, the case of the reloading of sliding cracks was not considered.

Hence, here we propose an analytical model for rock inelasticity under deviatoric loading, based purely on
sliding of preexisting microcracks whose surfaces are initially in contact, and without crack propagation. The
model is a direct extension of the model of David et al. (2012) to account for the effect of a constant lateral or
“confining” stress. For generality and concision of analysis, we use a constitutive law for crack sliding that
combines both a cohesive and a frictional “Coulomb-type” resistance to sliding. Following Lawn and Mar-
shall (1998), incorporation of the effect of a confining stress is indeed identical to adding a cohesive term in
the mechanics of the problem; the analytical results for the sliding crack model under triaxial stress can thus
be derived from Lawn and Marshall (1998) using the superposition principle, as we shall see below. Two sep-
arate cases are considered: aligned or randomly oriented cracks. The emphasis of the model results and their
application to fitting experimental data are then kept separate for two “end-member” models, purely fric-
tional and purely cohesive sliding, for reasons related to simplicity of physical interpretation. For example,
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Figure 1. An isolated preexisting crack at an angle 𝜙 to 𝜎1.

(i) in contrast to the case of uniaxial compression, if a confining stress
is applied, there is no need to include a cohesion term in the consti-
tutive law for crack sliding in order to predict yield-type behavior; (ii)
we wish to minimize the number of parameters used to fit the experi-
mental data; and (iii) “friction” and “cohesion” have different physical
origins, and a cohesion-only model may be used to simulate intracrys-
talline slip, whereas friction (i.e., normal stress-dependent slip) should
require a minimum degree of crack roughness and the presence of inter-
face asperities at the microscale or nanoscale (Bowden & Tabor, 2001).
In addition to giving closed-form expressions for the loading, unload-
ing, and reloading portions of the stress-strain curve, we calculate the
dissipated strain energy between unloading and subsequent reloading,
for the purely frictional and purely cohesive sliding cases. To render the
problem amenable to analytical treatment, we assume that the rock is
initially isotropic and that crack interactions can be neglected. The lat-
ter assumption underestimates the effect of cracks on rock inelasticity
(Horii & Nemat-Nasser, 1983) but seems quantitatively valid up to moder-
ate cracks concentrations (e.g., Kachanov, 1982a). The model is then fit to
cyclic loading stress-strain data on polycrystalline antigorite from David
et al. (2018) at 150 MPa confining pressure and room temperature, and
from newly conducted experiments at 1 GPa at room temperature, 400◦C
and 500◦C in a Griggs apparatus.

2. Effect of a Single Crack During Cyclic Loading: Crack Displacement-Stress
Relations
Consider a rock specimen of cross-sectional area A, containing a single crack of length 2c, that is closed so
that the two opposite faces are in contact and can slide past each other (Figure 1; see nomenclature given
in Table 1). The crack is subjected to a vertical stress 𝜎1 and a lateral stress 𝜎2. The convention used is
that compressive stresses are positive. The “confining” or minimum stress 𝜎2 is held constant, while under
deviatoric loading the maximum compressive stress 𝜎1 ≥ 𝜎2. The normal to the crack plane makes an angle𝜙
to 𝜎1. The resolved normal and shear stresses on the crack are then related to the stresses as 𝜎n = 𝜎1 cos2 𝜙+
𝜎2 sin2

𝜙 and 𝜏 = (𝜎1 − 𝜎2) cos𝜙 sin𝜙, respectively.

In this section we determine the average displacement on the crack, bk, to the applied state of stress, for
the cases k = L (loading), k = U (unloading), and k = RL (reloading). A fundamental relation is that the
sliding displacement increases linearly with a driving “effective sliding stress,” 𝜏k

eff (where k = L;U;RL) as
(Stevenson, 1945)

bk = 𝜋c
E0

𝜏k
eff, (1)

where E0 is the Young's modulus of the uncracked rock, and where the effective sliding stress 𝜏k
eff is defined

as the difference between an applied shear stress driving sliding and a shear stress resisting sliding. 𝜏k
eff

must be positive for a crack to slide. Its expression depends on the crack orientation, the acting stresses, and
the constitutive parameters for sliding, but also on the loading history (loading, unloading, reloading) as
detailed below. Note that Equation 1 is written under the assumption of plane stress which is the one used
here. Results can be transformed into one appropriate for plane strain by replacing E0 by E0∕(1− 𝜈2

0 ), where
𝜈0 is the Poisson's ratio of the uncracked rock. In any event, the term (1 − 𝜈2

0 ) is very close to unity.

2.1. Loading

Consider the model of a sliding crack endowed with both cohesive and frictional “Coulomb-type” resistance.
Sliding is resisted by a frictional shear stress, 𝜏 f, expressed as (Nemat-Nasser & Obata, 1988)

𝜏f = 𝜏y + 𝜇𝜎n = 𝜏y + 𝜇(𝜎1 cos2 𝜙 + 𝜎2 sin2
𝜙), (2)

where 𝜏y is a constant “cohesive” yield stress and 𝜇 denotes the friction coefficient. A simple substitution
is needed to make the analysis of Lawn and Marshall (1998) applicable for deviatoric loading with vertical
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Table 1
Nomenclature

A Cross-sectional area of rock specimen
c Crack half-length (radius)
𝜎1 Stress in Direction 1
𝜎2 Stress in Direction 2
𝜙 Angle between crack normal and 𝜎1

𝜎n Resolved normal stress on crack
𝜏 Resolved shear stress on crack
b Average displacement on crack
𝜏eff Effective sliding stress on crack
E0 Young's modulus of the uncracked solid
𝜈0 Poisson's ratio of the uncracked solid
𝜏f Frictional resistive shear stress
𝜏y Cohesion stress

𝜇 Friction coefficient
𝜎y Yield stress

E Effective Young's modulus
𝜖i

1 Inelastic strain in Direction 1

𝜖1 Total strain in Direction 1
W Dissipated strain energy per unit volume upon unload-reload
ML “Loading coefficient” in expression (38)
MU “Unloading coefficient” in expression (38)
KIc Mode I fracture toughness
𝜎t Tensile strength
C Geometrical factor in Griffith criterion
k Superscript: denotes value of a variable during loading (k = L),

unloading (k = U), or reloading (k = RL)
⋆ Superscript: denotes value of variable taken at the maximum

stress during a load-unload sequence

stress 𝜎1 and lateral stress 𝜎2. If we write the stress state as a hydrostatic stress, 𝜎2, plus a uniaxial stress,
𝜎1 − 𝜎2, the frictional resistance in Equation 2 becomes

𝜏f = (𝜏y + 𝜇𝜎2) + 𝜇(𝜎1 − 𝜎2) cos2 𝜙. (3)

This equation is in the form of a constant (𝜏y +𝜇𝜎2) plus Coulomb friction and is thus identical to the
constitutive law in Lawn and Marshall (1998) for uniaxial loading (𝜏f = 𝜏c+𝜇𝜎 sin2

𝛽, where 𝜎 is the uniaxial
stress), with their cohesive stress 𝜏c replaced by 𝜏y +𝜇𝜎2 and a different angle definition, 𝛽 = 𝜋∕2 − 𝜙.
Therefore, with the substitutions 𝜏c → 𝜏y +𝜇𝜎2 and 𝜎→ 𝜎1 − 𝜎2, the analysis of Lawn and Marshall (1998)
can be directly applied to deviatoric loading.

The effective sliding stress on crack during loading (L), 𝜏L
eff, is the difference between the resolved shear

stress and the frictional resistive shear stress:

𝜏L
eff = 𝜏 − 𝜏f

= (𝜎1 − 𝜎2) cos𝜙 sin𝜙 − 𝜏y − 𝜇(𝜎1 cos2 𝜙 + 𝜎2 sin2
𝜙).

(4)

The condition for crack sliding is that 𝜏L
eff > 0. This occurs when 𝜎1 > 𝜎L

y , where the “crack yield stress
during loading,” 𝜎L

y , is found by solving for the stress at which 𝜏L
eff = 0 and expressed as

𝜎L
y =

𝜏y + 𝜎2(cos𝜙 sin𝜙 + 𝜇 sin2
𝜙)

cos𝜙 sin𝜙 − 𝜇 cos2 𝜙
. (5)
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We note that the model does not necessarily require a cohesion term in the constitutive law to predict
yield-type behavior; here such behavior already arises simply from the application of a confining stress.

Once sliding is activated, by differentiating the crack displacement-stress Equation 1 and the expression (4)
for the effective stress during loading, an increment of crack sliding displacement dbL is related to a stress
increment d𝜎1 as

dbL = 𝜋c
E0

(cos𝜙 sin𝜙 − 𝜇 cos2 𝜙)d𝜎1, (6)

hence, the crack displacement during loading is given by

bL = 0 if 𝜎1 < 𝜎L
y ,

bL = 𝜋c
E0

(cos𝜙 sin𝜙 − 𝜇 cos2 𝜙)(𝜎1 − 𝜎L
y ) if 𝜎1 ≥ 𝜎L

y .
(7)

2.2. Unloading

Now consider that the rock has been loaded to a maximum stress 𝜎⋆
1 (where the superscript ⋆ generally

denotes the value of a variable taken at the maximum stress) and that a sliding displacement has been accu-
mulated on the crack. During unloading, the restoring force for backsliding is the elastic strain accumulated
at the crack tips during loading. The effective stress driving backsliding is the difference between the effec-
tive stress at the maximum stress, 𝜏⋆eff = 𝜏L

eff(𝜎1 = 𝜎⋆
1 ), which provides the restoring force, and the joint action

of the frictional resisting stress and the resolved applied shear stress, which both act against backsliding
(Nemat-Nasser & Obata, 1988). Using Equation 4 and previous definitions, it is found that

𝜏U
eff = 𝜏⋆eff − (𝜏 + 𝜏f ) = 𝜏⋆ − 𝜏⋆f − 𝜏 − 𝜏f ,

= (𝜎⋆

1 − 𝜎1) cos𝜙 sin𝜙 − 2𝜏y − 𝜇
[
(𝜎⋆

1 + 𝜎1) cos2 𝜙 + 2𝜎2 sin2
𝜙
]
.

(8)

The condition for backsliding is 𝜏U
eff > 0. At the onset of unloading (𝜎1 = 𝜎⋆

1 ), when the direction of loading is
reversed, using the definition of 𝜏U

eff above we obtain that 𝜏U
eff = −2𝜏⋆f < 0. Hence, regardless of its orientation,

a crack that has been sliding remains “stuck” at the beginning of unloading. The load must decrease by
a finite amount before backsliding is activated. Backsliding occurs when 𝜎1 < 𝜎U

y , where the “crack yield
stress during unloading” 𝜎U

y is found by solving for the stress at which 𝜏U
eff = 0 and is given by

𝜎U
y =

𝜎⋆
1 (cos𝜙 sin𝜙 − 𝜇 cos2 𝜙) − 2(𝜏y + 𝜇𝜎2 sin2

𝜙)
cos𝜙 sin𝜙 + 𝜇 cos2 𝜙

. (9)

Similarly to the loading case, by differentiating Equations 1 and 8, and under the algebraic convention that a
positive displacement increment means forward sliding, once backsliding is activated an increment of crack
backsliding displacement dbU is related to a stress increment as

dbU = 𝜋c
E0

(cos𝜙 sin𝜙 + 𝜇 cos2 𝜙)d𝜎1. (10)

If b⋆ denotes the maximum displacement on crack at the end of loading (i.e., from Equation 7, b⋆ =
(𝜋c∕E0)(cos𝜙 sin𝜙 − 𝜇 cos2 𝜙)(𝜎⋆

1 − 𝜎L
y )), the crack displacement during unloading is then given by

bU = b⋆ if 𝜎1 > 𝜎U
y ,

bU = b⋆ + 𝜋c
E0

(cos𝜙 sin𝜙 + 𝜇 cos2 𝜙)(𝜎1 − 𝜎U
y ) if 𝜎1 ≤ 𝜎U

y .
(11)

After some algebra, by evaluating bU at 𝜎1 = 𝜎2 in Equation 11 and by using Equations 5 and 9, we find
that the residual displacement on the crack at the end of unloading is equal to (𝜋c/E0)(𝜏y +𝜇𝜎2). Hence,
the residual displacement on a crack at the end of a load-unload cycle is not only independent of the crack
orientation but also on the magnitude of the applied stress, a remarkable result that was not a priori intuitive.
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2.3. Reloading

Assume now that the rock has been loaded to a maximum stress 𝜎⋆
1 and unloaded completely so that 𝜎1 = 𝜎2.

In this section we demonstrate that the behavior of the crack during a subsequent reloading depends on its
accumulated history during the load-unload cycle, and how. The residual shear stress and displacement on
the crack at the end of the load-unload cycle must therefore be calculated. This allows to obtain the effective
sliding stress on the crack during reloading, 𝜏RL

eff , the yield stress during reloading, 𝜎RL
y , and the cracked

displacement during reloading, bRL. Based on previous analysis, at the end of unloading the crack can be in
three possible configurations:

(i) No sliding during the previous load-unload cycle. This occurs if 𝜎⋆
1 < 𝜎L

y . The shear stresses are all
relaxed on the crack face, so in this case 𝜏RL

eff = 𝜏L
eff, and 𝜎RL

y = 𝜎L
y . The crack displacement-stress

relation during reloading is given by Equation 7.
(ii) Forward sliding only during the previous load-unload cycle. The joint condition for this to occur is that

𝜎⋆
1 > 𝜎L

y (sliding) and 𝜎U
y < 𝜎2 (no backsliding). The shear stress accumulated on the crack at the end

of loading, 𝜏⋆eff, is not relaxed by any backsliding during unloading and therefore must be overcome
during reloading for the crack to slide again the forward direction. The effective shear stress driving
sliding during reloading, in this situation, is thus expressed as

𝜏RL
eff = 𝜏L

eff − 𝜏⋆eff = 𝜏 − 𝜏f − 𝜏⋆ + 𝜏⋆f ,

= (𝜎1 − 𝜎⋆

1 )(cos𝜙 sin𝜙 − 𝜇 cos2 𝜙).
(12)

Therefore, the crack yield stress during reloading, found by solving for the stress at which 𝜏RL
eff = 0, is

simply 𝜎RL
y = 𝜎⋆

1 . Hence, regardless of the crack orientation, a crack that had been sliding, but not did
not experience backsliding during a load-unload cycle remains “stuck” until the stress during reloading
exceeds the maximum stress during the previous cycle. By differentiating Equations 1 and 12, we find
that once sliding resumes an increment of crack sliding displacement during reloading, dbRL, is related
to a stress increment as in Equation 6 for loading. Hence, according to previous analysis, the crack
displacement during reloading is simply equal to b⋆ when is 𝜎1 < 𝜎⋆

1 and described by Equation 7
when 𝜎1 ≥ 𝜎⋆

1 .
(iii) Backsliding during the previous load-unload cycle. The sufficient condition for this to occur is that

𝜎U
y > 𝜎2. In this case the residual shear stress on the crack at the end of unloading is equal to the

difference between the shear stress accumulated during loading (i.e., 𝜏⋆eff) and the amount of shear
stress relaxed by backsliding at the end of unloading (i.e., 𝜏U

eff(𝜎1 = 𝜎2)). Using Equations 4 and 8,
respectively, such a difference is equal to 𝜏y +𝜇𝜎2. As previously found for the residual displacement,
the residual (or unrelaxed) shear stress on crack at the end of a load-unload cycle is independent of
its orientation, but also on the maximum applied stress. Since this residual stress must be overcome
during reloading for the crack to slide again in the forward direction, the effective shear stress driving
sliding during reloading will be given by

𝜏RL
eff = 𝜏L

eff − (𝜏y + 𝜇𝜎2) = 𝜏 − 𝜏f − 𝜏y − 𝜇𝜎2,

= (𝜎1 − 𝜎2) cos𝜙 sin𝜙 − 2𝜏y − 𝜇[(𝜎1 − 𝜎2) cos2 𝜙 + 2𝜎2].
(13)

The crack yield stress during reloading, found by solving for the stress at which 𝜏RL
eff = 0, is

𝜎RL
y =

2𝜏y + 𝜎2[cos𝜙 sin𝜙 + 𝜇(1 + sin2
𝜙)]

cos𝜙 sin𝜙 − 𝜇 cos2 𝜙
. (14)

It is worth comparing the crack yield stress during reloading to that during loading, but also to the maximum
stress during the previous load-unload cycle. First, the yield stress on crack during reloading (14) is higher
than that for loading (5), as could be expected. Additional comparison of the analytical expressions for the
yield stress during unloading (9) and that for reloading (14) reveals, after some algebra, that the condition
for backsliding (𝜎U

y > 𝜎2) is entirely equivalent to

𝜎RL
y < 𝜎⋆

1 . (15)

Hence, it is always the case that 𝜎L
y < 𝜎RL

y < 𝜎⋆
1 . Note that the condition for the occurrence of backsliding

conveniently written as (15) is used thereafter. A crack having undergone backsliding during a load-unload
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Figure 2. Crack displacement-stress diagrams for a body in compression containing a single closed shear crack, for the purely frictional (a–c) and
purely cohesive sliding (d–f) cases. Solid lines: loading segments; dashed lines: unloading segments. Squares: yield points. In (c) and (f), the displacement-stress
diagram is that of a body subjected to six successive load-unload cycles (OABC and CBBC to 𝜎⋆1 = 4𝜎2, CBDEF and FGDEF to 𝜎⋆1 = 7𝜎2, and FGHIF and
FGHIF to 𝜎⋆1 = 10𝜎2).

cycle will remain “stuck” during reloading until 𝜎1 = 𝜎RL
y , but, contrary to the previous case (ii), sliding

will resume on the crack at a stress below the maximum stress of the previous load-unload cycle. Finally,
by differentiating Equations 1 and 13, we find that once sliding resumes an increment of crack sliding dis-
placement during reloading is related to a stress increment as in Equation 6 for loading. Hence, according
to previous analysis, the crack displacement during reloading is simply equal to (𝜋c/E0)(𝜏y +𝜇𝜎2) when
𝜎1 < 𝜎RL

y and described by Equation 7 when 𝜎1 ≥ 𝜎RL
y .

2.4. Representative Crack Displacement-Stress Diagrams for the Purely Frictional and Cohesive
Sliding Models

The analytical results have been given above for a combined analysis of a crack endowed with both cohesive
and frictional “Coulomb-type” resistance. Results for the purely frictional and the purely cohesive cases can
be simply obtained by setting 𝜏y = 0 and 𝜇 = 0, respectively, in the equations above. Figure 2 shows repre-
sentative crack displacement versus stress diagrams for the purely frictional (a–c) and purely cohesive (d–f)
sliding models. The applied stress 𝜎1 is normalized to the confining stress 𝜎2. With this definition of normal-
ized stress and the form taken by the crack displacement-stress relations (e.g., (7)), the crack displacement
is normalized to 𝜋c𝜎2/E0.

In the purely frictional case (𝜏y = 0), Figure 2a shows the dependence of the crack displacement-stress
response for three crack orientations (𝜙= 38◦, 50◦, and 60◦) and one fixed value of the friction coefficient
(𝜇 = 0.6) for a body subjected to one load-unload cycle to 𝜎⋆

1 = 10𝜎2. During both loading and unloading,
the yield stress and also the crack displacement-stress rate are orientation dependent. In the case of a crack
inclined at 𝜙 = 38◦, no backsliding occurs. For the other two cases (𝜙 = 50◦ and 𝜙 = 60◦) the crack
displacement-stress rate during unloading is greater than for loading; however, the residual displacement
left at the end of unloading is independent of the crack orientation. Figure 2b shows the equivalent plot
for three values of the friction coefficient (𝜇 = 0.3, 0.6, and 0.9) and one fixed crack orientation (𝜙 = 60◦),
during one load-unload cycle to 𝜎⋆

1 = 10𝜎2. A lower value of 𝜇 facilitates sliding in that sliding occurs at a
lower stress and at a greater rate. When 𝜇 = 0.9, no backsliding occurs. For the two other cases (𝜇 = 0.6
and 𝜇 = 0.3), the residual displacement increases with 𝜇. Figure 2c shows the crack displacement-stress
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response for a body subjected to six successive load-unload cycles, for a given crack orientation (𝜙 = 60◦)
and friction coefficient (𝜇 = 0.6): two cycles to a maximum stress 𝜎⋆

1 = 4𝜎2, followed by two cycles to
𝜎⋆

1 = 7𝜎2, and by two cycles at 𝜎⋆
1 = 10𝜎2. This illustrates the influence of increasing the loading stress and

also the effect of a repeated load-unload cycle to the same stress. During the first cycle to 𝜎⋆
1 = 4𝜎2 (OABC),

sliding occurs from the yield point (A) to the maximum loading stress (B); there is no backsliding during
unloading (BC), and a residual displacement is left (at C). At the beginning of the second cycle to 𝜎⋆

1 = 4𝜎2
(CBBC), the reloaded crack is in the configuration (ii) described in section 2.3. Reactivation of sliding would
thus require increasing the stress above the maximum stress of the previous cycle; hence, the crack remains
“stuck” during both reloading (CB) and unloading (BC). The following cycle (CBDEF) is performed to a
greater maximum stress than previously (𝜎⋆

1 = 7𝜎2). During reloading (CBD), sliding accordingly resumes at
yield point B until the maximum loading stress is reached (D). During unloading (DEF), the crack is initially
“stuck” (DE), after which backsliding occurs at the unloading yield point E. The residual displacement left
(at F) is greater than during the previous cycle (at C). At the beginning of the second cycle to 𝜎⋆

1 = 7𝜎2
(FGDEF), the reloaded crack is this time in the configuration (iii) described in section 2.3. During reloading
(FGD), reactivation of sliding occurs at the “reloading yield point” G, which is above that for initial sliding
(A) but below the maximum stress of the previous cycle (D), after which the behavior is identical to that of
previous cycle along the GDEF segment. The following cycle (FGHIF) is performed to a greater maximum
stress than previously (𝜎⋆

1 = 10𝜎2). As the reloaded crack is initially in the configuration (iii), sliding resumes
again at yield point G until the maximum loading stress is reached (H). During unloading (HIF), the crack
is initially “stuck” (HI), after which backsliding occurs at the unloading yield point (I), which is above that
of the previous cycle to a lower stress (E). However, the end of the unloading segment (EF) and hence the
residual displacement is the same that during previous cycle. During the second cycle to 𝜎⋆

1 = 10𝜎2 (FGHIF),
the behavior is entirely identical to the previous cycle.

The choice of the representative values of the parameters in the purely cohesive case (𝜇 = 0; Figures 2d–2f)
is made to highlight the strong similarities of the crack behavior with that described in detail above for the
frictional case. The main difference between the two models is that the slope of the crack displacement-stress
for the cohesive sliding model is the same during loading and unloading and only depends on the crack
orientation (Figures 2d and 2e). This is expected as once the cohesive yield stress 𝜏y is overcome by the
shear stress acting on the crack face, in the constitutive law for sliding there is no reason for the crack
displacement-stress path to depend on 𝜏y.

Overall, under triaxial loading, both purely frictional and cohesive sliding models predict yield-type behav-
ior. Another main feature of the behavior is that, although the crack displacement upon reloading depends
on the previous load-unload history, as soon as the stress reaches the maximum stress of the previous cycle
(𝜎⋆

1 ), the structure of the rock is entirely “reset.” Hence, the rock behavior is reversible upon reloading; that
is, the crack displacement at 𝜎⋆

1 during reloading will be exactly the same as the one at 𝜎⋆
1 during a previous

cycle. Finally, once backsliding is activated, the residual displacement on a sliding crack does not depend
on its orientation, nor the magnitude of the maximum stress during a load-unload cycle.

3. Cyclic Loading of a Rock Containing Multiple Cracks: Effective Young's
Modulus and Stress-Strain Curves
3.1. Body With Aligned Cracks
3.1.1. Loading
Consider first a single crack oriented at an angle 𝜙 to 𝜎1 that is sliding under stress during loading (i.e.,
𝜎1 > 𝜎L

y ). In a representative area A, an increment of sliding displacement dbL on the crack produces an
increment of “inelastic” strain d𝜖i

1 in the direction of 𝜎1 as given by (Nemat-Nasser & Obata, 1988)

d𝜖i
1 = c

A
sin(2𝜙)dbL. (16)

Note that the lateral strain (in the direction of 𝜎2) can be simply calculated by replacing the term sin(2𝜙)
by − cos(2𝜙) in this equation. Inserting the incremental crack displacement-stress relation (6) in previous
equation,

d𝜖i
1 = 𝜋c2

AE0

(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙)d𝜎1. (17)
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Now that the inelastic strain increment has been explicitly related to the applied stress, the total strain
increment in the rock, d𝜖1, is the sum of the elastic strain and the inelastic strain increments:

d𝜖1 =
d𝜎1

E0
+ d𝜖i

1. (18)

If we denote by EL the effective Young's modulus of the rock during loading, since by definition d𝜖1 = d𝜎1/EL,
inserting Equation 17 in Equation 18 we obtain, by eliminating d𝜎1,

E0

EL = 1 + 𝜋c2

A
(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙). (19)

Now imagine that the rock contains an array of N cracks per representative area A, having the same length
2c and all oriented at the same angle 𝜙 to 𝜎1. If we invoke the “no-interaction” approximation, the excess
strain due to each sliding crack is computed as if it were an isolated crack; therefore, the crack contributions
are purely additive. The 𝜋c2/A term on the right-hand side of the previous equation then becomes N𝜋c2/A,
and the effective Young's modulus during loading will be

EL = E0 if 𝜎1 < 𝜎L
y ,

E0

EL = 1 + 𝜋Γ
(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙) if 𝜎1 ≥ 𝜎L

y ,
(20)

where 𝜎L
y is given by Equation 5 and Γ = Nc2∕A is the two-dimensional crack density. Crack sliding causes

a modulus deficit relative to the uncracked solid which is easily estimated from Equation 20. In the purely
frictional case (𝜏y = 0), typically, for a friction coefficient 𝜇 = 0.5 and a crack oriented at 45◦ to 𝜎1,
E0/EL ≈ 1+ 0.8Γ. Taking a crack density Γ = 0.5, EL ≈ 0.7E0; that is, the frictional sliding on the array of
cracks causes a 30% modulus deficit relative to the uncracked solid. In the purely cohesive case (𝜇 = 0),
Equation 20 becomes E0∕EL = 1 + 𝜋Γsin2(𝜙)∕2. As could follow from the crack displacement-stress anal-
ysis, EL is independent of the cohesion term. The dependence on 𝜏y only comes in the expression for the
yield stress 𝜎L

y . Typically, for a crack oriented at 45◦ to 𝜎1, E0/EL ≈ 1+ 1.6Γ. Taking a crack density Γ = 0.5,
EL ≈ 0.55E0; that is, the cohesive sliding on the array of cracks causes a 55% modulus deficit relative to the
uncracked solid, which is about twice of that observed for the frictional sliding model with the same crack
density and a friction coefficient 𝜇 = 0.5.
3.1.2. Unloading
The derivation steps detailed above for loading as the same during unloading, except that for unloading
the incremental crack displacement-stress relation (10) must be used instead of (6). The effective Young's
modulus EU during unloading of a rock containing a single array of frictional cracks is then

EU = E0 if 𝜎1 > 𝜎U
y ,

E0

EU = 1 + 𝜋Γ
(
cos𝜙 sin𝜙 + 𝜇 cos2 𝜙

)
sin(2𝜙) if 𝜎1 ≤ 𝜎U

y ,
(21)

where 𝜎U
y is given by Equation 9. In the purely frictional case (𝜏y = 0), typically, taking 𝜇 = 0.5 and 𝜙 = 45◦,

E0/EU ≈ 1+ 2.4Γ. For a crack density Γ = 0.5, EL ≈ 0.5E0; that is, the frictional backsliding on the array of
cracks causes a 50% modulus deficit relative to the uncracked solid, which is greater than the modulus deficit
caused by crack sliding during loading, as analyzed in section 2. In the purely cohesive case (𝜇 = 0), as could
follow from the crack displacement-stress analysis, the effective Young's modulus during unloading is the
same as during loading, except that it applies to a different stress range.
3.1.3. Reloading
Consider now reloading of a rock containing an array of frictional cracks that has been previously subjected
to a load-unload cycle to a maximum stress 𝜎⋆

1 . The behavior of all cracks during reloading will be identical
since they all have the same orientation. Following the detailed analysis of the behavior of a frictional crack
during reloading given in section 2.3, and similar derivation steps as those detailed above, the effective
Young's modulus during reloading will be

(i) If 𝜎⋆
1 < 𝜎L

y (no sliding during the previous load-unload cycle), where 𝜎L
y is given by Equation 5. ERL is

then simply given by Equation 20.
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Figure 3. Yield stresses as function of the crack orientation, for the purely frictional case (𝜏y = 0) at fixed 𝜇 = 0.5 (a) and the purely cohesive case (𝜇 = 0) at
fixed 𝜏y∕𝜎2 = 1 (b). Dashed lines indicate values of yield stress on the ordinate, and friction angle (limiting or optimal, see text) on the abscissa.

(ii) If 𝜎L
y < 𝜎⋆

1 < 𝜎RL
y (forward sliding only during the previous load-unload cycle),

ERL = E0 if 𝜎1 < 𝜎⋆

1 ,

E0

ERL = 1 + 𝜋Γ
(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙) if 𝜎1 ≥ 𝜎⋆

1 ,
(22)

where 𝜎RL
y is given by Equation 14.

(iii) If 𝜎⋆
1 ≥ 𝜎RL

y (backsliding during the previous load-unload cycle),

ERL = E0 if 𝜎1 < 𝜎RL
y ,

E0

ERL = 1 + 𝜋Γ
(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙) if 𝜎1 ≥ 𝜎RL

y .
(23)

3.2. Body With Randomly Oriented Cracks
3.2.1. Loading
Now imagine that the rock contains a distribution of N frictional cracks per representative area A, each with
the same length and with their orientation angles uniformly distributed. Friction on each crack is described
by the constitutive law (2). By symmetry, we need only to consider the range of values 0≤𝜙≤𝜋/2. We invoke
again the “no-interaction” approximation to add individual crack contributions. However, when cracks are
randomly oriented, the behavior of the rock during loading is more complicated than that with aligned
cracks, because, as shown in Equation 5, each crack will start sliding at its “own” orientation-dependent
yield stress. To calculate the effective Young's modulus, a modified formulation of Equation 20 must
therefore be given to account for angular limits of sliding activity.

Figure 3 shows the crack yield stress during loading, 𝜎L
y (Equation 5, normalized to 𝜎2) as function of the

crack orientation, in the purely frictional case (𝜏y = 0) for a friction coefficient 𝜇 = 0.5 (Figure 3a) and in
the purely cohesive case (𝜇 = 0) for a cohesion stress 𝜏y = 𝜎2 (Figure 3b). Analysis of Equation 5 for crack
endowed with both frictional and cohesive resistance reveals that 𝜎L

y is a minimum at 𝜙 = (1∕2)[𝜋∕2 +
tan−1(𝜇)], which is the optimal orientation for crack sliding, and such minimum is equal to

𝜎L
y =

2𝜏y + 𝜎2(
√

1 + 𝜇2 + 𝜇)√
1 + 𝜇2 − 𝜇

, (24)

which corresponds to the yield stress of the rock with randomly oriented frictional cracks, during loading.
In the purely frictional case (𝜏y = 0), the expressions for the optimal angle for sliding and the yield stress as
given above both match those previously derived using the “sliding crack” model (e.g., Ashby & Sammis,
1990; Kachanov, 1982a). In the purely cohesive case (𝜇 = 0), the optimal orientation for crack sliding is
independent of 𝜏y and equal to 𝜙 = 45◦.
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An equivalent but complementary way of considering the schematic plot of Figure 3 is to identify the yield
stress on the vertical axis to a given applied stress to the rock, 𝜎1. At such stress, all individual cracks whose
“own” yield stress is below 𝜎1 have started sliding, and those whose “own” yield stress is above 𝜎1 will
require a higher stress to start sliding. Hence, the range of sliding crack orientations is stress dependent and
determined by the intersection of a given stress with the yield envelope as shown in Figures 3a and 3b for
the purely frictional and cohesive cases, respectively. Recalling previous analysis, crack sliding can occur if
the effective sliding stress 𝜏L

eff is positive, where 𝜏L
eff is given by Equation 4. Examination of the range of crack

orientations for which 𝜏L
eff > 0 at a given stress reveals that, during loading, sliding can occur between two

critical angles (𝜙L
1 , 𝜙

L
2 ) explicitly given by

𝜙L
1 = 1

2

{
tan−1(𝜇) + sin−1

[
2𝜏y + 𝜇(𝜎1 + 𝜎2)

(𝜎1 − 𝜎2)
√

1 + 𝜇2

]}
, (25)

𝜙L
2 = 1

2

{
tan−1(𝜇) + 𝜋 − sin−1

[
2𝜏y + 𝜇(𝜎1 + 𝜎2)

(𝜎1 − 𝜎2)
√

1 + 𝜇2

]}
. (26)

Note that, in the purely frictional case (𝜏y = 0), such results are equivalent to those obtained using a “sliding
on a plane of weakness” model (Jaeger et al., 2007). The critical angles for sliding are stress dependent,
and the proportion of cracks that can slide increases with increasing stress (Figures 3a and 3b). It can be
shown by manipulation of expressions (25) and (26) that tan−1(𝜇) ≤ 𝜙L

1 ≤ 𝜙L
2 ≤ 𝜋∕2 and that, as 𝜎1 →∞,

𝜙L
1 → tan−1(𝜇) and 𝜙L

2 → 𝜋∕2. No sliding occurs in the crack orientation range 0 < 𝜙 < tan−1(𝜇) regardless
of the applied stress. The value tan−1(𝜇) is the “friction angle” (Walsh, 1965). In the purely cohesive case
(𝜇 = 0), as 𝜎1 →∞, 𝜙L

1 → 0, and 𝜙L
2 → 𝜋∕2, hence, the entire range of crack orientations can, in principle,

slide under sufficiently elevated stress.

Having determined the angular limits for sliding activity and the rock yield stress during loading, if the
rock contains randomly oriented frictional cracks, we must integrate the right-hand term of Equation 19 for
cracks that are sliding, that is, 𝜙L

1 ≤ 𝜙 ≤ 𝜙L
2 . Hence, recalling that we consider the range 0≤𝜙≤𝜋/2, for

𝜎1 ≥ 𝜎L
y Equation 19 becomes

E0

EL = 1 + 2N
𝜋 ∫

𝜙L
2

𝜙L
1

𝜋c2

A
(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙)d𝜙

= 1 + 2Γ∫
𝜙L

2

𝜙L
1

(
cos𝜙 sin𝜙 − 𝜇 cos2 𝜙

)
sin(2𝜙)d𝜙,

(27)

where we make use of the assumption that all cracks have the same length. After integration of Equation 27,
we find that during loading the Young's modulus of a rock containing randomly oriented frictional cracks is

EL = E0 if 𝜎1 < 𝜎L
y ,

E0

EL = 1 + Γ
[

1
2

(
𝜙 − sin(4𝜙)

4

)
+ 𝜇 cos4(𝜙)

]𝜙L
2

𝜙L
1

if 𝜎1 ≥ 𝜎L
y ,

(28)

where 𝜎L
y is given by Equation 24. That the inverse of the effective Young's modulus depends linearly on

the crack density Γ in Equation 28 is intrinsically due to our formulation of the problem in terms of the
additional compliance caused by cracks in Equation 18, and that we sum the contributions of sliding cracks
assuming no interactions.

The “maximum modulus deficit” caused by crack frictional sliding can be estimated by taking the limit
of Equation 28 as 𝜎1 →∞ and compared in the purely frictional and cohesive cases. In the purely fric-
tional case (𝜏y = 0), according to previous analysis, sliding occurs over tan−1(𝜇) ≤ 𝜙 ≤ 𝜋∕2, and from
Equation 28 E0∕EL → 1 + (Γ∕2)[𝜋∕2 − tan−1(𝜇) − 𝜇∕(1 + 𝜇2)] as 𝜎1 →∞. Taking a friction coefficient
𝜇 = 0.5, E0/EL ≈ 1+ 0.4Γ. For a crack density Γ = 0.5, the modulus deficit relative to the uncracked solid
is about 25%. In the purely cohesive case (𝜇 = 0), as 𝜎1 →∞ sliding occurs over 0<𝜙<𝜋/2, and from
Equation 28 E0/EL → 1+𝜋Γ/4≈ 1+ 0.8Γ. Such comparison between the purely frictional and cohesive cases
shows immediately that, as a rule of thumb, in order to produce an equivalent modulus deficit the purely
frictional model will require a crack density about twice as that of the purely cohesive model.
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3.2.2. Unloading
During unloading, as the load decreases each crack will start backsliding at its “own” orientation-dependent
yield stress. Figure 3 shows the crack yield stress during unloading, 𝜎U

y (Equation 9, normalized to 𝜎2) as
function of the crack orientation, considering a rock previously loaded to a maximum stress 𝜎⋆

1 = 10𝜎2, in
the purely frictional case (𝜏y = 0) for a friction coefficient 𝜇 = 0.5 (Figure 3a) and in the purely cohesive case
(𝜇 = 0) for a cohesion stress 𝜏y = 𝜎2 (Figure 3b). The optimal crack orientation for backsliding is that for
which 𝜎U

y is a maximum. Applying the superposition principle as described in section 2.1 to Equation 20b of

Lawn and Marshall (1998), such maximum occurs at an angle𝜙= tan−1[
√

1+ 𝜇2 + 𝜇(𝜎⋆
1 −𝜎2)∕(𝜏y+ 𝜇𝜎2)−𝜇]

and is equal to the unloading yield stress of a rock containing randomly oriented frictional cracks,

𝜎U
y = 𝜎⋆

1 + 4𝜇(𝜏y + 𝜇𝜎2) − 4
√

(𝜏y + 𝜇𝜎2)[𝜇2(𝜏y + 𝜇𝜎2) + (𝜏y + 𝜇𝜎⋆
1 )]. (29)

Both the optimal orientation for backsliding and the unloading yield stress do not only depend on the friction
coefficient 𝜇 and cohesion stress 𝜏y, but also on the maximum stress experienced during previous loading,
𝜎⋆

1 . In the purely cohesive case (𝜇 = 0), the optimal crack orientation for backsliding is, as for loading,
independent of the model parameters and equal to 𝜙 = 45◦.

Following a similar analysis to that done for loading above, examination of the criterion 𝜏U
eff > 0 in Equation 8

reveals that, at given stress during unloading, backsliding occurs between two stress-dependent critical
angles (𝜙U

1 , 𝜙
U
2 ) given by

𝜙U
1 = 1

2

⎧⎪⎨⎪⎩tan−1
[
𝜇(𝜎⋆

1 + 𝜎1 − 2𝜎2)
𝜎⋆

1 − 𝜎1

]
+ sin−1

⎡⎢⎢⎢⎣
4𝜏y + 𝜇(𝜎⋆

1 + 𝜎1 + 2𝜎2)√
(𝜎⋆

1 − 𝜎1)2 + 𝜇2(𝜎⋆
1 + 𝜎1 − 2𝜎2)2

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ , (30)

𝜙U
2 = 1

2

⎧⎪⎨⎪⎩tan−1
[
𝜇(𝜎⋆

1 + 𝜎1 − 2𝜎2)
𝜎⋆

1 − 𝜎1

]
+ 𝜋 − sin−1

⎡⎢⎢⎢⎣
4𝜏y + 𝜇(𝜎⋆

1 + 𝜎1 + 2𝜎2)√
(𝜎⋆

1 − 𝜎1)2 + 𝜇2(𝜎⋆
1 + 𝜎1 − 2𝜎2)2

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ . (31)

By analogy with the passing from Equation 19 to Equation 27 for loading, but this time making use of
Equation 21, after integration we find that the effective Young's modulus during unloading of a rock
containing randomly oriented frictional “backsliding” cracks is given by

EU = E0 if 𝜎1 > 𝜎U
y ,

E0

EU = 1 + Γ
[

1
2

(
𝜙 − sin(4𝜙)

4

)
− 𝜇 cos4(𝜙)

]𝜙U
2

𝜙U
1

if 𝜎1 ≤ 𝜎U
y ,

(32)

where 𝜎U
y is given by Equation 29.

3.2.3. Reloading
As in section 3.1.3 consider reloading after previous application of a load-unload cycle to a maximum stress
𝜎⋆

1 , but this time for a rock containing randomly oriented cracks. Based on the analysis given in section 2.3, at
the onset of reloading the cracks can be exhaustively classified in three “families”: cracks for which no sliding
occurred, cracks for which only forward sliding occurred, and cracks for which backsliding occurred—the
proportion of which is dictated by the maximum stress during previous loading.

For the crack family for which backsliding occurred, Figure 3a shows the orientation-dependent crack yield
stress during reloading, 𝜎RL

y (Equation 14, normalized to 𝜎2), in the purely frictional case (𝜏y = 0) for a
friction coefficient 𝜇 = 0.5 (Figure 3a) and in the purely cohesive case (𝜇 = 0) for a cohesion stress 𝜏y = 𝜎2
(Figure 3b). By finding the minimum of 𝜎RL

y , the optimal orientation for sliding upon reloading is, as for
loading, 𝜙 = (1∕2)[𝜋∕2 + tan−1(𝜇)], and the reloading yield stress of a rock containing randomly oriented
cracks is

𝜎RL
y =

4𝜏y + 𝜎2(
√

1 + 𝜇2 + 3𝜇)√
1 + 𝜇2 − 𝜇

. (33)

As can be seen by comparing Equations 33 and 24, in a rock containing randomly oriented cracks the yield
stress associated with the reactivation of sliding during reloading is always higher than that during a previous
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initial loading (as shown in Figures 3a and 3b for the purely frictional and cohesive cases, respectively).
Following previous analysis, examination of the criterion 𝜏RL

eff > 0 in Equation 13 shows that, at a given
stress, the cracks that are reactivated by sliding during reloading are oriented between two critical angles
(𝜙RL

1 , 𝜙RL
2 ) given by

𝜙RL
1 = 1

2

{
tan−1(𝜇) + sin−1

[
4𝜏y + 𝜇(𝜎1 + 3𝜎2)

(𝜎1 − 𝜎2)
√

1 + 𝜇2

]}
, (34)

𝜙RL
2 = 1

2

{
tan−1(𝜇) + 𝜋 − sin−1

[
4𝜏y + 𝜇(𝜎1 + 3𝜎2)

(𝜎1 − 𝜎2)
√

1 + 𝜇2

]}
. (35)

Hence, based on all previous analysis and as illustrated, respectively, in the diagrams shown in Figures 3a
and 3b for the purely frictional and cohesive cases, at the onset of reloading the three possible crack config-
urations are precisely defined as follows. The cracks that did not slide during the previous cycle are those
for which 𝜙 < 𝜙L

1 (𝜎1 = 𝜎⋆
1 ) or 𝜙 > 𝜙L

2 (𝜎1 = 𝜎⋆
1 ), where (𝜙L

1 (𝜎1 = 𝜎⋆
1 ), 𝜙

L
2 (𝜎1 = 𝜎⋆

1 )) are given by Equations 25
and 26, here taken at the maximum stress 𝜎⋆

1 . The cracks that slid but did not backslide during the previous
cycle are then those for which 𝜙L

1 (𝜎1 = 𝜎⋆
1 ) < 𝜙 < 𝜙U

1 (𝜎1 = 𝜎2) or 𝜙U
2 (𝜎1 = 𝜎2) < 𝜙 < 𝜙L

2 (𝜎1 = 𝜎⋆
1 ), where

(𝜙U
2 (𝜎1 = 𝜎2), 𝜙U

2 (𝜎1 = 𝜎2)) are given by Equations 30 and 31, taken at the end of unloading (𝜎1 = 𝜎2). It
can be shown, from comparison of expressions (25) and (30), and (26) and (31), respectively, that this fam-
ily of cracks always exists, as 𝜙L

1 (𝜎1 = 𝜎⋆
1 ) < 𝜙U

1 (𝜎1 = 𝜎2) and 𝜙U
2 (𝜎1 = 𝜎2) < 𝜙L

2 (𝜎1 = 𝜎⋆
1 ) are both strict

inequalities. Finally, cracks for which 𝜙U
1 (𝜎1 = 𝜎2) < 𝜙 < 𝜙U

2 (𝜎1 = 𝜎2) have previously backslid.

Continuing on previous analysis, and providing that the previous load-unload cycle was performed at a
sufficiently high stress so that backsliding occurred, when the stress is increased the rock has two distinct
yield stresses during reloading. The first yield stress, 𝜎RL

y given by (33), is associated with the onset of sliding
on cracks that previously backslid. The proportion of these sliding cracks increases with stress and is given
by the critical angles for reloading (34) and (35). The second yield stress, 𝜎⋆

1 , corresponds to the onset of
sliding on all cracks that slid during the previous load cycle. By comparison of expressions (30) and (34),
and (31) and (35), respectively, 𝜙RL

1 (𝜎1 = 𝜎⋆
1 ) = 𝜙U

1 (𝜎1 = 𝜎2) and 𝜙RL
2 (𝜎1 = 𝜎⋆

1 ) = 𝜙U
2 (𝜎1 = 𝜎2). This implies

that, when the stress 𝜎1 reaches again 𝜎⋆
1 , all cracks that previously backslid have been reactivated by sliding

during reloading. Hence, when 𝜎1 = 𝜎⋆
1 , the populations of “sliding only” and “backsliding” cracks merge.

Sliding is activated for all cracks for which 𝜙L
1 (𝜎1 = 𝜎⋆

1 ) < 𝜙 < 𝜙L
1 (𝜎1 = 𝜎⋆

1 ), and, in agreement with the
analysis given for the single crack case in section 2.4, the structure of the rock is entirely reset.

For randomly oriented cracks, by analogy with previous derivations for loading and unloading, and making
use of Equations 22 and 23 and the analysis given above, the effective Young's modulus during reloading
will be

(i) If 𝜎⋆
1 < 𝜎L

y (no sliding during the previous load-unload cycle), where 𝜎L
y is given by Equation 24. ERL

is then simply given by Equation 28.
(ii) If 𝜎L

y < 𝜎⋆
1 < 𝜎RL

y (forward sliding only during the previous load-unload cycle),

ERL = E0 if 𝜎1 < 𝜎⋆

1 ,

E0

ERL = 1 + Γ
[

1
2

(
𝜙 − sin(4𝜙)

4

)
+ 𝜇 cos4(𝜙)

]𝜙L
2

𝜙L
1

if 𝜎1 ≥ 𝜎⋆

1 ,
(36)

where 𝜎RL
y is given by Equation 33.

(iii) If 𝜎⋆
1 ≥ 𝜎RL

y (backsliding during the previous load-unload cycle),

ERL = E0 if 𝜎1 < 𝜎RL
y ,

E0

ERL = 1 + Γ
[

1
2

(
𝜙 − sin(4𝜙)

4

)
+ 𝜇 cos4(𝜙)

]𝜙RL
2

𝜙RL
1

if 𝜎RL
y ≤ 𝜎1 ≤ 𝜎⋆

1 ,

E0

ERL = 1 + Γ
[

1
2

(
𝜙 − sin(4𝜙)

4

)
+ 𝜇 cos4(𝜙)

]𝜙L
2

𝜙L
1

if 𝜎1 > 𝜎⋆

1 .

(37)
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3.3. Effect of the Model Parameters

For a rock containing cracks endowed with both frictional and cohesive resistance and that are either
aligned (section 3.1) or randomly oriented (section 3.2), closed-form expressions have been derived for the
evolution of the elastic modulus with the applied state of stress, for the loading, unloading, and reloading
regimes. As the elastic modulus is stress dependent, the strain can be calculated by integrating the relation
d𝜖1 = d𝜎1/E. For a body with aligned cracks, the effective Young's modulus during loading, unloading, and
reloading is only stress dependent through the associated yield stresses demarcating the elastic and inelas-
tic regimes. Both such regimes are linear with stress; hence, analytical expressions are easily obtained for
each of the linear segments of the stress-strain curve. In the case of a body with randomly oriented cracks,
the effective Young's modulus during loading, unloading, and reloading is only stress dependent through
the associated critical angles which account for the proportion of cracks that are sliding. That the propor-
tion of such sliding cracks gradually “stretches” with stress (Figure 3) causes nonlinearity in the stress-strain
curve in the inelastic regime. However, by looking at the structure of the closed-form expressions for the
elastic modulus, for a random distribution of crack orientation, it is expected that at sufficiently high stress
the inelastic regime must eventually become linear with stress, when all sliding cracks have been activated.
Nevertheless, except for the elastic regime, for randomly oriented cracks the strain must be calculated by
numerical integration.

For cyclic loading of rock, the modulus and the following stress-strain curve depend only on the following
parameters: E0, the Young's modulus of the uncracked rock; Γ, the crack density; 𝜇, the friction coeffi-
cient acting on the crack faces; and 𝜏y, the cohesive yield stress for the cohesive sliding model; 𝜙, the crack
orientation, is the additional parameter for the case of aligned cracks. E0 simply enters as a “normalizing
factor” in all closed-form expressions giving the effective Young's modulus E; hence, the dependence on E0
is trivial. For aligned cracks, the way the crack orientation enters the model is already captured in the crack
displacement-stress analysis given above and shown in Figure 2.

For the purely frictional sliding model (𝜏y = 0), Figure 4a shows the stress-strain curves during two suc-
cessive load-unload cycles to a maximum stress 𝜎⋆

1 = 10𝜎2, for two values of the crack density (Γ = 0.5;
Γ = 1) at fixed friction coefficient (𝜇 = 0.5), for the case of cracks aligned at 𝜙 = 45◦ to 𝜎1. Figure 4b shows
the equivalent plot for three values of the friction coefficient (𝜇 = 0; 𝜇 = 0.3; 𝜇 = 0.6) at fixed crack den-
sity (Γ = 1). Figures 4c and 4d show the equivalent plots of, respectively, Figures 4a and 4b for the case of
randomly oriented cracks. From our definitions of normalized stress as 𝜎1/𝜎2 and normalized modulus as
E/E0, it follows that the normalized strain can be defined as (E0/𝜎2)𝜖1. Accordingly, a slope of 1 in Figure 4
indicates a normalized modulus of 1, that is, purely elastic behavior (E = E0).

Because we use the noninteraction approximation, the effective compliance E0/E is a linear function of the
crack density Γ. The resulting effect of increasing the crack density is a more pronounced compliance in
the inelastic regime with the yield point invariant (during both loading and unloading segments), and a
larger hysteresis loop with more “permanent” inelastic strain at the end of unloading (Figures 4a and 4c).
As can be physically expected, an increasing friction coefficient results in a less pronounced compliance in
the inelastic regime for both loading and unloading, with a higher (resp. lower) yield point during loading
(resp. unloading) leading to a greater proportion of elastic behavior relative to inelastic behavior and, gener-
ally, a less pronounced hysteresis loop (Figures 4b and 4d). In the case of aligned cracks, using the analysis
given in section 2.3 and Equation 16, it can be shown that the permanent strain at the end of unloading is
exactly equal to 𝜋Γ𝜇 sin(2𝜙) and thus increases linearly with the friction coefficient, as shown in Figure 4b.
In the case of randomly oriented cracks, however, the way the residual inelastic strain varies with the fric-
tion coefficient is less trivial (Figure 4d). The case 𝜇 = 0 corresponds to perfectly reversible linear behavior,
with a pronounced modulus deficit relative to the uncracked solid (Figures 4b and 4d). In the case of ran-
domly oriented cracks, by manipulation of Equation 28 combined with (25) and (26) in the limit 𝜇→ 0,
E0/EL → 1+ (𝜋/4)Γ.

The equivalent plot of Figure 4 for the purely cohesive sliding model (𝜇 = 0) is shown in Figure 5. The
fixed values of the cohesive yield stress when the crack density is varied are 𝜏y∕𝜎2 = 1 (Figures 5a and 5c),
and the three representative values of 𝜏y at fixed crack density are 𝜏y∕𝜎2 = 0, 𝜏y∕𝜎2 = 1, and 𝜏y∕𝜎2 = 2
(Figures 5b and 5d). The resulting effect of increasing the crack density (Figures 5a and 5c) is the same as
that described above for the purely frictional model. Increasing the cohesive yield stress results in a higher
(resp. lower) yield point during loading (resp. unloading) but does not affect the compliance in the inelastic
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Figure 4. Stress-strain curves in the purely frictional case (𝜏y = 0) for two successive load-unload cycles at a maximum
stress 𝜎⋆1 = 10𝜎2, for aligned cracks oriented at 𝜙 = 45◦ to 𝜎1 (a, b), and for randomly oriented cracks (c, d). Showing
the effect of crack density (Γ = 0.5; Γ = 1) at fixed friction coefficient (𝜇 = 0.5) (a, c), and the effect of friction
coefficient (𝜇 = 0; 𝜇 = 0.3; 𝜇 = 0.6) at fixed crack density (Γ = 1) (b, d). Solid lines: loading segments; dashed lines:
unloading segments.

regime (Figures 5b and 5d). For both aligned and randomly oriented cracks, the permanent strain at the
end of unloading increases with the cohesive yield stress. In the case of aligned cracks, using the analysis
given in section 2.3 and Equation 16, the permanent strain at the end of unloading is found to be equal
to 𝜋Γ𝜏y sin(2𝜙). The case 𝜏y = 0 corresponds to perfectly reversible linear behavior, with a pronounced
modulus deficit relative to the uncracked solid (Figures 5b and 5d). In the case of randomly oriented cracks,
by manipulation of Equation 28 combined with (25) and (26) in the limit 𝜏y → 0, E0/EL → 1+ (𝜋/4)Γ. As
could be physically expected, such limit is the same than that obtained for the equivalent purely frictional
sliding model as 𝜇→ 0.

As previously analyzed, for both purely frictional and cohesive sliding models, respectively, Figures 4 and
5 illustrate that, when the maximum stress 𝜎⋆

1 is reached during reloading the rock strain is the same as
that at 𝜎⋆

1 during previous loading; hence, the stress-strain behavior is reversible upon reloading. Including
a random distribution of cracks results in a “smoother” transition between the elastic and inelastic regimes
in the stress-strain behavior (around the yield point), which corresponds to a progressive, stress-dependent
activation of sliding or backsliding on favorably oriented cracks. The observed difference in the stress-strain
path between the cases of aligned and randomly oriented cracks is also due to the fact that the contribution
of the crack sliding displacement to the axial strain is orientation dependent, as shown by Equation 16.
Finally, note that the more pronounced compliance and hysteresis for the case of aligned cracks directly
result from the fact that the selected crack orientation (𝜙 = 45◦) for sliding is near optimal in the frictional
case, and optimal in the cohesive case.

3.4. Comparison of the Stress-Strain Behavior for the Purely Frictional and Cohesive Sliding
Models

A comparison of the stress-strain behavior for the purely frictional and cohesive models is shown in Figure 6,
taking the same fixed value of crack density Γ = 1. A fixed value of the coefficient of friction, 𝜇 = 0.5,
and its “equivalent” cohesive yield stress, 𝜏y∕𝜎2 = 0.5 (n.b. “equivalent” in the way that, in the case of

DAVID ET AL. 15 of 26



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018970

Figure 5. Stress-strain curves in the purely cohesive case (𝜇 = 0) for two successive load-unload cycles at a maximum
stress 𝜎⋆1 = 10𝜎2, for aligned cracks oriented at 𝜙 = 45◦ to 𝜎1 (a, b), and for randomly oriented cracks (c, d). Showing
the effect of crack density (Γ = 0.5; Γ = 1) at fixed cohesion (𝜏y∕𝜎2 = 1) (a, c), and the effect of cohesion (𝜏y∕𝜎2 = 0;
𝜏y∕𝜎2 = 1; 𝜏y∕𝜎2 = 2) at fixed crack density (Γ = 1) (b, d). Solid lines: loading segments; dashed lines: unloading
segments.

aligned cracks, as demonstrated above the same permanent strain is produced for both models), is used
for the purely frictional and cohesive models, respectively. The additional parameter for the case of aligned
cracks (a, c) is the crack orientation taken as 𝜙 = 45◦. As the detailed features of the stress-strain behav-
ior have already been described above, and notably the effect of including a crack distribution, here we
highlight the main differences demarcating the purely frictional and cohesive models. (i) At a given crack
density, in the inelastic regime the purely cohesive model predicts a greater modulus deficit relative to the
uncracked solid than the purely frictional sliding model. The inelastic compliance depends on the friction
coefficient for the purely frictional model but remains independent of 𝜏y for the purely cohesive model.
(ii) The purely cohesive model predicts the same inelastic compliance during both loading and unload-
ing, whereas the purely frictional model predicts a greater inelastic compliance during unloading than
during loading.

4. Cyclic Loading of a Rock Containing Multiple Cracks: Dissipated Strain
Energy
The dissipated strain energy, W , is defined as the difference between the amount of energy that is recov-
ered on unloading and the amount of energy input on subsequent reloading; that is, W represents the area
between the reloading and unloading curve at a given stress. Defined by analogy with internal friction for
materials exhibiting “static hysteresis” (Nowick, 1954), the quantity W is thus independent of the number
of cycles. W is calculated per unit volume by integration of the stress-strain relations, as W = ∫ 𝜖1d𝜎1, along
the unloading-reloading contour. Considering the features of the crack displacement-stress and stress-strain
behavior in the present crack sliding model, in order to dissipate energy upon unload-reload backsliding
must necessarily occur. According to previous analysis, this condition is expressed as 𝜎⋆

1 > 𝜎RL
y , where

𝜎⋆
1 is the maximum stress per cycle and 𝜎RL

y is the reloading yield stress for a given model. Hence, if
𝜎⋆

1 ≤ 𝜎RL
y , W = 0.
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Figure 6. Stress-strain curves for two successive load-unload cycles at a maximum stress 𝜎⋆1 = 10𝜎2, for the frictional
(a, b) and cohesive (c, d) crack sliding model, taking a crack density Γ = 1 for both models. (a, c) Aligned cracks
oriented at 𝜙 = 45◦ to 𝜎1; (b, d) randomly oriented cracks. Taking a friction coefficient 𝜇 = 0.5 for the frictional model,
and an “equivalent” cohesive yield stress 𝜏y∕𝜎2 = 0.5 for the cohesive model. Solid lines: loading segments; dashed
lines: unloading segments. Squares: yield stresses.

4.1. Purely Frictional Sliding

In the case of purely frictional sliding (𝜏y = 0), for a rock containing aligned cracks, analytical expressions
can be obtained for the dissipated energy upon unload-reload:

W =
𝜋Γ𝜎2

2 sin(2𝜙)
2E0

{(
𝜎⋆

1

𝜎2
− 1

)2 [
ML −

(MU − 𝜇)2

MU

]
+
(
𝜎⋆

1

𝜎2
− 1

)[
4𝜇(MU − 𝜇)

MU

]
−4𝜇2

(
1

ML
+ 1

ML

)}
,

(38)

where the coefficients (ML, MU) are expressed as

ML = cos𝜙 sin𝜙 − 𝜇 cos2 𝜙, (39)

MU = cos𝜙 sin𝜙 + 𝜇 cos2 𝜙, (40)

in which it is immediately seen that W is quadratic in 𝜎⋆
1 .

For randomly oriented cracks, as for the stress-strain curve the dissipated energy W must be calculated by
numerical integration. A comparison of the dissipated energy versus stress behavior for the purely frictional
and cohesive models is shown in Figure 7.

4.2. Purely Cohesive Sliding

In the case of purely cohesive sliding (𝜇 = 0), for a rock containing aligned cracks, analytical expressions
can also be obtained for the dissipated energy upon unload-reload:

W = 4𝜋Γ𝜏y
[
(𝜎⋆

1 − 𝜎2) cos𝜙 sin𝜙 − 2𝜏y
]
, (41)

in which it is immediately seen that W is linear in 𝜎⋆
1 . Note that this expression is very comparable to that

obtained for a proportional loading (Hansen et al., 2020).
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Figure 7. Dissipated strain energy upon unload-reload as function of
maximum stress per cycle, using a crack density Γ = 1 for both the purely
frictional (black curves) and purely cohesive (gray curves) crack sliding
models, and a friction coefficient 𝜇 = 0.5 and cohesive yield stress
𝜏y∕𝜎2 = 0.5, respectively. Full lines: randomly oriented cracks; dashed lines:
array of aligned crack at 𝜙 = 45◦ to 𝜎1.

For randomly oriented cracks, as for the stress-strain curve the dissipated
energy W must be calculated by numerical integration.

4.3. Comparison of Purely Frictional and Cohesive Sliding Models

A comparison of the dissipated strain energy versus stress behavior for
the purely frictional and cohesive models is shown in Figure 7, taking
for each model the same parameter values as in the comparison illus-
trated in Figure 6 for the stress-strain behavior. For the purely frictional
model (𝜏y = 0), the dissipated strain energy W increases with stress and,
for values of stress typically greater than 10 times the confining pres-
sure, W ∝ (𝜎⋆

1 )
2. For the purely cohesive sliding model (𝜇 = 0), W also

increases with stress but, contrary to the frictional model, in the high
stress limit W ∝ 𝜎⋆

1 . Such quadratic and linear dependence of W upon
𝜎⋆

1 for the frictional and cohesive models, which is obvious from the form
taken by Equation 37 and 40 for aligned frictional cracks, respectively, is
also observed for randomly oriented cracks regardless of the values taken
by the model parameters.

For both purely frictional and cohesive models, including a random distri-
bution of crack orientation essentially results in offset in the dependence
of W with stress.

Hence, in addition to the differences highlighted above between the
purely frictional and cohesive models in terms of stress-strain behavior, in

terms of dissipated strain energy we conclude that the striking difference is the quadratic and linear depen-
dence of W upon 𝜎⋆

1 for the purely frictional and cohesive models, respectively, at moderate to high stress.
At low stress, W is greater for the purely cohesive model than for the purely frictional model; however, this
trend reverses at moderate to high stress due to the high-order dependence of W upon 𝜎⋆

1 for the purely
frictional model.

5. Application of Model to Experimental Data
We now test our sliding crack model on stress-strain data obtained during cyclic loading triaxial experiments
on isotropic polycrystalline antigorite specimens. The choice of such rock type and of the applied range of
confining pressure and compressive stress is intended to satisfy the model hypothesis (a–d, see section 1;
also, see section 6). In addition to fitting the model to the cyclic loading data obtained by David et al. (2018)
on an isotropic polycrystalline antigorite sample at room temperature and 150 MPa confining pressure, we
have also carried out a set of cyclic loading, triaxial compression experiments in the Griggs apparatus at the
Department of Earth, Environmental and Planetary Sciences at Brown University (Providence). The rock
selected is the same material as the “isotropic” block of “Vermont antigorite serpentinite” described in detail
by David et al. (2018). The rock is fine grained, nearly pure antigorite (95%) with minor amount of magnetite
and magnesite, and is elastically isotropic.

Three cylindrical core specimens were precision ground to 12.7 mm length and 6.17 mm diameter. One thin
Ni disk (thickness of 0.2 mm) was placed at each end between the rock sample and alumina (Al2O3) pistons.
This assembly was enclosed within a thin-walled (0.254 mm wall thickness) silver jacket. For the two exper-
iments conducted at 400◦C and 500◦C, a solid salt (NaCl) assembly was used as a confining medium both
inside and outside the graphite furnace, and sample temperature was monitored using a Pt-Pt10%Rh ther-
mocouple (see Figure 1b of Holyoke & Kronenberg, 2010, for additional details on the sample assembly). For
the room temperature experiment, an all-lead assembly was used as the confining medium. The specimen
assembly was then loaded in a Griggs apparatus (see, e.g., Holyoke & Kronenberg, 2010) for cyclic load-
ing axial compression deformation experiments at room temperature, 400◦C and 500◦C, and at a confining
pressure of 1 GPa (accuracy of 0.05 GPa). The 400◦C and 500◦C samples were brought to pressure and tem-
perature over 3–4 hr, to 100◦C at 250 MPa, to 200◦C at 400 MPa, to 300◦C at 600 MPa, and then to the desired
pressure and temperature of the experiment. Following a “prehit” stage, samples were cyclically loaded at
a constant strain rate of 10−5 s−1, gradually increasing the maximum stress per cycle to about 90–95% of
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sample strength, the latter which was determined from additional axial deformation experiments at larger
strains (not reported here). At the end of the experiment, pressure and temperature were reduced slowly.

The axial shortening was measured with an external linear variable differential transformer (LVDT) and
corrected from machine compliance to measure rock specimen axial strain. The machine compliance was
refined by an additional calibration experiment performed on a WC sample (in a solid salt assembly) that
was axially loaded in its elastic range at 400◦C and 500◦C, and found to be equal to 9.0 μm·kN−1. The
axial load was measured externally by a load cell that was recalibrated for this series of experiments, con-
verted to axial stress by dividing by the sample diameter, and subtracted by the confining pressure. The
obtained “raw differential stress” was then corrected for the apparatus frictional sliding forces resulting from
advancement of the axial 𝜎1 piston. The hit-point was found following the method described in Holyoke and
Kronenberg (2010) (see Figure 3a of that publication) as the intersection between the run-in through lead
(initially present between the alumina top piston and the WC loading piston) and the elastic loading of sam-
ple, from which friction was directly estimated. When piston direction is reversed at the onset of unloading,
a portion of stress-strain behavior was removed corresponding to the need for the piston to overcome twice
the frictional sliding force, as well as a small displacement offset associated with rotation of LVDT bracked
during the change in direction of the motor used to generate the load. Although friction has been reported
to increase with axial displacement (Holyoke & Kronenberg, 2010), a thorough examination of the cyclic
loading data at the onset of unloading indicated that no such correction were needed due to the overall
small displacements involved. The differential stress was then finally corrected for changes in sample area,
by taking a Poisson's ratio equal to 0.28 from David et al. (2018). The obtained differential stress on sample
is considered to be known to ±50 MPa.

The strategy and assumptions in fitting the data were as follows. For both the purely frictional (𝜏y = 0) and
purely cohesive (𝜇 = 0) models, since the rock is elastically isotropic, a random orientation of cracks was
assumed. A pressure-independent value of the Young's modulus of the uncracked solid, E0, was first deter-
mined at each temperature (20◦C, 400◦C, and 500◦C) by fitting the linear elastic portion of the stress-strain
curves at low stress (preyield). Since the rock is isotropic, for both purely frictional and cohesive models,
a single value of the crack density Γ was used for each model at all temperatures and pressures. Γ is an
intrinsic property of the rock that should, to first order, not depend on pressure, under the assumption that
pressure-induced crack closure is reasonably complete in antigorite at 150 MPa (David et al., 2018), and
under the model assumption that no crack propagation occurs. It is also assumed that Γ does not vary with
temperature, as the process of thermal cracking and generally the presence of open microcracks must be
inhibited by the substantial confining pressures applied during the experiments. For the purely frictional and
cohesive models, respectively, it seems reasonable to assume that both the friction coefficient 𝜇 and cohe-
sive yield stress 𝜏y only depend on temperature, since temperature is likely to affect the nature of physical
bonds between the two crack faces. Note that some portions of the stress-strain curves were discarded from
the fit based on the following reasons. The first situation is an excessively pronounced downward inflex-
ion of the stress-strain curve during the loading cycle at the highest stress, which is possibly caused by the
onset of crack propagation and thus not captured by the model. The second reason is that a substantial por-
tion of the unloading segments (particularly at the onset of unloading) for the data obtained in the Griggs'
apparatus yield unphysically large Young's moduli that are well above that extracted from the elastic portion
of the loading segments; modification of the data processing strategy to extract more physically plausible
stress-strain data during unloading appears to be an excessively subjective and ad hoc process. Hence, for
those stress-strain data discarded from the fit, the model curves are predictions.

By least squares inversion, the best fit of the data for each model is obtained using the fitting parameters
given in Table 2 for the entire data set and shown for each individual cycle in Figure 8. The posterior (unnor-
malized) probability density function in the (Γ,𝜇) and the (Γ, 𝜏y) spaces for the purely frictional and cohesive
models, respectively, is shown in Figure 9, at each temperature. Considering the highly nonlinear and hys-
teretic shape of the stress-strain curve, it can be claimed that both models do an overall good job in fitting
the multiple loading-reloading curves at all conditions of pressure and temperature. At room temperature,
at 150 MPa confining pressure the data are better fit by the purely frictional model than by the purely cohe-
sive model, and the purely frictional model does a good job in capturing the unloading curves, whereas at
1 GPa confining pressure the data are better fit by the purely cohesive model than by the purely frictional
model, and the purely cohesive model provides a good fit to the unloading curves for the first two cycles. At
400◦C and 500◦C, both models provide very good and essentially identical fit to all loading-reloading curves
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Table 2
Fitting Parameters for the Purely Frictional and Cohesive Models

Temperature E0 Frictional model Cohesive model
(◦C) (GPa) Γ 𝜇 Γ 𝜏y (MPa)

20 103 0.41 243
400 95 0.93 0.22 0.65 274
500 83 0.16 182

except the high stress portion of the last two cycles at 500◦C. Hence, overall it can be said that the purely
frictional model seems to do a better job in capturing the data at lower-pressure (150 MPa) data, whereas
the purely cohesive model is only able to describe the data at higher pressure (1 GPa).

The model-independent Young's modulus of the uncracked rock decreases with temperature, from 103 GPa
at room temperature to 83 GPa at 500◦C. As might have been expected from previous analysis, the crack den-
sity obtained from the inversion is greater for the purely frictional model (0.93) than for the purely cohesive
model (0.65). The inverted friction coefficient decreases with temperature, from 0.41 at room temperature to
0.16 at 500◦C. The temperature dependence of the cohesive yield stress is less clear than that of the friction
coefficient, but 𝜏y broadly decreases from 243 MPa at room temperature to 182 MPa at 500◦C. For the purely
frictional and cohesive models, respectively, the inverted values of the friction coefficient and cohesive yield
stress are much better constrained than that of the crack density (Figure 9).

6. Discussion
6.1. Physical Significance of the Inverted Model Parameters for Antigorite

The values of the model parameters used in fitting the cyclic loading stress-strain data on antigorite
(Figure 8) all seem physically reasonable. The temperature-dependent values of E0, the Young's modulus
of the uncracked rock, are given in Table 2. At room temperature, Bezacier et al. (2010) report E0 = 97 GPa
at room pressure using aggregate averages from single-crystal elasticity data, and David et al. (2018) report
E0 = 93 GPa at 150 MPa confining pressure (i.e., for the data set shown in Figures 8a–8d) using ultrasonic
wave velocity measurements. Both values of E0 are consistent with the value found here, E0 = 103 GPa.
David et al. (2019) recently reported a temperature dependence of shear modulus of about −17 MPa·K−1

using low-frequency torsional oscillation tests, on exactly the same material as that used here for the
cyclic loading data. This gives a decrease in shear modulus of about 8.2 GPa in the 20–500◦C range. If
a temperature-independent Poisson's ratio of 0.28 is assumed (David et al., 2019), using elastic constant
relationships the corresponding decrease in Young's modulus over the 20–500◦C is 21 GPa, which is con-
sistent with what we found here. The values for the friction coefficient between the crack faces (Table 2)
can be compared to representative values obtained from deformation experiments on intact or precut antig-
orite specimens, or antigorite gouge friction experiments. At room temperature, reported values of 𝜇 vary
between, for example, 𝜇 = 0.77 (Dengo & Logan, 1981), 𝜇= 0.5–0.85 (Reinen et al., 1994), and 𝜇= 0.34
(Escartín et al., 1997). In the 25–200◦C range, Moore et al. (1997) reported 𝜇= 0.4–0.6. More recently,
Chernak and Hirth (2010) reported 𝜇= 0.15 at 550◦C, and Proctor and Hirth (2016) have measured 𝜇= 0.23,
𝜇= 0.13, and 𝜇= 0.07 at 300◦C, 400◦C, and 500◦C, respectively. Hence, the range of temperature-dependent
values of 𝜇 that we obtain using the purely frictional model is consistent with previously published
experimental data.

Comparison of the obtained values for the cohesive yield stress with experimental data is difficult due to the
scarcity of the available measurements, but also because the physical origin of the cohesion term could arise
from several mechanisms (Lawn & Marshall, 1998). Nevertheless, we note that the cohesion 𝜏y is about 0.7%
of the antigorite's shear modulus at room temperature. Hence, the ratio is in the same order of magnitude as
the ratio of the “lattice friction” or “Peierls stress” to shear modulus, assuming that such a ratio in antigorite
is comparable to other existing measurements on silicates or carbonates (Nabarro, 1997) or computational
estimates (Skelton & Walker, 2019).

The best fitting crack densities are 0.93 and 0.65 for the purely frictional and cohesive models, respectively.
Such values are reasonable and do not fall far outside the limit of validity of the no-interaction approxima-
tion (Guéguen & Schubnel, 2003; Kachanov, 2007). However, they are to some extent artificially high having
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Figure 8. Fits of the entire stress-strain data set at all temperatures, using a single crack density, and
temperature-dependent values of 𝜇 and 𝜏y for the purely frictional (red) and purely cohesive (blue) crack sliding
models, respectively, and the same temperature-dependent Young's modulus E0(T) for the two models. Fitting
parameters are given in Table 2. Each cycle is shown individually, by increasing maximum stress. (a–d) Pc = 150 MPa
and room temperature (data from David et al., 2018); (e–g) Pc = 1,000 MPa and room temperature (data from this
study); (h–m) Pc = 1,000 MPa and T = 400◦C (data from this study); (n–s) Pc = 1 000 MPa and T = 500◦C (data from
this study). Experimental data used (resp. discarded) for fit: black (resp. gray) full circles. Model curves: load (full line);
unload (dashed line). Gray dashed line: purely elastic stress-strain curve.
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Figure 9. Posterior (unnormalized) probability density functions in parameter space at each temperature for the
frictional (a, c, e) and cohesive (b, d, f) crack models, respectively.

neglected stress-field interactions between nearby cracks. If we had instead used the differential effective
medium approximation, the rescaled crack density would be (1∕𝜋) ln(1 + 𝜋Γ) (David et al., 2012), for exam-
ple, Γ= 0.44 and 0.35 for the purely frictional and cohesive models, respectively. In general, it is expected
that using an effective medium theory for taking crack interactions into account would mostly result in
rescaling the crack density but would not fundamentally alter the nature and the shape of the evolution of
the physical properties with stress, here the Young's modulus. The contentious debate of which effective
medium theory best accounts for interactions between sliding cracks is beyond the scope of our work.

Finally, we note that the fitted parameters for the purely frictional sliding model at room temperature are in
good agreement with those inverted from indentation data on antigorite single crystals (Hansen et al., 2020)
from exactly the same rock material as that used in the experiments of Figure 8. Hansen et al. (2020) applied
both purely frictional and cohesive sliding models to the case of a single array of cracks, but under conditions
of proportional loading that are more representative of self-confined indentation experiments. They found
an uncracked Young's modulus of 97 GPa; for the purely frictional sliding model, a friction coefficient of 0.5
and crack densities in the range 0.2–0.6 depending on crystals; and for the purely cohesive model, a cohesion
of 150 MPa and crack densities in the range 0.1–0.4 depending on crystals.

DAVID ET AL. 22 of 26



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018970

6.2. Transition in Sliding Mechanism With Increasing Pressure and Temperature

A striking outcome of the application of the crack sliding model to the data is that the stress-strain behav-
ior at all pressure and temperatures in antigorite can be reasonably described by a coefficient of friction, 𝜇,
that decreases with temperature (Table 2). As noted above, the temperature-dependent values of 𝜇 inverted
by utilizing the purely frictional model are in good agreement with previous estimates from friction experi-
ments at high strain. That 𝜇 decreases with temperature carries important implications for the rheology of
subduction zones. In particular, Chernak and Hirth (2010) and Proctor and Hirth (2016) have speculated
that such a decrease in 𝜇 could directly explain the inverted “brittle to ductile” transition, that is, the tran-
sition back from distributed to localized deformation behavior, that has been experimentally observed in
antigorite above 300◦C (at pressures greater than a few hundreds of MPa).

Another important outcome of the application of the model to the data is that, globally, the low-pressure
(150 MPa) data are better captured by the purely frictional model, while the high-pressure (1 GPa) behavior
is overall better described by the purely cohesive model at all temperatures. A transition from a frictionally
to a cohesively controlled regime of crack sliding with increasing pressure is consistent with the mechanistic
interpretation of the brittle-to-plastic transition in the crust (Escartín et al., 1997; Hirth & Tullis, 1994),
providing that the nature of cohesive sliding can be attributed to some form of plasticity, such as overcoming
a “lattice friction” or “Peierls stress” as briefly discussed above. Of course, additional data at intermediate
pressures and temperatures would be required to reinforce such interpretations.

6.3. Limitations of the Model and Onset of Crack Propagation

The inability of both purely frictional and cohesive models to fit the loading curve during the stress-strain
cycle at the highest stress in some cases, for example, at 1 GPa and room temperature (Figure 8g) or 500◦C
(Figure 8s), is likely caused by the onset of crack propagation in the antigorite samples, resulting in addi-
tional inelastic compliance that cannot be captured by the model. In antigorite such process occurs in the
stress range typically between 90% and 100% of the rock strength. Previous experimental observations have
demonstrated that the nature of such crack propagation in antigorite is peculiar compared to that of other
rocks. Up to failure, the brittle deformation of antigorite serpentinites is nondilatant at room temperature at
least up to 300 MPa confining pressure (Escartín et al., 1997) and not associated with the opening of Mode I
or “wing” microcracks (David et al., 2018). Hence, as proposed in these publications, the cracks that prop-
agate in antigorite are Mode II or in-plane “shear” microcracks. Incorporating Mode II propagation in the
crack sliding model at high stress is scope for future work.

That “Mode II” is the favored mode for crack propagation in antigorite must reflect that the onset of dilatancy
or “Mode I” crack opening would require a substantially large stress. To gain knowledge on what such stress
could be, we recall that for a rock containing randomly oriented microcracks, the stress at which “wing
cracks” initiate is given by (Nemat-Nasser & Horii, 1982)

𝜎1 = 𝜎2

√
1 + 𝜇2 + 𝜇√
1 + 𝜇2 − 𝜇

+
√

3√
1 + 𝜇2 − 𝜇

KIc√
𝜋c

, (42)

where KIc is the Mode I fracture toughness of the material. As previously noted, the first term on the
right-hand side of Equation 41 corresponds to our expression (24) for the yield stress of a rock containing
randomly oriented cracks, in the purely frictional case (𝜏y = 0). The second term on the right-hand side of
Equation 41 gives the additional stress required to initiate Mode I opening past the yield point, which we
refer here as the “dilatancy term”.

To further test the hypothesis that in antigorite such term may be quantitatively significant, we have
conducted direct measurements of KIc in polycrystalline antigorite using the semicircular bend (SCB)
methodology (Kuruppu et al., 2014) but also measurements of the tensile strength, 𝜎t, by the Brazil disk test
(International Society or Rock Mechanics, 1978), both at room temperature. For both the SCB and Brazil
tests, sample geometry and experimental setup are as described in Inskip et al. (2018), to the exceptions that
the constant displacement rates are 0.3 and 0.5 mm/min for the SCB and Brazil tests, respectively; the ratio
of the notch depth to the sample radius is 0.4 (see Figure 6 of that publication) for the SCB test; and the sam-
ple diameter and thickness are 40 by 20 mm for the Brazil test. The SCB and Brazil tests were carried out,
respectively, on two and three isotropic antigorite polycrystalline samples of exactly the same material as in
the experiments of David et al. (2018) and the Griggs experiments presented above. The fracture toughness
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Table 3
Calculated Yield and Dilatancy Contributions to the Dilatancy Stress in Equation 41, for Antigorite,
at the Pressures and Temperatures of the Experimental Data Set Shown in Figure 8

Temperature Pressure, 𝜎2 Yield term +Dilatancy term =Dilatancy stress, 𝜎1

(◦C) (MPa) (MPa) (MPa) (MPa)
20 150 330 1,410 1,740
20 1,000 2,220 1,410 3,630
400 1,000 1,550 1,180 2,730
500 1,000 1,370 1,110 2,480

of antigorite is found to be KIc = 2.2 MPa·m1/2. Such value appears to be in the high range of KIc measured on
crystalline rocks (Zhang, 2002) and slightly greater than those measured on granites, for example, Westerly
granite (KIc = 1.8 MPa·m1/2, Meredith & Atkinson, 1985). The experimentally determined value of the ten-
sile strength from Brazil tests is 𝜎t = 34 MPa. The valuable information gained from this measurement is
that the ratio of the tensile strength to the fracture toughness for antigorite is about 15·m−1/2, which is about
2.2 times the ratio typically observed for most rocks (𝜎t = 6.9KIc, Zhang, 2002). We recall that, according to
Griffith analysis, 𝜎t = (C∕

√
2c)KIc, where C is a dimensionless geometric constant and c is the characteristic

crack radius. If we now invoke the assumption that the geometrical constant C does not drastically change
between materials, that the ratio 𝜎t/KIc in antigorite is 2.2 greater than most rocks implies a characteristic
crack size which is 2.22 ≈ 5 times smaller than the mean for other rock materials—at least in tension.

Looking at the functional form of the dilatancy term in Equation 41, it is therefore entirely reasonable to
expect that, under a relatively high KIc and a small crack radius c, the dilatancy term is very large for antig-
orite. We have accordingly reported in Table 3 the calculated contributions of the “yield term” and the
“dilatancy term” to the dilatancy stress 𝜎1 in Equation 41, as functions of pressure and temperature, using
the obtained model values for the friction coefficient at each temperature (Table 2), the experimentally mea-
sured KIc (assumed to be temperature independent), and a characteristic crack length assumed to be equal
to the average observed grain size in the antigorite samples, that is, 2c = 10 μm. At all pressures and tem-
peratures, the dilatancy term is greater than 1 GPa, and the total stress required for the onset of dilatancy
is larger than the maximum stress in the cyclic loading experiments (Figure 8), which validate our model
assumption and data interpretation that, in antigorite, Mode I crack propagation is not a favored mechanism
for producing inelastic strain.

7. Conclusions
We have extended the microphysical model of David et al. (2012) for the effect of sliding cracks on the uni-
axial loading-unloading of a rock to a triaxial state of stress and to the entire reloading process. In addition,
analysis has been given for a combined “cohesive plus frictional” constitutive crack sliding behavior. Results
have been derived for cracks that are either randomly oriented or aligned at a given angle to the maximum
compressive stress. For loading, unloading, and reloading, closed-form expressions have been derived for
the evolution of the Young's modulus with stress, for the yield stress demarcating the transition between the
elastic and inelastic regimes, and for the critical angles for sliding activity in the case of randomly oriented
cracks. The dissipated strain energy upon unloading-reloading has also been calculated. The two consti-
tutive “end cases” of purely frictional and cohesive crack sliding are treated separately and compared to
experimental data. Both purely frictional and cohesive models provide a good fit to a cyclic loading data set
on the triaxial deformation of polycrystalline antigorite under various pressure and temperature conditions:
One portion of the data set, at 150 MPa confining pressure and room temperature, was taken from the litera-
ture; the rest of the data set at 1 GPa confining pressure and room temperature, 400◦C and 500◦C, was newly
acquired in a Griggs deformation apparatus. We found that the stress-strain curves can be inverted from
the models assuming that the specimens have the same crack density, temperature-dependent uncracked
Young's modulus, and coefficient of friction (for the purely frictional model) or cohesive yield stress (for the
purely cohesive model). The values of the parameters are physically reasonable. The stress-strain behavior
at increasing temperature can be simply explained by a decreasing friction coefficient. The purely frictional
model seems to better capture the low-pressure behavior, while the purely cohesive model could be more
adequate at high pressures, at least in the range of pressure of this study.
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The ability of the model to characterize actual numerical values of the parameters is limited by a num-
ber of assumptions. First, we assume a plate-like specimen under plane-stress conditions. The choice of
a two-dimensional analysis was motivated by the greater simplicity of mathematical treatment, but also
by the intended scope of incorporating in-plane crack propagation in the model at a later stage, for which
calculations are much more approachable in the two-dimensional case. Extending the present model to a
three-dimensional analysis would pose no major conceptual and computational problems but would essen-
tially require additional integrations for crack orientations over the azimuthal range as in Kachanov (1982a).
Nevertheless, it is expected that results in an axisymmetric three-dimensional case would essentially differ
from those in the two-dimensional case by a geometrical factor that should include the Poisson's ratio of
the material but should not affect the qualitative evolution of the elastic modulus with stress and the result-
ing features of the stress-strain curve. We have used the no-interaction approximation for simplicity of the
analysis. This rigorous but simplified assumption unavoidably leads to underestimating the effect of slid-
ing cracks on inelastic deformation (Horii & Nemat-Nasser, 1983), and the obtained crack densities should
be considered as indicative. However, contrary to purely elastic processes such as wave propagation in a
cracked medium, the applicability of effective medium theories to inelastic and dissipative process such as
crack sliding (Horii & Nemat-Nasser, 1983) remains unclear. In addition, numerical simulations indicate
that, in taking into account the effect of cracks, the no-interaction approximation appears to be accurate up
to high crack densities (Kachanov, 2007).

The model can be applied to triaxial deformation experiments (and particularly cyclic loading experiments)
on rocks or materials that are initially isotropic, in which one compressive stress is increased above a con-
stant confining stress. The value of the confining pressure should be sufficient so that microcracks are closed
and their faces are into contact. The completion of crack closure can be checked by looking at the evolution
of elastic wave velocities with increasing pressure, if available. Ongoing crack closure would also result in
a “concave-upward” inflexion of the stress-strain curve at the beginning of loading, like that demonstrated
by David et al. (2012) during uniaxial loading. The main restriction of the model is that inelastic behavior
is purely caused by sliding on cracks; hence, it should be applied to stress ranges or rock types exhibit-
ing no dilatancy or Mode I opening; the latter can be checked from volumetric strain data or elastic wave
velocities, for instance. In observing the stress-strain data, the inelastic portions during loading and unload-
ing should be carefully compared as they can distinguish between a frictional-type behavior (greater slope
during unloading than during loading) and a cohesive-type behavior (same slope during loading and unload-
ing). In inverting the cyclic loading data here we have made no direct use of the dissipated strain energy, since
it is much more precise to invert an entire stress-strain curve than a single value of the dissipated energy for
a given stress. Nevertheless, quantitative use of the dissipated strain energy can be convenient in situations
where extraction of the stress-strain curve from raw load-displacement data is difficult, as, for instance, in
the cyclic loading indentation tests of Hansen et al. (2020). If measured at increasing stress during “internal
friction” stress cycles under static or very low-frequency conditions, the dissipated strain energy can also be
useful to distinguish between a purely frictional behavior (quadratic in stress) and purely cohesive behavior
(linear in stress).

Data Availability Statement
Experimental data are available from the U.K. National Geosciences Data Centre (https://www.bgs.ac.uk/
services/ngdc/) or upon request to the corresponding author.
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