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We use asymptotic approximations for the elastic compliances (P,Q) of a spheroidal pore as
input in the differential effective medium scheme to derive approximate analytical expres-
sions for the effective moduli of an isotropic solid containing randomly oriented spheroids.
The approximations are valid for crack-like pores having aspect ratios a as high as 0.3, nee-
dle-like pores having aspect ratios as low as 3, and nearly spherical pores (0.7 < a < 1.3).
Analytical solutions for the differential scheme have previously only been available for
the limiting cases of infinitely thin-cracks (a = 0) and spherical pores (a = 1). The relatively
simple approximations found between the limiting cases can account for more realistic
pore shapes, and are valid for a wide range of porosities. The behaviour of the effective
Poisson’s ratio in the high concentration limit shows that m is bounded between the Pois-
son’s ratio of the solid and a fixed point mc that only depends on the aspect ratio of the
pores. The asymptotic expressions for P and Q can also successfully be used as input in
any other effective medium theory, such as the Mori–Tanaka or Kuster–Toksoz schemes.
The relatively simple expressions found for the various effective medium schemes, as well
as the bounds found for the effective Poisson’s ratio, will be useful to simplify the process
of inversion of elastic velocities in porous solids.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Relating the effective elastic properties of porous solids to the pore structure is a classical problem in mechanics, with
many applications in geophysics, materials and biomedical sciences, and many other fields. The effective properties of an
isotropic solid containing randomly oriented voids depend on the elastic moduli of the minerals, on porosity but, also, on
pore shape.

The assumption that the voids can be represented by spheroids, which can account for a wide variety of pore shapes and
are characterized by their aspect ratio, a, offers the possibility of an analytical treatment. Indeed, exact expressions for the
hydrostatic and shear compliances of spheroidal pores directly follow from Eshelby (1957). Unfortunately, Eshelby’s ensuing
expressions for the effective moduli of a material containing these pores are only valid at very small inclusion concentra-
tions. Extending the small-concentration results to higher concentrations has proven to be a difficult task: indeed, the com-
plexity of the interactions of stress and strain fields between nearby pores renders an exact treatment impossible. Among the
various approximate schemes proposed to do this, commonly known as effective medium theories, the differential effective
medium theory (McLaughlin, 1977; Norris, 1985; Salganik, 1973; Zimmerman, 1984) calculates the effective elastic moduli
by considering that inclusions are introduced into the body in small amounts, with the effective moduli re-calculated at each
step; this leads to a pair of differential equations for the effective bulk and shear moduli. The predictions of the differential
scheme always lie within the rigorous bounds derived by Hashin and Shtrikman (1961).
. All rights reserved.
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Evidence has been accruing to show that the differential scheme is quite accurate even at high inclusions concentrations.
This evidence comes from comparisons with numerical simulations (see, among others, (Saenger, Kruger, & Shapiro, 2004,
2006; Shen & Li, 2004)); and with a few sets of experimental data obtained on synthetic materials (Carvalho & Labuz,
1996; Zimmerman, 1991a).

However, analytical solutions for the differential scheme have only been given so far in the limiting cases of infinitely
thin cracks (a ? 0) and spherical pores (a = 1), respectively by Zimmerman (1991a, 1991b), Berryman, Pride, and Wang
(2002) examined the case of infinitely for infinitely long needles (a ?1), but they did not give explicit solutions. Apart
from the limiting cases, exact solutions can only be obtained by numerical integration. This is why most works have used
only the simple solutions available in the limiting cases. Nevertheless, cracks are never infinitely thin, pores are never per-
fectly spherical, and cylindrical pores are never infinitely long. Hence, it would be useful to have approximate analytical
solutions for the differential scheme, that are valid for more realistic pore geometries in between the limiting cases. The
asymptotic expressions for P and Q recently presented by David and Zimmerman (2011) for crack-like, nearly spherical
and needle-like pores, cover accurately a wide range of aspect ratios. They can be used as input in the differential scheme,
as well as in any other effective medium theory. The first goal of our study is then to present asymptotic solutions for the
differential scheme (Section 3). The results will be then compared to those obtained if we use the expressions for P and Q
as input in the ‘‘effective-field’’ method of Mori and Tanaka (1973) and the ‘‘wave-scattering’’ theory of Kuster and Toksoz
(1974), in Section 4.

The effective Poisson’s ratio, m, is directly related to the ratio of compressional to shear wave velocities. It has long been
used (in earth sciences, notably) because of its sensitivity to the microstructure (Wilkens, Simmons, & Caruso, 1984). For dry
porous solids, m is only a function of the porosity, the pore aspect ratio and the Poisson’s ratio of the solid. We could use mea-
surements of m as a diagnostic tool for studying the pore structure. The last aim of our study is to then look at the behaviour
of Poisson’s ratio in the high-concentration limit, using the exact results for the differential scheme. Previously, the special
case of spherical pores have been examined in detail by Zimmerman (1994). For a general spheroid, useful discussions have
been given in Berryman et al. (2002) for the differential scheme, and Dunn and Ledbetter (1995) for the Mori–Tanaka
scheme. Fixed-points and possible bounds for the effective Poisson’s ratio will be discussed in Section 5.

2. General equations for the differential effective medium (DEM) theory

Consider an isotropic solid of bulk and shear moduli (K0,G0), respectively, comprising spheroidal pores having the same
aspect ratio a, acting here as a fixed parameter. If the inclusions have random orientations, the overall effective medium can
be assumed to be isotropic. We can then use the expressions obtained by David and Zimmerman (2011) for the normalized
pore compressibility, P, and pore shear compliance, Q to calculate the effective bulk and shear moduli (K,G). According to the
differential effective medium theory, the effective moduli are described by a pair of coupled differential equations (LeRavalec &
Gueguen, 1996):
ð1� /Þ 1
K

dK
d/
¼ �PðmÞ; ð1Þ

ð1� /Þ 1
G

dG
d/
¼ �QðmÞ ð2Þ
with the initial conditions
Kð/ ¼ 0Þ ¼ K0; ð3Þ
Gð/ ¼ 0Þ ¼ G0; ð4Þ
where / is the porosity, and m is the effective Poisson’s ratio, given by:
m ¼ 3K � 2G
6K þ 2G

: ð5Þ
The term (1 � /) on the left-hand side of Eqs. (1) and (2) accounts for the fact that each new pore introduced in the body may
replace either the solid phase or the porous phase, with probabilities / and (1 � /), respectively (McLaughlin, 1977; Norris,
1985). Because P and Q both depend on the ‘‘current’’ Poisson’s ratio, m, which in turn is a function of the effective moduli K
and G (Eq. (5)), the two differential Eqs. (1) and (2) are coupled. However, they can be converted to a set of uncoupled dif-
ferential equations by simple manipulations. First, form a differential equation for the Poisson’s ratio, m, by differentiating Eq.
(5):
dm
d/
¼ 18KG

ð6K þ 2GÞ2
1
K

dK
d/
� 1

G
dG
d/

� �
ð6Þ
and then by combining Eq. (6) with (1) and (2):
ð1� /Þ dm
d/
� FmðmÞ ¼

ð1þ mÞð1� 2mÞ
3

QðmÞ � PðmÞ½ �: ð7Þ
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Now, divide one of the two ODEs, (1) or (2), by (7) to obtain another uncoupled differential equation in the ‘‘phase’’ space,
(K,m), or (G,m). If we decide to work in the (K,m) space, we obtain, by dividing Eqs. (1) and (7):
1
K

dK
dm
� FKðmÞ ¼

3
ð1þ mÞð1� 2mÞ

PðmÞ
PðmÞ � QðmÞ

� �
: ð8Þ
Hence, using the initial condition m(/ = 1) = m0, where m0 therefore denotes the solid’s Poisson’s ratio, the general solutions of
the system of ODEs can be written as follows:
� lnð1� /Þ ¼
Z m

m0

1
FmðmÞ

dm; ; ð9Þ

ln
K
K0

� �
¼
Z m

m0

FKðmÞ dm: ð10Þ
In the general case of a spheroid of arbitrary aspect ratio, P and Q are cumbersome functions of a and m (David & Zimmerman,
2011). In the next section, we derive new approximate expressions for the differential scheme between the limiting cases.
For crack-like, needle-like and nearly spherical pores, we use the asymptotic expressions for P and Q recently presented by
David and Zimmerman (2011) as input in the set of Eqs. (7) and (8).

3. Asymptotic solutions for the DEM in the limiting cases

3.1. Crack-like pores

The volume occupied by cracks is small, but their compliances are quite large, since they are, to first order, inversely pro-
portional to the aspect ratio (see Eqs. (13) and (14) below). Hence, the relevant microstructural parameter that influences the
effective elastic properties of cracked solids is not the porosity, but rather a parameter proportional to the volume of the dis-
torted strain field around a crack (Henyey & Pomphrey, 1982). We recall the following definition of the crack density C
(Walsh, 1965):
C ¼ N < a3 >

V
; ð11Þ
where N is the number of circular cracks (of radius a) in a representative elementary volume V, and the angle brackets sym-
bolize an average. The crack density is then related to the total porosity / by
/ ¼ 4
3
paC: ð12Þ
3.1.1. Thin cracks
The bulk and shear compliance of an infinitely thin crack (a ? 0) are both inversely proportional to a:
P ¼ 4ð1� m2Þ
3pað1� 2mÞ ; ð13Þ

Q ¼ 8ð1� mÞð5� mÞ
15pað2� mÞ : ð14Þ
Subsituting the expressions for P and Q (13), (14) in the set of differential Eqs. (7), (8), and changing variables to work with
the crack density C instead of the porosity (Eq. (12)), we obtain, in the limit a ? 0, a simple set of equations:
dm
dC
¼ �16mð1� m2Þð3� mÞ

15ð2� mÞ ; ð15Þ

1
K

dK
dm
¼ 5ð2� mÞ

3mð1� 2mÞð3� mÞ ; ð16Þ
which, using partial fractions, immediately leads to an implicit solution as found by Zimmerman (1985):
128C
5
¼ ln

3� m
3� m0

� �
þ 6 ln

1� m
1� m0

� �
þ 9 ln

1þ m
1þ m0

� �
� 16 ln

m
m0

� �
; ð17Þ

K
K0
¼ m

m0

� �10
9 3� m

3� m0

� ��1
9 1� 2m

1� 2m0

� ��1

: ð18Þ
Considerably simpler solutions can be found retaining only the leading terms, i.e., the terms in Eqs. (17) and (18) that are
unbounded throughout the physically meaningful range 0 < m < 0.5 (Zimmerman, 1991a):
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C ¼ 5
8

ln
m
m0

� �
; ð19Þ

K
K0
¼ m

m0

� �10
9 1� 2m

1� 2m0

� ��1

; ð20Þ
thus recovering the approximate solutions previously found by Bruner (1976). Having such simple solutions has the advan-
tage of giving (m,K) as explicit functions of C:
m
m0
¼ e�8C=5; ð21Þ

K
K0
¼ ð1� 2m0Þ e�16C=9

1� 2m0 e�8C=5 : ð22Þ
The accuracy of the expressions (21), (22) depend slightly on the value of the initial Poisson’s ratio, m0; however, the error
remains less than 2%, even at very high crack densities.

3.1.2. Crack-like oblate spheroids
The solutions above (Eqs. (21) and (22)) are well established in the literature (Benveniste, 1987; Bruner, 1976; Zimmer-

man, 1985, 1991a). However, they are only valid when the cracks have very small aspect ratios: the assumption that P and Q
are assumed to be inversely proportional to a is, strictly speaking, only valid when a does not exceed 0.01. David and Zim-
merman (2011) have recently found simple expressions for the pore compliances that are accurate for values of a as high as
0.3, taking only two more terms in the series expansions for both P and Q:
P � P�1

a
þ P0 þ P1a; ð23Þ

Q � Q�1

a
þ Q 0 þ Q 1a; ð24Þ
where (P�1,Q�1) follow from Eqs. (13) and (14):
P�1 ¼
4ð1� m2Þ

3pð1� 2mÞ ; ð25Þ

Q�1 ¼
8ð1� mÞð5� mÞ

15pð2� mÞ ð26Þ
and with
P0 ¼
1
6
ð1� mÞð1� 2mÞ; ð27Þ

P1 ¼
ð1þ mÞð1� mÞ

12ð1� 2mÞ pð1� 2mÞ2 þ 8ð7� 8mÞ
p

� �
; ð28Þ

Q 0 ¼
2

15
ð5� 2m2Þ þ 48ð1� mÞð3� mÞ

p2ð2� mÞ2

" #
ð29Þ

Q 1 ¼
p

120
37� 8mð3þ 4m� 2m3Þ

1� m

� �
þ 4ð1� mÞ

15pð2� mÞ2
�8ð7þ m3Þ þ 3mð9m� 1Þ þ 96ð3� mÞ2

p2ð2� mÞ

" #
: ð30Þ
Using the asymptotic expressions for P and Q above as input in the differential scheme, approximate solutions for the dif-
ferential scheme can be found. This derivation involves various assumptions and calculation steps, which are detailed here
and will be applied subsequently for the cases of needle-like (Section 3.2) and nearly spherical pores (Section 3.3). First of all,
if we insert the asymptotic expresions for P and Q (Eqs. (23) and (24)) in the two uncoupled differential equations for /(m)
and K(m), (7) and (8), the pair of differential equations becomes:
1� 4
3
paC

� ��1 dC
dm
¼ 9

4pð1þ mÞð1� 2mÞ

� �
1

ðQ�1 � P�1Þ þ ðQ 0 � P0Þaþ ðQ1 � P1Þa2

� �
; ð31Þ

1
K

dK
dm
¼ 3
ð1þ mÞð1� 2mÞ

� �
P�1 þ P0aþ P1a2

ðP�1 � Q�1Þ þ ðP0 � Q 0Þaþ ðP1 � Q 1Þa2

� �
: ð32Þ
Note that in the case of crack-like pores, we have changed variables from / to C in the first Eq. (7), using (12). Because of the
relative complexity of the sum of terms in the denominator, an analytical integration of Eqs. (31) and (32) is, unfortunately,
still not possible. A further simplification can be made by noting that since a is small, we can expand the denominators in
Taylor series. Retaining only the terms up to a2, we arrive at equations of the form
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1� 4
3
paC

� ��1 dC
dm
¼ 9

4pð1þ mÞð1� 2mÞ

� �

� 1
Q�1 � P�1

� �
1� Q 0 � P0

Q�1 � P�1

� �
aþ � Q 1 � P1

Q�1 � P�1
þ ðQ 0 � P0Þ2

ðQ�1 � P�1Þ2

" #
a2

( )
; ð33Þ

1
K

dK
dm
¼ 3
ð1þ mÞð1� 2mÞ

� �
P�1

P�1 � Q�1

� �

� 1þ � P0 � Q0

P�1 � Q�1
þ P0

P�1

� �
aþ P1

P�1
� P0ðP0 � Q0Þ

P�1 P�1 � Q�1ð Þ �
P1 � Q 1

P�1 � Q�1
þ ðP0 � Q0Þ2

ðP�1 � Q�1Þ2

" #
a2

( )
: ð34Þ
Eqs. (33) and (34) can be integrated using partial fractions. The solution is a cumbersome sum of terms involving logarithms
and rational functions of Poisson’s ratio. However, as previously done for thin cracks (Eqs. (19) and (20)), the solutions can be
considerably simplified, without losing accuracy, by retaining only the unbounded terms,. This yields final expressions of the
form
�3
4pa

� �
ln 1� 4

3
paC

� �
¼ �5

8
ln

m
m0

� �
þ a c1 ln

m
m0

� �
þ c2

1
m
� 1

m0

� �� �

þ a2 c3 ln
m
m0

� �
þ c4

1
m
� 1

m0

� �
þ c5

1
m2 �

1
m2

0

� �� �
; ð35Þ

ln
K
K0

� �
¼ 10

9
ln

m
m0

� �
� ln

1� 2m
1� 2m0

� �� �
þ a C1 ln

m
m0

� �
þ C2

1
m
� 1

m0

� �� �

þ a2 C3 ln
m
m0

� �
þ C4

1
m
� 1

m0

� �
þ C5

1
m2 �

1
m2

0

� �� �
; ð36Þ
where
c1 ¼
25

864
48
p
þ p

� �
� 0:533; ð37Þ

c2 ¼
5

288
48
p
þ 5p

� �
� 0:538; ð38Þ

c3 ¼
5

81
82
p2 �

163
16
þ 1753

1536
p2

� �
� 0:579; ð39Þ

c4 ¼
5

27
8
p2 �

61
6
þ 137

768
p2

� �
� �1:407; ð40Þ

c5 ¼
5
9

1
p
þ 5p

48

� �2

� 0:232 ð41Þ
and
C1 ¼
5

972
96
p
þ 77p

� �
� 1:402; ð42Þ

C2 ¼ �
5

162
48
p
þ 5p

� �
� �0:956; ð43Þ

C3 ¼
5

243
863
288

p2 � 64þ 320
3p2

� �
� �0:486; ð44Þ

C4 ¼
5

243
�47p2

8
þ 341

3
� 320

p2

� �
� 0:479; ð45Þ

C5 ¼ �
5

11664
48
p
þ 5p

� �2

� �0:412: ð46Þ
Taking the limit a ? 0 in both sides of Eqs. (35) and (36), we recover Bruner’s solution (Bruner, 1976) for thin cracks (19),
(20), as expected.

For different values of a, and assuming that the solid’s Poisson’s ratio m0 is equal to 0.25, the predictions of the asymptotic
expressions (35) and (36) for the Poisson’s ratio and normalized bulk modulus are compared to the exact solutions for the
differential scheme in Figs. 1 and 2, respectively. We also show Bruner’s solution for infinitely thin cracks, which is recovered
by taking a = 0 in the Eqs. (35) and (36). For infinitely thin cracks, the difference between the Bruner’s solution, and the exact
solution (Eqs. (17) and (18)), would not be visible on the figures.



E.C. David, R.W. Zimmerman / International Journal of Engineering Science 49 (2011) 544–560 549
The approximate expressions (35) and (36) are, as expected, more accurate for smaller values of the pore aspect ratio, a,
and smaller values of the crack density, C. For a solid having a Poisson’s ratio m = 0.25, for a = 0.01 the error on both K and m is
negligible. Furthermore, it is interesting to note that, even for an aspect ratio as low as 0.01, assuming that the cracks are
infinitely thin would introduce a small but significant error on the estimates of the elastic moduli, particularly for m
(Fig. 1). For a = 0.1, the error in the predictions of both moduli is still less than 3% for C = 0.70 (�/ = 30%). For a = 0.3, the
error on K and m remains less than 3% only up to C = 0.12 (�/ = 15 %) and C = 0.24 (�/ = 30 %), respectively.

The accuracy of the asymptotic solutions also depends strongly on m0, the solid’s Poisson’s ratio, as shown in Fig. 3, where
we show the behaviour of m for different initial values of m0, and for a = 0.3. At high crack densities, the exact solutions drive
the Poisson’s ratio to a critical value mc, which independent of m0, and which, for a = 0.3, is approximately given by mc = 0.16.
On the other hand, the infinitely-thin-crack limit predicts that m goes to zero as the crack density increases (Fig. 3).
CRACK DENSITY, Γ
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IO

, 
 

α = 0.3

α = 0.1

α = 0.01thin-crack approximation

asymptotic approximation
exact solutions 

OBLATE SPHEROIDS

 ν0 = 0.25

Fig. 1. Effective Poisson’s ratio of a solid containing spheroidal pores, for three values of the spheroid aspect ratio (a = 0.01; a = 0.1; a = 0.3), according to the
asymptotic solution (Eq. (35)) (dashed line), and the exact solution (full line), which is obtained by numerical integration of Eq. (9), using the exact solutions
for P and Q as given David and Zimmerman (2011). The Poisson’s ratio of the solid is m0 = 0.25.

Fig. 2. Normalized effective bulk modulus of a solid containing spheroidal pores, for three values of the spheroid aspect ratio (a = 0.01; a = 0.1; a = 0.3),
according to the asymptotic solution (combining Eqs. (35) and (36)), and the exact solution, which is obtained by numerical integration of Eqs. (9) and (10),
using the exact solutions for P and Q as given in David and Zimmerman (2011). The Poisson’s ratio of the solid is m0 = 0.25.
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3.2. Needle-like pores

3.2.1. Infinitely long needles
At the other end of the aspect ratio spectrum, for infinitely long needles (a ?1), P and Q take on the following finite

values:
Fig. 3.
m0 = 0.4
aspect
P ! 5� 4m
3ð1� 2mÞ ; ð47Þ

Q ! 8ð5� 3mÞ
15

: ð48Þ
In this case, the two uncoupled differential Eqs. (7) and (8) then become:
ð1� /Þ dm
d/
¼ 1

15
ð16m2 � 28mþ 5Þð1þ mÞ; ð49Þ

1
K

dK
dm
¼ � 5ð5� 4mÞ
ð16m2 � 28mþ 5Þð1� 2mÞð1þ mÞ ; ð50Þ
from which an implicit solution can be found, again using partial fractions:
98
15

lnð1� /Þ ¼ �2 ln
1þ m
1þ m0

� �
þ 1� 15ffiffiffiffiffiffi

29
p

� �
ln

7þ
ffiffiffiffiffiffi
29
p

� 8m
7þ

ffiffiffiffiffiffi
29
p

� 8m0

 !
þ 1þ 15ffiffiffiffiffiffi

29
p

� �
ln

7�
ffiffiffiffiffiffi
29
p

� 8m
7�

ffiffiffiffiffiffi
29
p

� 8m0

 !
; ð51Þ

ln
K
K0

� �
¼ � ln

1� 2m
1� 2m0

� �
� 15

49
ln

1þ m
1þ m0

� �
þ 2

49
16þ 93ffiffiffiffiffiffi

29
p

� �
ln

7�
ffiffiffiffiffiffi
29
p

� 8m
7�

ffiffiffiffiffiffi
29
p

� 8m0

 !

þ 2
49

16� 93ffiffiffiffiffiffi
29
p

� �
ln

7þ
ffiffiffiffiffiffi
29
p

� 8m
7þ

ffiffiffiffiffiffi
29
p

� 8m0

 !
: ð52Þ
Although these solutions are exact, they are still cumbersome. As previously done for the case of thin cracks (Section 3.1), we
can considerably simplify the solutions by retaining only those terms on the right-hand side that remain unbounded as /
? 1, incurring an error that will be less than 1%, almost regardless of the value of m0. This yields an approximate solution of
the form
ð1� /Þ ¼ k� m
k� m0

� �n1

; ð53Þ

K
K0
¼ 1� 2m

1� 2m0

� ��1 k� m
k� m0

� �N1

; ð54Þ
Effective Poisson’s ratio of a solid containing spheroidal pores, for five different values of the solid’s Poisson’s ratio (m0 = 0.1; m0 = 0.2; m0 = 0.3;
; m0 = 0.5), according to the asymptotic solution (35) (dashed line), and the exact solution (full line), for the differential scheme. The pores have an
ratio a = 0.3.
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where
k ¼ 7�
ffiffiffiffiffiffi
29
p

8
� 0:202; ð55Þ

n1 ¼
15
98

1þ 15ffiffiffiffiffiffi
29
p

� �
� 0:579; ð56Þ

N1 ¼
2

49
16þ 93ffiffiffiffiffiffi

29
p

� �
� 1:358; ð57Þ
which therefore gives the effective constants as explicit functions of the porosity:
m ¼ k� ðk� m0Þð1� /Þ1=n1 ; ð58Þ

K
K0
¼

1� 2 k� k� m0ð Þð1� /Þ1=n1
h i

1� 2m0

8<
:

9=
;
�1

ð1� /ÞN1=n1 : ð59Þ
3.2.2. Needle-like prolate spheroids
David and Zimmerman (2011) recently presented asymptotic expressions for the compliances of needle-like pores having

finite aspect ratios, that are accurate for values of a as low as 2 for the shear compressibility P, and as low as 3 for the shear
compliance Q, with less than 0.5% error:
P � 5� 4m
3ð1� 2mÞ þ

1þ mð Þ 4 1� mð Þ 1� lnð2aÞ½ � � 1f g
6ð1� 2mÞð1� mÞa2 ; ð60Þ

Q � 8 5� 3mð Þ
15

þ 4
15 1� mð Þa2 3mð2� mÞ � 1þ 13� 43mþ 12m2ð5� 2mÞ

� �
1� lnð2aÞ½ �

	 

: ð61Þ
If these approximate expressions for P and Q are used as input in the set of differential Eqs. (7) and (8), an analytical inte-
gration is still not possible. However, noting that in this case the term 1/a2 is a small parameter, we can proceed as we did for
crack-like pores (Section 3.1), again retaining only the leading terms. Extensive calculations yield implicit solutions for the
effective moduli in the form:
lnð1� /Þ ¼ n1 ln
k� m
k� m0

� �
þ 1

a2 n2 þ n3 lnð2aÞ½ � � ln
k� m
k� m0

� �
þ n4 þ n5 lnð2aÞ½ � 1

k� m
� 1

k� m0

� �� �
; ð62Þ

ln
K
K0

� �
¼ � ln

1� 2m
1� 2m0

� �
þ N1 ln

k� m
k� m0

� �

þ 1
a2 N2 þ N3 lnð2aÞ½ � ln k� m

k� m0

� �
þ N4 þ N5 lnð2aÞ½ � 1

k� m
� 1

k� m0

� �� �
: ð63Þ
where
n2 ¼ �
14415
9604

1� 72161
27869

ffiffiffiffiffiffi
29
p

� �
� �0:779; ð64Þ

n3 ¼
510
343

1� 103
58

ffiffiffiffiffiffi
29
p

� �
� 0:997; ð65Þ

n4 ¼
135

2842
1þ 2

9

ffiffiffiffiffiffi
29
p� �

� 0:104; ð66Þ

n5 ¼ �
15

812
1þ

ffiffiffiffiffiffi
29
p

2

 !
� �0:068; ð67Þ

N2 ¼ �
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2401
1þ 11276

2813
ffiffiffiffiffiffi
29
p

� �
� �0:705; ð68Þ

N3 ¼
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343

1þ 5387
1334

ffiffiffiffiffiffi
29
p

� �
� 1:173; ð69Þ

N4 ¼
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2842
1þ 13
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ffiffiffiffiffiffi
29
p� �

� 0:245; ð70Þ

N5 ¼ �
25

1624
ð5þ

ffiffiffiffiffiffi
29
p
Þ � �0:160: ð71Þ
In the asymptotic expressions (62) and (63), taking the limit as a ? 1 recovers the expressions found previously for infi-
nitely long needles (Eqs. (53) and (54)).
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These approximate asymptotic solutions are accurate for prolate spheroids having aspect ratios as low as 3, as seen in
Figs. 4 and 5.

3.3. Nearly spherical pores

3.3.1. Spheres
For perfectly spherical pores (a = 1), the expressions for P and Q are:
Fig. 4.
m0 = 0.4
P ¼ 3 1� mð Þ
2 1� 2mð Þ ; ð72Þ

Q ¼ 15 1� mð Þ
7� 5m

: ð73Þ
The set of differential Eqs. (7) and (8) becomes, in this case,
ð1� /Þ dm
d/
¼ 3

2
1� m2
 �

ð1� 5mÞ
7� 5m

; ð74Þ

1
K

dK
dm
¼ � 7� 5mð Þ

1� 5mð Þð1� 2mÞð1þ mÞ ; ð75Þ
which, using partial fractions, is easily integrated to yield
ð1� /Þ ¼ 1� m
1� m0

� ��1
6 1� 5m

1� 5m0

� �5
6 1þ m

1þ m0

� ��2
3

; ð76Þ

K
K0
¼ 1� 5m

1� 5m0

� �5
3 1� 2m

1� 2m0

� ��1 1þ m
1þ m0

� ��2
3

: ð77Þ
recovering the solutions found by Zimmerman (1985). Contrary to the previous cases of cracks and needles, the solutions for
spherical pores (76), (77) cannot be well approximated by retaining only the leading terms (i.e., the terms involving 1 � 5m).
Indeed, this would introduce an error of more than 3%. Note, however, that Zimmerman (1991b) has shown that if the sys-
tem of differential equations are decoupled and integrated in terms of the variables (K,G) instead of (K,m), the resulting
expressions are simpler, eliminating the need to discard lower-order terms. This approach will not be pursued further in
the present paper, however.

3.3.2. Slightly deformed spheres
A perfectly spherical pore possesses the minimum possible values of the pore compliances (David & Zimmerman, 2011).

For nearly spherical pores, David and Zimmerman (2011) recently derived asymptotic expressions for P and Q that are valid
for 0.7 < a < 1.3 with less than 0.5% error, by considering terms that are quadratic and cubic in (1 � a):
Effective Poisson’s ratio of a solid containing needle-like pores (a = 3), for three different values of the solid’s Poisson’s ratio (m = 0.05; m0 = 0.25;
5), according to the asymptotic solution (Eq. (62)) (dashed line), and the exact solution (full line).



Fig. 5. Normalized effective bulk modulus of a solid containing needle-like pores (a = 3), for three different values of the solid’s Poisson’s ratio (m = 0.05;
m0 = 0.25; m0 = 0.45), according to the asymptotic solution (combining Eqs. (62) and (63)) (dashed line), and the exact solution (full line).
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P � 3 1� mð Þ
2 1� 2mð Þ 1þ 4 1þ mð Þ

5 7� 5mð Þ ð1� aÞ2 1þ 83� 73m
7 7� 5mð Þ ð1� aÞ

� �� �
; ð78Þ

Q � 15 1� mð Þ
7� 5m

1þ 4 1� að Þ2
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299� 7m 98� 65mð Þ þ 138079� 7m 54357� 7mð7293� 2225mÞ½ �

49ð7� 5mÞ ð1� aÞ
� �" #

: ð79Þ
We now consider (1 � a) to be our small parameter, and retain only the quadratic and cubic terms. Extensive calculations
lead to the following approximate expressions:
lnð1� /Þ ¼ �1
6

ln
1� m
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; ð80Þ
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: ð81Þ
The exact solutions (76) and (77) for spherical pores are easily recovered by taking a = 1 in expressions (80) and (81).
The expressions (80) and (81) are very accurate in the range 0.7 < a < 1.3. For example, for a = 0.7 and / = 40%, the error in

both m and K as a function of the porosity is less than 0.5%, and nearly independent of m0 (Figs. 6 and 7).

4. Comparison with the estimates of the Mori–Tanaka and Kuster–Toksoz schemes

We can use the asymptotic expressions for the pores compliances (P,Q) derived by David and Zimmerman (2011) as input
in any effective medium theory.

According to the Mori–Tanaka method, and following the previous notations, the effective moduli are described by the
following equations (Benveniste, 1987):
K0

Kð/Þ ¼ 1þ /
1� /

Pðm0Þ; ð82Þ

G0

Gð/Þ ¼ 1þ /
1� /

Qðm0Þ: ð83Þ



Fig. 6. Effective Poisson’s ratio of a solid containing nearly spherical pores (a = 0.7), for three different values of the solid’s Poisson’s ratio (m = 0.05;
m0 = 0.25; m0 = 0.45), according to the asymptotic solution (Eq. (80)) (dashed line), and the exact solution (full line).

Fig. 7. Normalized effective bulk modulus of a solid containing nearly spherical pores (a = 0.7), for three different values of the solid’s Poisson’s ratio
(m = 0.05; m0 = 0.25; m0 = 0.45), according to the asymptotic solution (combining Eqs. (80) and (81)) (dashed line), and the exact solution (full line).
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If we take the equations for the elastic moduli given by Kuster and Toksoz (1974), and rewrite them in terms of (P,Q) and m0,
we obtain
Kð/Þ
K0
¼

1� / 2ð1�2m0Þ
3ð1�m0Þ

Pðm0Þ
1þ / 1þm0

3ð1�m0Þ
Pðm0Þ

; ð84Þ
Gð/Þ
G0
¼

1� / 7�5m0
15ð1�m0Þ

Qðm0Þ
1þ / 2ð4�5mÞ

15ð1�m0Þ
Qðm0Þ

: ð85Þ
For the limiting pore geometries, discussions and comparisons of the predictions of the differential, Mori–Tanaka and Kuster
and Toksoz theories are numerous in the literature. For example, see Zimmerman (1985, 1991a) for thin cracks, Zimmerman
(1991a, 1991b, 1994) for spherical pores; Berryman and Berge (1996) compare the predictions of the Mori–Tanaka and
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Kuster–Toksoz theories for needles. Hence, here we will focus only on cases such as crack-like and needle-like pores having
finite aspect ratios.

In Figs. 8–13, we compare the predictions of the three effective medium theories for the effective Poisson’s ratio and nor-
malized bulk modulus, for the case m0 = 0.25, and taking the three values of a that were considered in Section 3: for crack-like
pores, a = 0.3 (Figs. 8 and 9), for needle-like pores, a = 3 (Figs. 10 and 11) and for nearly spherical pores, a = 0.7 (Figs. 12 and
13). For the Mori–Tanaka and Kuster–Toksoz theories, the results are obtained by simply inserting the exact or the asymp-
totic expressions for P and Q into Eqs. (82)–(85), from which calculations of the effective Poisson’s ratio are straightforward.

For each three theories, using the simple asymptotic expressions for P and Q rather than the exact expressions introduces
errors that are much smaller than are the differences between the predictions of the different theories. Discussion of these
errors have already been given for the differential scheme in Section 3. For a = 0.3, the errors for the Mori–Tanaka and Kus-
ter–Toksoz estimates of both m and K are, respectively, 1% and 2% when C = 0.31 (/ � 30%). For a = 3 (Figs. 10 and 11), the
errors are respectively less than 0.5% and 1% when / = 40%. For a = 0.7 (Figs. 12 and 13), the errors are approximately 1% and
1.5%. The accuracy obtained when using the asymptotic expressions remains, overall, weakly dependent on m0.

5. Behaviour of the effective Poisson’s ratio in the high concentration limit

The new asymptotic expressions derived for the differential scheme in Section 3, although they hold for a large range of
aspect ratios and porosities, cannot be used to predict the behaviour of the effective Poisson’s ratio when the concentration
of pores becomes very high. In Fig. 14, we have used the exact solutions for the differential scheme (obtained by numerical
integration of Eq. (7)) to show how Poisson’s ratio behaves in the high-concentration limit, for different values of a, the
spheroid aspect ratio, and m0, the solid’s Poisson’s ratio. The addition of pores drives Poisson’s ratio towards a point of attrac-
tion mc which, for the differential scheme, depends on a but not on m0 (Fig. 14). Such behaviour has been noted before by
Zimmerman (1994) for spherical pores, and by Berryman et al. (2002) for oblate spheroids and needles.

The value mc is a fixed-point for the Poisson’s ratio, which by definition satisfies Fm(mc) = dm/d/ = 0 in Eq. (7). The right-hand
side of Eq. (7) shoes that mc is a fixed-point if, for a given a, either P(mc) = Q(mc), mc = �1, or mc = 0.5. Although it is difficult to
prove by analytical methods, numerical simulations show that for any fixed value of a, the pore compressibility P and the
shear compliance Q are respectively increasing and decreasing functions of m. Furthermore, when m = 0, P is always lower
than Q. Hence, a point of intersection between P and Q always exists somewhere between m = 0 and m = 0.5, and is unique.
Moreover, this point corresponds to an attractor: when 0 < m < mc, P < Q and hence Fm > 0; whereas when mc < m < 0.5, P > Q
and hence Fm < 0. Following the same argument, the other possible fixed-point that lies within the physically meaningful
range, mc = 0.5, is an unstable point. This is proven by noting that, because mc never exceeds a value approximately equal
to 0.2 (see Fig. 15), and Fm < 0 when m > mc, small deviations from the value 0.5 cause the effective Poisson’s ratio to decrease.
As a result, the attraction point for the Poisson’s ratio, mc, is unique and is implicitly defined, for a given value of a, by:
Fig. 8.
scheme
express
PðmcÞ ¼ QðmcÞ: ð86Þ
Effective Poisson’s ratio of a solid containing crack-like pores of aspect ratio a = 0.3, according to the differential, Mori–Tanaka and Kuster and Toksoz
s. For each of the three effective medium theories, the solid line represents the exact solution, and the dashed line represents the asymptotic
ion. The Poisson’s ratio of the solid is m0 = 0.25.



Fig. 9. Normalized effective bulk modulus of a solid containing crack-like pores of aspect ratio a = 0.3, according to the differential, Mori–Tanaka and Kuster
and Toksoz schemes. For each of the three effective medium theories, the solid line represents the exact solution, and the dashed line represents the
asymptotic expression. The Poisson’s ratio of the solid is m0 = 0.25.

Fig. 10. Effective Poisson’s ratio of a solid containing needle-like pores of aspect ratio a = 3, according to the differential, Mori–Tanaka and Kuster and
Toksoz schemes. For each of the three effective medium theories, the solid line represents the exact solution, and the dashed line represents the asymptotic
expression. The Poisson’s ratio of the solid is m0 = 0.25.
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For the limiting geometries (flat cracks, spheres, needles), the fixed-point can found directly by solving the equation P = Q.
For thin cracks, we find mc = 0; for spheres, mc = 0.2; and for infinitely long needles, mc ¼ k ¼ ð7�

ffiffiffiffiffiffi
29
p
Þ=8 � 0:202, thus recov-

ering the results of Zimmerman (1991b) for spheres, and Berryman et al. (2002) for thin cracks and needles.
The fixed-point mc varies rapidly with a when the pores are crack-like (Fig. 15). On the other hand, for prolate spheroids

the fixed-point is almost insensitive to a, and is close to the value obtained for spheres (mc = 0.2). Indeed, the maximum of mc,
found for infinitely long needles, is mc � 0.202. Note that apart from the limiting cases, the values of mc must be found numer-
ically. However, the following approximation is quite accurate for the entire range of aspect ratios (Fig. 15):
mc ¼ 0:2ð1� e�5aÞ: ð87Þ
Because Poisson’s ratio is bounded between the fixed point, mc and the solid’s Poisson’s ratio, m0, considerable information on
the microstructure can be simply inferred from measurements of Poisson’s ratio in a porous rock. Consider the example of a
porous rock, whose solid’s Poisson’s ratio is equal to 0.25, compressed to a pressure sufficiently high that we can assume that



Fig. 11. Normalized effective bulk modulus of a solid containing needle-like pores of aspect ratio a = 3, according to the differential, Mori–Tanaka and
Kuster and Toksoz schemes. For each of the three effective medium theories, the solid line represents the exact solution, and the dashed line represents the
asymptotic expression. The Poisson’s ratio of the solid is m0 = 0.25.

Fig. 12. Effective Poisson’s ratio of a solid containing nearly spherical pores of aspect ratio a = 0.7, according to the differential (red), Mori–Tanaka (blue)
and Kuster and Toksoz (black) schemes. For each of the three effective medium theories, the solid line represents the exact solution, and the dashed line
represents the asymptotic expression. The Poisson’s ratio of the solid is m0 = 0.25. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

E.C. David, R.W. Zimmerman / International Journal of Engineering Science 49 (2011) 544–560 557
all the compliant cracks are closed. Assume for simplicity that all the pores have more or less the same aspect ratio. If the
Poisson’s ratio of the solid material is 0.25, and the effective Poisson’s ratio of the porous rock is 0.15, we can infer from Eq.
(87) that the mean aspect ratio of the non-closable porosity must not exceed the value �0.2 � ln (1 � 5 � 0.15) � 0.3. In
other words, pore aspect ratios higher that 0.3 cannot explain a value of m as low as 0.15.

The Kuster and Toksoz scheme fails to predict realistic behaviour of Poisson’s ratio at high porosities, since for any value
of a, the predicted values of m become negative at porosities lower than 100%; see, for instance, Figs. 8, 10 and 12. Hence,
discussion of the behaviour of m for high porosities is not so meaningful for this theory. On the other hand, such a study
is of interest with regards to the Mori–Tanaka model. In fact, an extensive study of the fixed-points for the Mori–Tanaka
scheme has been done by Dunn and Ledbetter (1995), for the entire range of aspect ratios. To find the fixed-point, Dunn
and Ledbetter (1995) started from the equation giving m as a function of m0 and /, for a given a, which can easily be found
combining Eqs. (82) and (83):



Fig. 13. Normalized effective bulk modulus of a solid containing nearly spherical pores of aspect ratio a = 0.7, according to the differential (red), Mori–
Tanaka (blue) and Kuster and Toksoz (black) schemes. For each of the three effective medium theories, the solid line represents the exact solution, and the
dashed line represents the asymptotic expression. The Poisson’s ratio of the solid is m0 = 0.25. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. Effective Poisson’s ratio as a function of the porosity, for various values of the inclusion aspect ratio (a = 0.01; a = 0.1; a = 0.3; a = 1) and the solid’s
Poisson’s ratio (m0 = 0.05; m0 = 0.25; m0 = 0.45), according to the differential scheme. For a = 0.01, a = 0.1, a = 0.3, the solutions were found by numerical
integration of Eq. (7); for spherical pores, from Eq. (76).
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m ¼ 3m0ð1� /Þ þ / ð1þ m0ÞQðm0Þ � ð1� 2m0ÞPðm0Þ½ �
3ð1� /Þ þ / 2ð1þ m0ÞQðm0Þ þ ð1� 2m0ÞPðm0Þ½ � : ð88Þ
They set m = m0 and solved for m0 to obtain the fixed-point, which they defined as that particular value of the solid-phase Pois-
son’s ratio that would not be changed by the addition of pores. However, they did not seem to have gone as far as noticing
that the fixed-point they found for the Mori–Tanaka scheme also satisfies the condition P(m0) = Q(m0). Indeed, if we insert this
conditions in Eq. (88), we find
m ¼ 3m0ð1� /Þ þ 3m0/Pðm0Þ
3 1� /ð Þ þ 3/Pðm0Þ

¼ m0; ð89Þ



Fig. 15. Fixed-point for the Poisson’s ratio, mc, solution of Eq. (86), as a function of the inclusion aspect ratio, a (full-line); the approximation (87) is also
shown (dashed line).
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which shows that, according to the differential and Mori–Tanaka schemes, all considerations on the fixed-point of Poisson’s
ratio are totally equivalent. However, whereas the differential scheme predicts that the effective Poisson’s ratio approaches
the fixed point as the porosity approaches 1, according to the Mori–Tanaka scheme the effective Poisson ratio tends towards
mc, but does not reach this value when / = 1. This is discussed for the special case of spheres by Zimmerman (1991b).

6. Conclusion

The asymptotic expressions for the pore compliances P and Q recently derived by David and Zimmerman (2011) for (P,Q)
have been used as input in the differential scheme, as well as the Mori–Tanaka and Kuster–Toksoz theories, to obtain approx-
imate analytical solutions for the effective moduli. The equations of the differential scheme have been integrated to yield
expressions that hold for a wide range of aspect ratios and porosities, yet remain simple. Using these expressions would con-
siderably simplify the process of inverting sonic velocity data to obtain pore aspect ratio distributions (in rocks, for instance,
see Hadley (1976), Cheng & Toksoz (1979)). Finally, a discussion was given of the effective Poisson ratio, which tends to-
wards a fixed point mc that depends only on the pore aspect ratio, but not on the Poisson’s ratio of the solid phase, m0. The
fact that Poisson’s ratio is bounded by these two values allows a rapid estimation of pore shape to be inferred from the effec-
tive Poisson’s ratio, as shown by our simple example discussed above.
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