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ABSTRACT

A model is proposed for the frequency dependence of elastic wave velocities
in porous rocks, using the spheroidal geometry for the pores. The model is based on
the assumption that the rock contains a distribution of “closable” cracks having small
aspect ratios, and one family of “non-closable” pores. At a given wave frequency, some
pores obey the Gassmann equation, and others are isolated, with a critical aspect ratio
demarcating the two families that depends on frequency and fluid viscosity. An effec-
tive medium model is used to add the compliances of the individual pores, so as to
yield effective moduli. The model also allows for calculation of “intrinsic” seismic at-
tenuation by applying the Kramers-Kronig relations to the velocities. By considering
the crack closure process, the model is capable of describing the frequency dispersion
of both the compressional and shear velocities at each pressure. The predictions, for
some sandstones datasets taken from the literature, show that P and S-wave velocities
generally increase in a relatively similar manner with frequency, and that dispersion of
both velocities rapidly decreases with pressure. Attenuation values are consistent with
typical values found in the literature.

1 Introduction

It is now generally acknowledged that a significant velocity dispersion is ob-
served between the low-frequency “Gassmann” regime of poroelasticity, which occurs
at seismic frequencies, and the high-frequency regime, which occurs at ultrasonic fre-
quencies, such as in laboratory testing of rocks (Winkler, 1986). Dispersion is caused
by the ability of the pore fluid to move from pore to pore at the passing of a wave: in
the Gassmann or “undrained” regime, pores are in local equilibrium, whereas in the
high-frequency of ”isolated” regime, the fluid is completely trapped in each pore and
the induced pore pressure is different from pore to pore. It is well known that frequency
dispersion is greatly dependent on the pore geometry, and more precisely on the pres-
ence of open cracks in a rock (Winkler, 1986; Jones, 1986).

Various mechanisms, comprehensive reviews of which have been notably given
by Jones (1986) and Bourbié et al. (1987), have been proposed to account for the role
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of the pore fluid on velocity dispersion. The effect of viscous relaxation of the fluid
present in a single crack under shear (Walsh, 1969; O’Connell and Budiansky, 1977;
Cleary, 1978) becomes significant only at very high frequencies, around GHz in rocks.
The same remark holds for Biot’s equations of dynamic poroelasticity theory (Biot,
1956b), for which dispersion is accounted for by inertial coupling between fluid and
solid phases. As noted by Bourbié et al. (1987), the dependence of Biot’s character-
istic frequency on both rock permeability and fluid viscosity is the inverse of the one
actually observed in experiments. Another reason why Biot’s model is not completely
satisfying for rocks is that the wavelengths involved for obtaining significant inertial
effects are smaller than the largest pore size, thus violating Biot’s initial assumption
of local equilibrium of variables on a mesoscopic Representative Elementary Volume
(REV). In fact, owing to the same assumption, the theory of Biot did not consider the
existence of local fluid flows and pressure gradients, from pore to pore, generated by
the passing of a wave at “intermediate to high” frequencies.

The local flow mechanism, often referred as “squirt-flow” in the literature
(Mavko and Nur, 1975), is now regarded as the main mechanism responsible for ve-
locity dispersion between sonic and ultrasonic frequencies. Mavko and Nur (1975) and
O’Connell and Budiansky (1977) propose that such dispersion is directly related to the
distribution of pore shapes. More precisely, fluid should be squirted from thin cracks
into the stiff pores, as pore pressures induced at the passing of a wave are higher in the
compliant porosity. A certain number of so-called “squirt-flow models” have been pro-
posed to explain the viscoelastic behaviour of saturated rocks, which are often based on
a distribution of pore geometries (or in different terms, of relaxation times) (O’Connell
and Budiansky, 1977; Mavko and Nur, 1979; Palmer and Traviola, 1980; Jones, 1986);
or, alternatively, on the concept of dual porosity (Mavko and Jizba, 1991; Dvorkin and
Nur, 1993; Pride et al., 2004; Gurevich et al., 2010). However, such models are not
entirely satisfying, as they are only phenomenological, or dependent on diffusive trans-
port laws, since they are based on restrictive assumptions of viscous flow at the pore
scale.

The objective of this paper is to develop a simple model accounting for veloc-
ity dispersion, which is based on a spheroidal pore model (Eshelby, 1957; David and
Zimmerman, 2011a), and can explain the frequency-dependence of saturated velocities
between the Gassmann and high-frequency regimes. It should be recalled that in the
Gassmann regime, saturated velocities can be calculated from the drained velocities by
using the Gassmann equations (Gassmann, 1951); drained velocities are assumed to be
the same as dry velocities, which can be calculated using effective medium theories,
if the distribution of pores shapes is known. In the other limiting regime, at high fre-
quency, saturated velocities can also be calculated by effective medium theories, con-
sidering as such theories implicitly assume that fluid-saturated pores are completely
isolated with regards to fluid flow. It is assumed here that the rock contains an expo-
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nential distribution of crack aspect ratios, and one family of non-closable pores, as such
a type of pore aspect ratio distribution has been shown to successfully invert dry veloc-
ities, as well as to predict saturated ultrasonic velocities, on many sandstones (David
and Zimmerman, 2012). At a given wave frequency, some pores are isolated, and the
other pores obey a Gassmann-type assumption of locally-equilibrated pore pressure.
For a given pore fluid, the critical aspect ratio that demarcates the two families of pores
is related to the frequency, following the relation given by O’Connell and Budiansky
(1977) for the critical frequency of the local-flow mechanism. In this way, the model
proposed here, which is only dependent on a simple distribution of pore shapes, dif-
fers from previous models, as it remains within the philosophy of “effective medium
modelling”, and is not based on any viscoelastic analysis. The model is developed here
in two versions, using either the Differential scheme (Zimmerman, 1984; David and
Zimmerman, 2011b), or the Mori-Tanaka scheme (Mori and Tanaka, 1973).

Seismic attenuation is of great importance in geophysics, due to its extreme
sensitivity to the presence of pore fluids in rocks (Jones, 1986). The attenuation of
interest here is the “intrinsic” attenuation, which is related to the viscoelastic behaviour
of fluid-saturated rocks, as opposed to the “geometric” or “apparent” attenuation, which
is caused by scattering or interference effects as the wave passes through a rock mass.
The model therefore also allows for calculation the intrinsic attenuation by applying
the Kramers-Kronig relations to velocities, if they are considered to be related to the
“real part” of the viscoelastic moduli.

2 Model derivation

Critical frequency for local flow mechanism

Consider a rock whose aspect ratio distribution is known, for instance, by inverting the
pressure dependence of dry velocities measured in the laboratory (David and Zimmer-
man, 2012). The rock contains an exponential distribution of crack aspect ratios c(α)
(see, for instance, Figure 2), and one family of stiff pores of aspect ratio αhp. The non-
closable pores account for the total porosity, φ, which is also assumed to be available
from experiments, as well as the rock density, and the elastic moduli of the minerals,
(K0, G0). At a given frequency f , the critical aspect ratio αc that distinguishes between
the pores that follow a Gassmann-type behaviour of local pore pressure equilibrium,
and the pores that behave as individually undrained, is given by f = ζK0

η
α3
c , so,

αc =

(
fη

ζK0

)1/3

. (1)

Note the introduction of the additional dimensionless coefficient ζ . Indeed, as noted
by O’Connell and Budiansky (1977), the critical frequency for local fluid flow is esti-
mated from simplified diffusive models at the pore scale, which use very idealised pore
geometries. The various estimates proposed in the literature give different values of ζ
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(Mavko and Nur, 1975; O’Connell and Budiansky, 1977; LeRavalec et al., 1996). It
is also unclear from the expressions given in the literature whether the representative
elastic modulus used in equation 1 should actually be the solid’s modulus, an effective
modulus (e.g., of the surrounding material containing other pores), or even the bulk
modulus of the fluid (Cleary, 1978). For these reasons, ζ is taken to be an adjustable
parameter of the model. For simplicity, ζ is also assumed to be independent of pressure.
A first-order pressure dependence on relation (1) could be alternatively taken into ac-
count by assuming that the representative bulk modulus is not the solid’s bulk modulus,
but the effective modulus of the rock, which is also pressure-dependent. Nevertheless,
the question of whether the relation above should be treated as pressure-dependent is
out of the scope of the present paper, as constraining the simplest model is already dif-
ficult due to the lack of experimental data.

In order to distinguish between the “Gassmann-type” and “isolated-type” pores,
equation (1) should be interpreted in the correct way. A given frequency f corresponds
to the critical frequency for local fluid flow to occur in a pore of aspect ratio αc. Such
a pore will be isolated at any frequency greater than f . In other words, all pores having
aspect ratios greater than αc would have critical frequencies greater than f , therefore
such pores have a “Gassmann-type” behaviour at frequency f . In summary, at given
frequency f , pores of lower aspect ratio (α < αc) behave as “isolated” pores, whereas
pores of higher aspect ratios (α > αc) behave as “Gassmann-type” pores.

Calculation procedure

A diagram of the procedure used to calculate the saturated “effective” elastic moduli
as function of frequency (starting from the elastic moduli of the minerals) is schema-
tised in Figure 1. Saturated moduli are in turn converted into saturated velocities, using
the appropriate saturated rock density. Note that the elastic moduli (K,G) denote dry
effective moduli, and barred elastic moduli (K̄, Ḡ) denote saturated effective moduli.
Four different situations are possible, depending on where the value of the critical as-
pect ratio, αc, lies in the pore aspect ratio distribution: in situation 1, which occurs in
the low-frequency limit, all pores are “Gassmann-type”; in the high-frequency limit
(situation 4), all the pores behave as “isolated”(αc is greater than the aspect ratio of
the stiff pores); situation 3 occurs if the value αc lies precisely in between the highest
aspect ratio of closable cracks and the aspect ratio of the stiff pores; finally, in situation
2, non-closable pores are again “Gassmann-type”, but αc now separates a family of
”Gassmann cracks” (having higher aspect ratios) and one family of “isolated cracks”.
Properly speaking, not four but three main types of situations must exist, as the distinc-
tion made between situation 2 and 3 is only an artefact due to the original assumption
that stiff pores are only represented by one average aspect ratio. The calculation pro-
cedure described in Figure 1 is applicable for any effective medium theory, whose use
only differ in the specific way pores are incrementally added. The simulations pre-
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 EMT Effective Medium
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1 2 43

Figure 1. Theoretical process for obtaining saturated effective moduli as function
of frequency.

sented in this paper have been obtained using the Mori-Tanaka and the Differential
schemes.
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Figure 2. Crack porosity distribution function, c(α) at different pressures P , ac-
cording to the Differential scheme (4% porosity Fontainebleau sandstone, after
David (2012)).

Pressure dependence

One of the main interests of the present model, which is purely based on the pore aspect
ratio distribution used as an input, is that frequency dependence of elastic moduli can
be predicted at any pressure. This is simply achieved if the zero pressure distribution
function, c(α), is “updated” at a given pressure P , by considering the crack closure
process (Walsh, 1965; David and Zimmerman, 2012). The effect of increasing pressure
on the crack porosity distribution function is illustrated in Figure 2.

Calculation of attenuation

If the elastic velocity (or elastic modulus) is now considered as the real part MR(ω)
of a “viscoelastic” complex modulus M(ω) = MR(ω) + iMI(ω), where ω = 2πf
denotes the angular frequency, the attenuation Q−1(ω) is simply given by Q−1(ω) =
MI(ω)
MR(ω)

(Bourbie et al., 1987). The imaginary part MI(ω) can be obtained from one of

the reciprocal Kramers-Kronig relations: MI(ω) = 2ω
π

P
∫ +∞
0

[
MR(ω′)
ω′2−ω2

]
dω′, where the

symbol P denotes the Cauchy’s principal value of the integral.

3 Results

The example of a water-saturated 4% Fontainebleau sandstone (see David
(2012); David and Zimmerman (2012)) is taken as the input of the model in all the
subsequent simulations. Predictions for the frequency dependence of P and S-wave
velocities are shown, respectively, in Figures 3a and 3b, at increasing differential pres-
sures ((Pc − Pp), where (Pc, Pp) are the confining and pore pressures, respectively),
taking ζ = 1 (see equation (1)), and according to the Mori-Tanaka and Differential
schemes. By assuming a distribution of “relaxation frequencies”, the model predicts
that P and S-wave velocities increase in a very similar manner with frequency, between
the seismic range (∼ Hz) and the ultrasonic range (∼ MHz). Note that the influence of

2436Poromechanics V © ASCE 2013

 Poromechanics V 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n 
on

 0
3/

30
/1

8.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



i
i

“David and Zimmerman, Biot conference 2013, Vienna” — 2013/2/22 — 13:01 i
i

i
i

i
i

log(frequency)

P
-w

av
e 

ve
lo

ci
ty

 (k
m

/s
)

log(frequency)

S
-w

av
e 

ve
lo

ci
ty

 (k
m

/s
)

a) b)
Differential
Mori-Tanaka0 MPa

Differential
Mori-Tanaka

−3 0 3 6
3.4

3.6

3.8

4.0

 

 

−3 0 3 6

5.2

5.4

5.6

5.8

 

 

10 MPa

30 MPa

90 MPa

0 MPa

10 MPa

30 MPa

90 MPa

Figure 3. Model predictions for a) the compressional seismic velocity; b) the
shear seismic velocity; for water-saturated 4% Fontainebleau sandstone (see David
(2012)), as functions of the wave frequency, at increasing differential pressures
(Pc−Pp). Results are shown for the Mori-Tanaka and Differential schemes, taking
ζ = 1 (see equation (1)).
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Figure 4. Model predictions for a) attenuation of the compressional seismic
velocity; b) attenuation of the shear seismic velocity; for water-saturated 4%
Fontainebleau sandstone (see David (2012)), as functions of the wave frequency, at
increasing differential pressures (Pc−Pp). Results are shown for the Mori-Tanaka
scheme, taking ζ = 1 (see equation (1)).

the parameter ζ is trivial, and would simply result in a shift in frequency of the curves,
as expected. The same effect would be obtained if the viscosity of the fluid was varied
(see equation (1)). From their experimental results, Jones and Nur (1983) suggested
that, indeed, acoustic properties of rocks are actually dependent on the product of fluid
viscosity and frequency, rather than the frequency itself.

An important result is that significant dispersion is observed for both P and S-
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ities, Vp/Vs, for water-saturated 4% Fontainebleau sandstone (see David (2012)),
as a function of the wave frequency, at increasing differential pressures (Pc − Pp).
Results are shown for the Mori-Tanaka and Differential schemes, taking ζ = 1 (see
equation (1)).

wave velocities; although simulations for the bulk and shear modulus are not shown
here, bulk and shear modulus increase by 20% and 10% with frequency at “zero pres-
sure”, respectively. No velocity dispersion is observed at high pressures, when the rock
is only left with the stiff pores. This result was expected, as the fundamental assump-
tion of the model is that velocity dispersion is caused by the presence of cracks, and
more precisely by the difference of local pore pressures between compliant cracks and
stiff pores. The same conclusions are reached for the ratio of P and S wave veloci-
ties, Vp/Vs (Figure 5), which is related to Poisson’s ratio, ν, as V 2

p

V 2
s

= 2(1−ν)
1−2ν , which

is a monotonically increasing function of ν. Poisson’s ratio, which is in turn a mono-
tonically increasing function of the ratio of bulk to shear moduli, is found to increase
monotonically with frequency (at low pressures); however, the sense of evolution of
the ratio Vp/Vs (or, equivalently, of Poisson’s ratio) with pressure (Figure 5) is again
not entirely trivial. For instance, it was shown in David (2012) and Brantut et al. (2012)
that the addition of saturated cracks in a solid could in some cases result in a decrease
in Poisson’s ratio.

The results obtained for the attenuation of P and S-wave velocities (Figure 4)
are consistent with the typical values of attenuation in sandstones found in the litera-
ture, such as those obtained from resonant bar experiments by Winkler et al. (1979) and
Murphy (1982). The relatively small values of attenuation (1000/Q < 3) seem to be
only case-dependent, as values of 1000/Q around 10 were obtained, for instance, when
the model was applied to Vosges sandstone (see David (2012) after Fortin et al. (2007)).
P-wave velocity is more attenuated than S-wave velocity (Figure 4). The same result is
obtained for bulk modulus relative to shear modulus, although attenuation curves for
bulk and shear moduli are not shown here.
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