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a r t i c l e i n f o

Article history:

Received 24 September 2009

Received in revised form

30 January 2012

Accepted 2 February 2012

Keywords:

Cracks

Sliding cracks

Hysteresis

Uniaxial compression

Sandstone

Granite
09/$ - see front matter & 2012 Elsevier Ltd. A

016/j.ijrmms.2012.02.001

esponding author. Tel.: þ44 207 594 7412; fa

ail address: emmanuel.david08@imperial.ac.u
a b s t r a c t

Uniaxial compression tests on rocks, if conducted at stresses below failure, typically exhibit both

non-linearity and hysteresis in the stress–strain curve. In a series of three papers in 1965, Walsh

explained this behavior in terms of frictional sliding along the faces of closed cracks. Although well

known and widely cited, Walsh’s model does not seem to have previously been developed in sufficient

detail to be used for quantitative predictions. We revisit and extend his model, by including the effect of

the stress required to close an initially open crack, and by examining the unloading process in detail.

Our analysis leads to closed-form expressions for the loading and unloading portions of the stress–

strain curve, as functions of elastic modulus of the uncracked rock, the crack density, the characteristic

aspect ratio, and the crack friction coefficient. The model provides a good fit to the loading and

unloading portions of the stress–strain curves, for some data on Berea sandstone taken from the

literature, and for some new experimental data acquired on thermally cracked La Peyratte granite.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanical behavior of rocks is to a great extent controlled
by the presence of cracks and crack-like voids. This is true both with
regards to the elastic behavior of the rock [1], and with regards to
inelastic processes such as yielding and failure [2]. In 1965, Walsh
[3–5] published a set of three papers that provide the conceptual
basis of much of our understanding of the influence of cracks on
elastic rock deformation.

Under hydrostatic loading [3], open cracks initially (i.e., at low
stresses) contribute an excess compliance to the rock. As the stress is
increased, each crack closes up at a stress that is roughly equal to aE,
where E is the Young’s modulus of the uncracked rock, and a is the
initial aspect ratio of the crack. After a crack is closed, it is assumed to
make no contribution to the behavior of the rock under hydrostatic
loading, because such loading is assumed to cause no resolved shear
stress on a closed crack face. This model has been extended [6,7] to
account for the presence of a distribution of aspect ratios. The
resulting models successfully explain how the bulk compressibility
of a cracked rock decreases with increasing confining pressure,
eventually leveling off to a value that reflects the intrinsic compres-
sibility of the minerals, along with the influence of any non-closable
‘‘equi-dimensional’’ pores.
ll rights reserved.
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Under deviatoric loading, the effect of cracks is more compli-
cated. Consider the case of uniaxial compressive loading, and
imagine that there is only one crack, oriented at some angle to the
direction of the externally applied axial stress. Initially, the crack
is open, and contributes an additional compliance to the rock. At a
certain stress, related to the initial aspect ratio and the angle of
orientation, the crack will close, causing the effective Young’s
modulus to increase. Depending on the angle of orientation, a
further increase in axial stress may cause the two crack faces to
begin to slide. In this situation, the crack contributes to the overall
compliance, but by an amount that is different than that of either
an open crack or a non-sliding closed crack. If the axial stress is
decreased, the cracks will eventually undergo reverse sliding, but
in a way that is ‘‘asymmetric’’ with respect to loading and
unloading. Hence, the stress–strain curve will exhibit hysteresis.
Walsh [4] modeled the cracks as two-dimensional elliptical voids,
utilizing the known solution [8] to the elasticity problem for a
crack under a compressive stress that is oriented at some
arbitrary angle to the crack plane. The constitutive frictional law
for closed crack faces was taken to be the classical law of
Amontons, in which, during quasi-static sliding, the resolved
shear stress t acting on the closed crack faces must exceed ms,
where s is the resolved normal stress and m is the friction
coefficient. We follow Walsh’s approach, but with a few mod-
ifications and extensions. First, Walsh’s analysis was a mixture of
two- and three-dimensional considerations, in that elasticity
solutions for two-dimensional cracks were used, yet the cracks
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Fig. 1. Thin plate of dimensions L�b� t, containing a single elliptical crack whose

plane makes an angle b with the direction of the applied compressive stress, s.
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were assumed to be three-dimensional objects with their normal
vectors distributed randomly in three-dimensional space. Although
this has little fundamental influence on the results, the hybrid
nature of Walsh’s approach renders it difficult to reproduce and
extend the model. Hence, we assume a thin plate-like specimen in
which all the cracks lie parallel to the ‘‘thin’’ direction, and then
consistently use a plane stress analysis. Our results can be converted
into those applicable for plane strain by a simple re-definition of the
Young’s modulus.

More fundamentally, Walsh simplified his calculations by
assuming that the stress required to close an initially open crack
was negligible compared to the actual applied stress. As the stress
required to close a crack increases drastically as the plane of the
crack approaches the direction of the externally applied stress,
this assumption can never be true for many of the cracks. We
eliminate this assumption, and consider both the closure process
and the subsequent sliding process. Finally, although Walsh
showed that the effective elastic modulus at the onset of unload-
ing will be nearly equal to the modulus of the hypothetical
uncracked rock, he did not explicitly analyze the unloading
process. We extend the analysis to cover the entire unloading
portion of the stress–strain curve.

In the decades following Walsh’s original paper, several research-
ers have developed this model further, in various directions. Kacha-
nov [9] developed a formalism for treating sliding on a system of
randomly oriented penny-shaped cracks, including the effects of both
an axial stress and a lateral (i.e., traditional triaxial) confining stress,
but assumed, as did Walsh, that the crack faces were initially closed.
Horii and Nemat-Nasser [10] considered a sliding-crack model based
on three-dimensional penny-shaped cracks, but treated in detail only
the two limiting cases of m¼0 and m¼N. Lawn and Marshall [11]
extended Walsh’s model by adding a cohesion term to the frictional
constitutive law for the cracks, thereby allowing the model to predict
yield-type behavior, but again retained the simplification of assuming
that the compressive stress required to initially close a crack is
negligible. Despite the extensive analysis presented in these and other
works, the full implications of Walsh’s frictional sliding crack model
do not yet seem to have been explicitly developed for the entire
‘‘elastic’’ portion of the loading and unloading process.

We note in passing that a much larger number of papers have
been devoted to models in which the cracks propagate under
suitably large applied stresses, giving rise to inelastic behavior.
The phenomenon of crack extension is outside the intended scope
of our model.
2. Effect of a single crack during loading

Consider a rock specimen of length L, width b, and thickness t,
containing a single open elliptical crack of half-length c, subjected
to a uniaxial compression s in the longitudinal direction (Fig. 1).
The effective Young’s modulus of this specimen can be defined
by [1]

s2bLt

2Eeff
¼
s2bLt

2E
þDW , ð1Þ

where E is Young’s modulus of the uncracked rock, DW is the
excess energy stored in the rock due to the presence of the crack,
and bLt is the volume of the plate.

If the crack is open, and the plane in which it lies (note: not its
normal vector) is oriented at an angle b to the direction of the
applied stress, the excess energy term is, under the assumption of
plane stress, equal to [4]

DWopen ¼
ps2c2tsin2b

E
, ð2Þ
This result can be transformed into one appropriate for plane
strain by replacing E by E/(1�n2), where n is the Poisson’s ratio of
the uncracked rock. To simplify the notation, we consider the
case of plane stress, in which case n does not appear. However,
the term (1�n2) is usually very close to unity, in any event.
Hence, the effective modulus of a rock containing this single crack
will be

E

Eeff
¼ 1þ2gpsin2b, ð3Þ

where g¼c2/bL is the two-dimensional crack density parameter.
Now consider the case when the crack is closed, so that the

two opposing faces are in contact and sliding past each other. The
energy, supplied by the externally applied stress that is required
to cause the crack faces to slide is given by [4]

DWsliding ¼
psc2t

E
ðt�tf Þsinbcosb, ð4Þ

where ssinbcosb¼ t is the resolved shear stress along the crack
plane, and tf is the frictional stress that resists the sliding.
Adopting the simplest law of sliding friction, we assume that tf

will equal msn, where m is the friction coefficient and sn is the
resolved normal stress acting on the crack surface. Following
Walsh’s argument, if sc is the normal stress necessary to cause the
crack faces to close up and come into contact, then the actual
‘‘effective’’ value of the resolved normal stress acting on the crack
will be seff

n ¼ sn�sc . But sn ¼ ssin2b, so, combining all of these
relations, the difference between the resolved shear stress and the
frictional resistive shear stress is

t�tf ¼ ssinbcosb�mðsn�scÞ, ð5Þ

which is to say,

t�tf ¼ s sinbcosb�msin2bþmsc

s

� �
, ð6Þ
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Fig. 2. Three cracks at different orientations, under a given compressive stress, s.

One of the cracks is open, one is closed but not sliding, and the other is closed and

sliding. The critical angles that delineate these three regimes are given by Eqs. (10)

and (14).
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Inserting Eq. (6) into Eq. (4) yields

DWsliding ¼
ps2c2t

E
sinbcosb�msin2bþmsc

s

� �
sinbcosb, ð7Þ

In conjunction with the general expression (1), we can then
say that the effective elastic modulus for the rock containing a
single sliding crack will be

E

Eeff
¼ 1þ2gpðsinbcosb�msin2bþmsc

s
Þsinbcosb, ð8Þ

Finally, we note that if a crack is closed but not sliding, it
makes no contribution to the energy, and hence no contribution
to the elastic modulus.

2.1. Criterion for a crack to be open or closed

Although we now have relations for the effects on the elastic
modulus of an open crack or a closed sliding crack, it remains to
derive criteria to decide whether or not a given crack is open or
closed, or, if closed, to decide if it is sliding. The normal stress sc

required to close an elliptical crack whose initial aspect ratio is a
is Ea/2 [12], where a is defined to be the ratio of the minor axis to
major axis, so that ao1. Furthermore, by our definition, a is the
initial aspect ratio of the crack, at zero stress. The original model
of Walsh, as well as the other models mentioned above, corre-
spond to the idealized case of a¼0.

The resolved normal stress on the face of the crack is
sn ¼ ssin2b, so the criterion for a crack to be open at an applied
compressive stress s is ssin2bosc ¼ Ea=2. Hence, at a given
stress s, a crack will be open if b o bc, and closed if b 4 bc,
where the critical angle bc is given by

bcðsÞ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffi
sc=s

p
: ð9Þ

If we normalize the stresses with respect to the stress required
to close a crack that is oriented normal to the applied stress, the
critical angle can be expressed as

bcð
_sÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffi
1=_s

q
, _s ¼ s=sc ¼ 2s=Ea: ð10Þ

Cracks at all orientations will be open at stresses below sc,
which is to say, at normalized stresses below 1. When _s ¼ 1,
bcð

_sÞ ¼ p=2, and only those cracks that are precisely normal to
the loading direction will close. As s increases, cracks that are
oriented at smaller angles to the loading axis will close, since Eq.
(10) shows that the critical angle bcð

_sÞ decreases as_s increases.

2.2. Criterion for a crack to be sliding

For a crack to be sliding, it must of course already be closed.
Hence, one necessary condition for sliding is b4bc ¼ arcsin

ffiffiffiffiffiffiffiffiffi
1=_s

p
.

However, we must also consider the fact that sliding can occur
only if the resolved shear stress exceeds the frictional resistive
stress, which is to say, from Eq. (6),

sinbcosb�msin2bþ
m
_s

40, ð11Þ

Using standard trigonometric identities, this condition can be
rearranged as follows:

sin2bþmcos2b�mþ 2m
_s

40: ð12Þ

cos 2b�arctanð1=mÞ
� �

4
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
p 1�

2
_s

� �
, ð13Þ

which is to say,

bobs ¼
1
2 arccos

m 1�ð2=_sÞ
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
( )

þarctan
1

m

� �" #
: ð14Þ
It can be shown by manipulation of Eq. (14) that when_s ¼ 1,
bs¼p/2, and when _s-1, bs-arctanð1=mÞ. Moreover, it can be
verified numerically that, for all normalized stresses _s41,
the critical angle for sliding, bs, as given by Eq. (14), exceeds the
critical angle for closure, bc, as given by Eq. (10).

To summarize, if _so1, a crack at any orientation to the
direction of externally applied stress will be open. If_s41, cracks
will be open if b o bc, and closed if b4bc, where the critical
angle for closure is given by Eq. (10). A closed crack will be sliding
if bc o b o bs, and will not be sliding if bs o b o p/2, where the
critical angle for sliding is given by Eq. (14). Since bc o bs for all
_s41, there will always be a range of crack orientations for which
sliding will occur. The situation is illustrated in Fig. 2.
3. Loading of a rock containing randomly oriented cracks

Now imagine that the rock contains a distribution of N cracks,
each with the same size, and with their orientation angles
uniformly distributed. By symmetry, we need only consider the
range of values 0rbrp/2. To simplify the calculations, we
invoke the ‘‘no-interaction’’ approximation, in which the excess
energy due to each crack is computed as if it were an isolated
crack in an infinite body [4,13]. This approximation is very
accurate at low crack densities, but becomes increasingly in error
as the crack density increases beyond about 0.1 [14]. Alternative
methods to approximately account for crack–crack interactions
are discussed briefly in Section 6.

In the regime_so1, all cracks are still open. If we continue to
ignore interactions between cracks, the contributions of each
crack to the compliance will be additive, and so we can average
the right-hand side of Eq. (3) over the range 0 r b r p/2, to find

E

Eeff
¼ 1þgp, ð15Þ

where g¼Nc2/bL is the standard two-dimensional crack density
parameter. If we define a normalized elastic modulus as

_
E ¼

Eeff=E, then the normalized modulus for a body containing N

randomly distributed open cracks will be
_
E ¼ 1=ð1þpgÞ.
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For_s41, we must integrate the right-hand term in Eq. (3) for
those cracks that are open, i.e., b o bc, and the right-hand side of
Eq. (8) for those closed cracks that are sliding, i.e., bc o b o bs. As
mentioned above, cracks for which b 4 bs will be closed and not
sliding, and so make no contribution to the energy budget. We
now introduce the temporary notation 1=

_
E ¼ 1þCopenþCsliding,

where the C terms are compliances due to the open and sliding
cracks, respectively.

From Eq. (3), the compliance due to the open cracks, when
_s41, is

Copen ¼
2

p

Z bc

0
2gpsin2bdb¼ 4g b

2
�

1

4
sin2b

	 
arcsin
ffiffiffiffiffiffiffi
1=_s
p

0

¼ 2g arcsin
ffiffiffiffiffiffiffiffiffi
1=_s

q
�

1
_s

ffiffiffiffiffiffiffiffiffiffi
_s�1

p� �
: ð16Þ

Note that g represents the total crack density; the proportions
of cracks that are open or are sliding are accounted for by the
stress-dependent limits of integration.

From Eq. (8), the compliance due to the sliding cracks is given
by

Csliding ¼
2

p

Z bs

bc

2gpðsinbcosb�msin2bþm 1
_s
Þsinbcosbdb

¼ g 1
2 b�

sin4b
4

� �
�msin4b�

m
_s

cos2b
	 
bs

bc

; ð17Þ

where bc and bs are given by Eq. (10) and Eq. (14), respectively.
The full expression for the elastic modulus is then given by
1=
_
E ¼ 1þCopenþCsliding.
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Fig. 3. Evolution, with stress, of the critical angles (in degrees): for closure/

opening of the cracks during loading/unloading, as given by Eq. (10); for frictional

sliding of the cracks during loading, as given by Eq. (14); and for reverse sliding

during unloading, as given by Eq. (25). The friction coefficient is taken to be

m¼0.6.
4. Effect of cracks during unloading

Assume now that the applied compressive axial stress has
increased to some value smax, after which it begins to decrease. A
decrease in the compressive stress can be thought of as super-
position of a tensile stress, i.e., a stress of the opposite sign. If the
applied stress is reduced from smax to some value s, where
s¼ smax�Ds, there will be an associated decrease Dt in the shear
stress acting on the crack, and a decrease Dtf in the frictional
resistive stress. Reverse sliding will occur if [4]

DtþDtf�2 tmax
f 40, ð18Þ

where

Dt¼Dssinbcosb¼ ðsmax�sÞsinbcosb, ð19Þ

Dtf ¼ mDsn ¼ m ðsmax�sÞsin2b, ð20Þ

tmax
f ¼ m ðsmax

n �scÞ ¼ mðsmaxsin2b�scÞ: ð21Þ

Condition (18) for reverse sliding becomes, in terms of the
normalized stresses,

ðŝmax
�ŝÞsinbcosbþmðŝmax

�ŝÞsin2b�2mðŝmaxsin2b�1Þ40,

ð22Þ

After some trigonometric manipulation, we find that reverse
sliding will occur if the stress during unloading satisfies the
following criterion:

mð_smax
þ
_sÞcos2bþ ð_smax

�
_sÞsin2b4mð_smax

þ
_sÞ�4m, ð23Þ

Therefore, the condition for reverse sliding can be summarized
as follows:

_s41, bc obobrs, ð24Þ
where the critical (maximum) angle for reverse sliding is given by

brs ¼
1
2 arccos

mð_smax
þ
_sÞ�4mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
_smax

�
_sÞ2þm2ð

_smax
þ
_sÞ2

q
2
64

3
75þarctan

_smax
�
_s

mð_smax
þ
_sÞ

 !8><
>:

9>=
>;:
ð25Þ

By analogy with Eqs. (4) and (17), and making use of Eqs.
(19)–(21), the excess compliance contributed by those cracks that
are undergoing reverse sliding will be given by

Creverse ¼
2

p

Z brs

bc

2gpðDtþDtf�2tmax
f Þsinbcosbdb

¼ g 1
2 b�

sin4b
4

� � _smax

_s �1

 !
�m ŝmax

þ1
� �

sin4b�
2m
_s cos2b

" #brs

bc

ð26Þ

The full expression for the elastic modulus is now given by
1=
_
E ¼ 1þCopenþCreverse, with Copen given by Eq. (16), and Creverse

given by Eq. (26).
In order to initiate reverse sliding, Eq. (18) shows that the resolved

shear stress must not only start to decrease, but must decrease by a
finite amount. Hence, at the onset of unloading, any cracks that had
not yet closed during loading will remain open, those closed cracks
that had not been sliding remain ‘‘stuck’’, but those cracks that had
been sliding will now also be stuck. Hence, the elastic modulus
increases by a finite amount at the start of unloading, and so the rock
will unload at a steeper slope (when plotted as stress vs. strain) than
it had at the end of the loading phase. This model therefore is capable
of predicting the existence of hysteresis, as is typically observed in
real uniaxial stress–strain curves [15,16,17].

Fig. 3 represents the evolution, as a function of the normalized
stress, of the critical angles for closure, sliding and reverse sliding,
as given by Eqs. (10), (14) and (25), respectively. The values of
these critical angles are not given for _so1, since _s ¼ 1 is the
stress required to close the first crack. The friction coefficient has
been taken to be m¼0.6. The cracks whose orientation is below
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the closure criteria can be seen as open cracks. Closure proceeds
at a rate such that, for example, 70% of the cracks already are
closed when _s ¼ 4. Nevertheless, a significant portion of the
cracks remain open even for ‘‘high’’ stresses. The cracks mobilized
by frictional sliding during loading (or reverse sliding, during
unloading) are those cracks lying between the critical angles for
closure and sliding (or reverse sliding, during unloading). Note
that reverse sliding does not occur at the beginning of unloading;

moreover, it can easily be shown from Eq. (25) that as_s-_smax
,

brs-bcð
_smax

Þ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=_smax

q
; this result does not depend on

the friction coefficient. Fewer cracks are mobilized during unload-
ing than during loading, resulting in hysteresis.
5. Effects of the various parameters

Expressions for the evolution of the elastic modulus with the
applied macroscopic stress have been derived, for both the loading
and unloading regime. The strain can be calculated by integrating the
relation de¼ds/Eeff. From our definitions of normalized stress and
modulus, a normalized strain can be defined by d_e ¼ d_s 0=_E. It follows
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from our previous definitions of _s and
_
E that_e ¼ 2e=a. Except for the

regime of _so1, when all cracks are still open, the strain must be
calculated by numerical integration.

For a given loading–unloading cycle, the normalized modulus
and the following normalized stress–strain curve depend on four
parameters: the Young’s modulus of the uncracked rock, E; the
initial aspect ratio of the cracks, a; the crack density, g; and the
friction coefficient acting on the crack faces, m.

The normalized modulus,
_
E ¼ Eeff=E, scales inversely with the

modulus of the uncracked rock, E. Hence, the dependence on E is
trivial.

The aspect ratio enters the model through the definition of the
dimensionless stress,_s ¼ 2s=Ea. Since

_
E is independent of stress

for _so1, the aspect ratio controls the stress level at which
nonlinear behavior begins. For example, for a hypothetical rock
in which E¼20 GPa and a¼10�4, nonlinearity (i.e., crack closure
and subsequently frictional sliding) begins at a stress of
s¼1 MPa. If the aspect ratio were ten times greater, a¼10�3,
then nonlinearity would begin at s¼10 MPa.

Fig. 4 shows the stress dependence of the effective modulus,
and the resulting stress–strain curves, for three values of the
crack density, g¼0.25, 0.5 and 0.75, for one fixed value of the
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friction coefficient, m¼0.6. Fig. 5 shows the equivalent plots for
three values of the friction coefficient, m¼0.3, m¼0.6, and m¼0.9,
for one fixed value of the crack density, g¼0.5.

Because we used the no-interaction approximation for calcu-
lating the effective modulus, the compliance (1/

_
E) is a linear

function of crack density. Hence, if all other parameters are held
constant, the compliance will be a linear function of g, although
this simple behavior is masked if the modulus is plotted instead
of the compliance. The resulting effect of increasing the crack
density is a more pronounced compliance, more non-linearity and
a larger hysteresis loop, as illustrated in Fig. 4.

The only parameter whose influence cannot be seen in a clear
manner from the equations is the friction coefficient, m. Physi-
cally, one can expect the effect of sliding to decrease with
increasing values of m, thus resulting in increasing stiffness, and
less pronounced non-linearity and hysteresis, as illustrated in
Fig. 5. The extreme case of m¼N, although not physically
realistic, is not shown in Fig. 5, but would result in a perfectly
‘‘reversible’’ stress–strain curve, without any hysteresis.

It is commonly asserted in the literature that after a phase of
non-linearity, caused by the closure of the cracks, the subsequent
nearly-linear regime is representative of the compression of an
uncracked elastic body. This is a good approximation under
hydrostatic stress [7], but not under deviatoric loading. For
realistic values of the friction coefficient, as shown in
Figs. 4 and 5, frictional sliding of the cracks provides an excess
compliance and causes non-linear behavior, although the
nonlinearity is less pronounced than that due to the closure of
the cracks. For high values of stress, even when the cracks are
mainly closed, the effective modulus during loading is never
equal to the uncracked modulus, and has a value of usually
around 70–90% of E (see Fig. 4(a) and Fig. 5(a)). The uncracked
rock modulus E can be only inferred from the slope of the stress–
strain curve at the beginning of unloading, as this slope does not
depend on any of the microstructural parameters, as the cracks
are closed and stuck.
[16], and the curve is generated by our sliding-crack model. Parameter values used

in the fits are discussed in the text.
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6. Application of model to experimental data

6.1. Berea sandstone

Consider the uniaxial stress–strain curves measured by Guyer
et al. [16] and Nihei et al. [17]. In both cases we ignore all data
below 4 MPa, as it is well known [18] that in unconfined
compression tests, frictional effects between the rock specimen
and the loading platen can lead to experimental artifacts in the
stress–strain curve that can be quite pronounced in the low stress
range. Bésuelle [18] discussed these experimental issues in detail,
and made great efforts to avoid these frictional artifacts. More
discussion of this assumption is given in Section 6.2.

We used a nonlinear least-squares method to fit our model to
these two sets of data, with E, a, g and m as the fitting parameters.
The residuals tend to have broad minima over quite large regions
of the parameter space. However, the precise values of the fitted
parameters are of less interest to us than the question of whether
or not the entire hysteretic curve can be fit using reasonable
values of the parameters. The only parameter that can be inverted
with little uncertainty is the aspect ratio of the cracks, a, which
controls the stress level at which non-linear behavior begins.
There is a partial trade-off between the uncracked modulus E and
the crack density g, with the effect of a higher uncracked modulus
being to some extent compensated by a higher crack density, as
shown by Eq. (15). However, this trade-off is valid only for
low stresses, as non-linearity and hysteresis at higher stresses
does not depend on the uncracked modulus. Finally, the friction
coefficient, m, is not very well constrained by the data, since the
influence of this parameter is weak, as shown in Fig. 5.

Fig. 6 shows the best fit of the data of Guyer et al. [16],
with E¼3471 GPa, a¼1.9�10�4710�5, g¼1.970.2, and
m¼0.7570.1; the standard deviation is sd¼3.4�10�5. The
best fit to the data of Nihei et al. [17]; is shown in Fig. 7,
with E¼2771 GPa, a¼1.9�10�4710�5, g¼1.570.2, and
m¼0.7570.1; the standard deviation is sd¼3.0�10�5. Our
model is able to fit all features of the stress–strain curves, using
reasonable value of the parameters.
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6.2. Thermally cracked granite

We have also carried out a set of uniaxial compression
experiments on a thermically cracked granite, at the Laboratoire
de Géologie of École Normale Supérieure (Paris). The rock selected
was a fine-grained granite from the La Peyratte quarry (France),
composed of 40% plagioclase, 26% K-feldspar, 24% quartz and 10%
biotite, with a grain size almost constant of around 1.5 mm [19].
The rock has a P-wave velocity anisotropy lower than 1.5%, and so
we can consider that the specimens are isotropic. Six cylindrical
specimens of 85 mm length and 40 mm diameter were cored and
rectified to ensure perfect parallelism of the two end surfaces.
One specimen was not thermically treated, and the five other
specimens were heat-treated for 24 h at selected temperatures:
200 1C, 300 1C, 400 1C, 500 1C and 600 1C, after which they were
directly cooled down to room temperature (RT); such a procedure
is known to induce thermal cracking [20,21].

The specimens being previously air dried at 50 1C for 48 h,
six uniaxial compression experiments we conducted in dry condi-
tions, realizing a loading–unloading cycle until a constant maximal
stress equal to 75 MPa (accuracy of 0.01 MPa). Axial strain measure-
ments were measured using a strain gauge (TML FLA-10–11,
Tokyosokki) glued onto the specimen’s surface (accuracy of 10�6).
The strain rate was �2�10�6/s. Following Bésuelle [18], frictional
effects were reduced in our experimental tests by using a lubricant
(50% Vaseline and 50% stearic acid). We then removed a small
amount of stress (of around 4 MPa) from the data, corresponding to
what we considered to reflect frictional effects. The corresponding
strain that was removed, of around 10�4, is very small compared to
the total strain eventually undergone by the specimen (see Fig. 8).

The maximal axial stress chosen (75 MPa), which was constant
in all six tests, is approximately 30% of the UCS of the rock, whose
measured value is between 210 MPa and 230 MPa. An acoustic
transducer glued to the surface of the specimen revealed no
acoustic emissions throughout the loading–unloading cycle, con-
firming the absence of crack extension, which is an additional
argument to confirm that all the uniaxial tests were conducted in
the purely ‘‘elastic’’ regime. Note that the maximum stresses in
Fig. 8 are each less than 75 MPa, due to the aforementioned
removal of the suspect low-stress data, the precise range of which
differed slightly in each case.

Thermal cracking is known to cause the formation of many
cracks in a rock [20,21,22]. We then expect the aspect ratio of the
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cracks, as well as the crack density, to vary between the speci-
mens; on the other hand, there is no a priori reason for the
modulus of the ‘‘uncracked’’ rock and the friction coefficient to be
changed with thermal cracking. So, we performed a full inversion
of the six experimental stress–strain curves, assuming that E and
m are the same for all the specimens, allowing only a and g to vary
between the six heat-treated specimens.

By least-square inversion, the best fit of the data is obtained
using E¼7471 GPa and m¼0.6070.05 for all the cracked speci-
mens (Fig. 8). The aspect ratios and crack densities obtained from
the inversions, which vary for each specimen, are shown in
Table 1. Considering the highly nonlinear and hysteretic shape
of the stress–strain curve, it can be said that the model does a
good job of capturing its essential features. Moreover, the values
of the parameters used in this fit are all reasonable. As might be
expected, the most notable change in any of the fitting para-
meters occurred in the crack density, which, according to our
model, increased from 0.2 to 4.4 upon heat treatment. Indeed,
differences of thermal expansion between the minerals cause
crack nucleation; in particular, the drastic increase of crack
density between 500 1C and 600 1C is known to be due to the
a–b transition of quartz, which occurs at 576 1C [20].

Previous uniaxial compression tests on La Peyratte granite
reported the value E¼75 GPa [21], which is consistent with the
value we found, E¼74 GPa. Note that E in this context represents
the modulus of the ‘‘uncracked’’ rock, which reflects the influence
of any non-closable, equi-dimensional pores. Hence, it should be
less than the mean modulus E0 of the minerals that comprise the
rock [7]. For the case of the 600 1C specimen, we observe a total
deformation of around 0.5%. According to our model, a stress of
around 8 MPa, easily calculated from Eq. (10), is required to close
the first cracks. The maximal stress of 75 MPa in the experiment is
ten times greater than this, which shows that most of the cracks
should have been closed (see Fig. 3). Hence, roughly speaking, the
total deformation of 0.5% must then represent the ‘‘compliant’’
crack porosity of the rock. Double weight measurements gave a
total porosity of 2.4% on this specimen. If we consider the crack
porosity to be about 0.5%, the equant porosity should be around
2%. The Voigt and Reuss bounds calculated from the mineralogical
composition of this granite [23] are 75 GPa and 79 GPa, respec-
tively, giving a Voigt–Reuss average modulus E0¼77 GPa for the
mineral frame, which is slightly greater than the uncracked rock
modulus, which we estimated from the inversions to be 74 GPa.
The effect of non-closable pores on the elastic modulus can be
approximated by E/E0¼(1 � f)2 [7]. If we assume that pores are
nearly spherical and E0¼77 GPa from the Voigt–Reuss average, a
non-closable porosity of 2% gives E¼74 GPa for the uncracked
granite, in agreement with the value obtained from our inversion.
This is further evidence that the ability of our model to fit the data
is not merely fortuitous.

The values of all the fitted parameters are plausible and well
constrained; however, very high crack densities such as the best-
fitting crack density of 4.4 for the 600 1C specimen might appear
difficult to accept. Such a high crack density is to some extent an
artifact of having neglected stress-field interactions between
nearby cracks. If we had utilized the differential effective medium
theory (DEMT; [13,24]) instead of the no-interaction approxima-
tion (NI), for example, then the effective modulus in the case of
open cracks, as given by Eq. (15), would be replaced by
_
E ¼ expð�pgÞ. This is equivalent to re-scaling the crack density
according to gdemt ¼ ð1=pÞlnð1þpgniÞ. Assuming that this same
scaling relationship would hold for the closed cracks, then the
crack density inferred from the data for the granite treated at
600 1C would be only 0.86, instead of 4.4. For the untreated
specimen (RT), the differential effective medium theory would
give a crack density of 0.16, instead of 0.2. Because all effective



Table 1
The aspect ratios, crack densities and standard deviations (of the strain), as obtained from the least-squares inversions, as functions of the temperature at which the

specimens were heat-treated.

T RT 200 1C 300 1C 400 1C 500 1C 600 1C

a(710�5) 1.1�10�4 5�10�5 8�10�5 8�10�5 8�10�5 2.1�10�4

g(70.1) 0.2 0.4 0.7 1.6 2.2 4.4

sd 1.7�10�5 2.4�10�5 3.9�10�5 5.8�10�5 9.8�10�5 3.03�10�4
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medium theories that attempt to account for crack–crack interactions
predict an enhanced effect of crack density on the elastic moduli,
using any of these other theories in place of the no-interaction theory
would lead to smaller, and presumably more realistic, values of the
crack density. However, the contentious question of which effective
medium theory best accounts for interactions between cracks is
beyond the scope of our present work.
7. Conclusions

Walsh’s conceptual model for the effect of sliding cracks on the
uniaxial loading of a rock in its elastic range has been extended
throughout the entire loading and unloading cycle. Expressions
have been derived for the energy contributions of open cracks (O),
cracks that are closed and sliding (S), and cracks that are closed
and not sliding (N). Criteria were derived, in terms of the stress
level, the friction coefficient, and the orientation of the cracks
with respect to the applied stress, to determine which of these
three categories each crack falls into. Finally, closed-form expres-
sions were developed for the evolution of the elastic modulus as a
function of the applied stress. The model was able to provide good
fits to many sets experimental data on the uniaxial deformation:
two data sets taken from the literature on Berea sandstone, and a
new set of data on six thermically cracked granite specimens. For
this latter set of data, we found that all the stress–strain curves
can be inverted from the model assuming that the specimens
have the same friction coefficient and uncracked rock modulus,
with only the aspect ratio of the cracks and the crack density
varying with thermal cracking. Pre-heating of the specimens
caused the crack density to increase drastically, particularly for
the core that passed through the a–b phase transition of quartz.

This simple model fits well many sets of uniaxial compression
data, using only a few microstructural parameters: E, a, g and m.
We have also developed the model for the case of an exponential
distribution of aspect ratios. Although presumably more physi-
cally realistic, this model requires much more elaborate calcula-
tions, with a negligible influence on the results, and so has not
been presented in this paper. There seems to be no need to
consider a distribution of aspect ratios, since the uniaxial beha-
vior can be well-explained assuming that all the cracks have the
same initial aspect ratio a, which has then to be thought of as a
representative value for the population of cracks present in
the rock.

The ability of such a model to characterize actual numerical
values of the parameters is limited by several assumptions. First, we
assumed a plate-like specimen under plane stress conditions, with
slit-like cracks passing through the entire thickness of the plate.
Rectifying this simplification would pose no major conceptual or
computational problems, but would merely require additional
integrations over the azimuthal angle. The most serious simplifica-
tion is the assumption that the stress fields around nearby cracks do
not interact with each other. For purely elastic behavior, these
interactions can be accounted for by various simple effective
medium theories [13], but the applicability of these methods to
dissipative processes such as crack sliding is unclear. Consequently,
although we have argued that the inverted crack densities and
aspect ratios are realistic, these inverted parameter values should
only be considered indicative, in light of the various approximations
and simplifications used in the model. We interpret the ability of our
model to fit the laboratory data as showing that the qualitative
features of the uniaxial stress–strain curve of a rock can indeed be
explained in terms of the mechanisms of crack closure and frictional
sliding.

One weakness of the model is that the residual strain at the
end of unloading is sometimes underestimated (Fig. 8). This
implies that the model as developed here might not be applicable
to a second, and subsequent, loading–unloading cycles. In any
event, extension of our approach to subsequent loading cycles
would require all of the criteria for sliding, reverse sliding, etc., to
be reconsidered in terms of cracks which have slid and not
reverse-slid, cracks which have slid and have reverse-slid, etc.

Our model was developed for conditions of uniaxial compres-
sion. In principle, our conceptual model could be extended to the
case of triaxial compression, although it is unlikely that the
required calculations could be carried through in closed-form.
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