
CIRCULAR CHARACTERISTICS AND FIBRATIONS OF
HYPERBOLIC CLOSED 3-MANIFOLDS.

CLAIRE RENARD.

Abstract. This article provides sufficient conditions for a closed hyperbolic 3-
manifold M with non zero first Betti number to fiber over the circle, and to find a
fiber in M . Those conditions are formulated in terms of the behavior the circular
characteristic in finite regular covers of M . We define the circular characteristic as
an invariant associated to a non-trivial cohomology class α of M , using a Heegaard
characteristic.
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Introduction

Thurston conjectured that every complete hyperbolic, connected and orientable
3-manifold of finite volume virtually fibers over the circle, i.e. such a manifold has
a finite covering that is a surface bundle over the circle.

This conjecture received a great deal of attention during the past few years, cul-
minating with the announcement of its proof by Ian Agol very recently (thanks
to works of Daniel Wise, Jeremy Kahn and Vladimir Markovic, Frédéric Haglund,
Nicolas Bergeron, and many other people). The proof is based on Daniel Wise’s
program (see [AGM], [Wi2] and [Wi1]).

With this result in mind, an interesting question is to find explicit criteria that
are sufficient conditions for a closed hyperbolic 3-manifold M to fiber over the circle.
A necessary condition for M to be fibered is that its first Betti number b1(M) is non
zero.

The method is inspired by Lackenby’s program to find surface bundles in towers
of finite coverings of a given closed hyperbolic 3-manifold (see [L2] and [L1]).

The main idea of this article is to start with a non-trivial cohomology class α in
H1(M,Z) and to study the behavior of a number associated to α called the circular
characteristic. This is a kind of Heegaard characteristic, associated to a given non-
trivial cohomology class.

Definition 0.1. Let M be a hyperbolic, connected, oriented and closed 3-manifold.
If α ∈ H1(M) = H1(M,Z) is a non-trivial cohomology class, let us denote by ‖α‖
the Thurston norm of α. By definition,

‖α‖ = min{χ−(R), [R] = P(α)},

where R is an embedded surface and P(α) the Poincaré-dual class of α. We will call
such a surface R realizing the Thurston norm of α an ‖α‖-minimizing surface.

If R is a non-separating and ‖α‖-minimizing surface for a given non-trivial co-
homology class α ∈ H1(M), take N (R) ∼= R× (−1, 1) an open regular neighborhood
of R in M , and denote by MR = M \ N (R). For each non-trivial cohomology class
α ∈ H1(M), denote by χc−(α) the circular characteristic of α. It is the negative
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part of the Euler characteristic of a minimal genus Heegaard surface for MR, such
that this number is minimal over all choices of ‖α‖-minimizing surface R.

Remark 0.2. If α and R are as above and S is a Heegaard surface corresponding to
a Heegaard splitting of (MR, R×{1}, R×{−1}) such that χ−(R) = ‖α‖ and χ−(S) =
χc−(α), then from the Heegaard decomposition of (MR, R× {1}, R× {−1}), one can
easily construct a Heegaard splitting of M by adding two small tubes connecting the
surfaces R and S, each in one of the compression bodies of the decomposition of
(MR, R× {1}, R× {−1}). An easy calculation shows that

χh−(M) ≤ χc−(α) + ‖α‖+ 2

≤ 2χc−(α) + 2.

Lackenby developed the idea that a control on the growth of the Heegaard genus
in a tower of finite covers in terms of the covering degree can lead to fibration results
(see [L2] and [L1]). Here, using this number χc−(α) associated to a given cohomology
class α, we get an explicit result. Studying the behavior of this circular characteristic
when the class α lifts to finite regular covers of M , we adapted the proof of a theorem
of Lackenby [L1, Theorem 1 (3)] to get a statement with explicit bounds and for a
given finite cover instead of a tower. With a result of Maher [Mah] about minimal
surfaces and explicit geometric constants and functions computed in the thesis [R2]
(see also [R1]), we obtain the following theorem, which is the main result of this
article.

Theorem 0.3. Let M be a connected, oriented and closed hyperbolic 3-manifold,
and set ε = Inj(M), where Inj(M) is the injectivity radius of M .

There exists an explicit constant ` = `(ε,Vol(M)), depending only on ε and the
volume of the manifold M , and satisfying the following properties.

Let α ∈ H1(M) be a non-trivial cohomology class and R an ‖α‖-minimizing sur-
face. Let M ′ →M be a regular finite cover of M of degree d. Let R′ be a component
of the preimage of R in the cover M ′, and α′ the cohomology class in H1(M ′,Z) that
is Poincaré-dual to [R′].

If ` χc−(α′) ≤ 4
√
d, then the manifold M fibers over the circle and the surface R is

a fiber.

Furthermore, with a′ = 6
(

21
4

+ 3
4π

+ 3
4ε

+ 2
sinh2( ε

4
)

)
and D := 8εVol(M)

π(sinh(2ε)−2ε) , one has

` :=
4

√
117

8

√
a′
π(sinh(2D + 2ε)− 2D − 2ε)

Vol(M)
.

The constant ε can in fact be any number in (0, Inj(M)].

Remark 0.4. The converse of Theorem 0.3 is true in some sense: if R is a fiber
surface of M , then the quantity ` χc−(α′) will be constant in the collection of cyclic
covers of M .

Remark 0.5. The explicit expression of the constant ` involved in Theorem 0.3
allows us to study its behavior. If the volume Vol(M) is fixed and Inj(M) tends to
zero, or if Inj(M) is fixed and Vol(M) tends to infinity, ` tends to infinity. Thus, the
sufficient condition given by the previous theorem becomes more and more difficult
to satisfy when the injectivity radius decreases (which corresponds for example to a
cusp opening), or if the volume grows (for instance if one passes to finite covers of
M).
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The next corollary directly follows from Theorem 0.3.

Corollary 0.6. Let M be a connected, oriented and closed hyperbolic 3-manifold.
Let α ∈ H1(M) be a non-trivial cohomology class and R an ‖α‖-minimizing surface.
Let (Mi → M)i∈N be a collection of finite regular covers of M with degrees di. For
each i ∈ N, let Ri be a component of the preimage of R in Mi, and αi ∈ H1(Mi) the
class that is Poincaré-dual to the class of Ri in H2(Mi). If

lim
i→+∞

χc−(αi)
4
√
di

= 0,

then the manifold M fibers over the circle, and the surface R is a fiber.

The expression limi→+∞
χc−(αi)

4√di
is very close to the definition of the infimal Hee-

gaard gradient (see [L2, Definitions p. 319 and p. 339]). The idea is to replace the
Heegaard characteristic by the circular characteristic and to study its asymptotic
behavior to get results as [L1, Theorem 1 (3)], but related to a specific non-trivial
cohomological class in M .

This corollary is true for any infinite collection of finite covers satisfying the given
asymptotic condition.

Definition 0.7. Set h(M,α,R) = min{χ(R)−χ(S)}, where S is a Heegaard surface
for (MR, R × {1}, R × {−1}). Said differently, 1

2
h(M,α,R) is the minimal number

of 1-handles we need to attach to a regular neighborhood of R × {1} in MR to get
the first compression body of a Heegaard splitting of (MR, R× {1}, R× {−1}). Set

h(α) = h(M,α) = min{h(M,α,R), [R] = P(α), χ−(R) = ‖α‖}.
With this notation, note that the circular characteristic χc−(α) is equal to ‖α‖+h(α).

The number h(α) can also be viewed as the minimal number of critical points
of a circular Morse function for M such that the regular level sets correspond to a
surface the homology class of which is Poincaré dual to α. See section 1.

If one considers the tower of cyclic finite covers of M dual to the class α, Theorem
0.3 leads to the following corollary.

Corollary 0.8. Let M be a connected, oriented and closed hyperbolic 3-manifold.
Let α ∈ H1(M) be a non-trivial cohomology class and R an ‖α‖-minimizing surface.
Let (Mi → M)i∈N be the collection of cyclic finite covers of M dual to the class α,
such that for every i ∈ N, the cover pi : Mi →M is regular, with degree i. For each
i ∈ N, let αi := p∗i (α) be the cohomology class in H1(Mi,Z) corresponding to α.

If there exists i ≥ i0 = d(2`‖α‖)4e such that

h(αi)
4
√
i
≤ 1

4`
,

then the manifold M fibers over the circle, and the surface R is a fiber .

Outline of the paper: In order to prove Theorem 0.3, we recall in the first section
how the theory of generalized Heegaard splittings and thin decompositions can be
adapted to circular decompositions (see also [MG]). Results like those of Lackenby
[L1, Corollary 4] and [L2, Section 3] can be proven in this setting. With the assump-
tions and notations of Theorem 0.3, we prove that we can find in M ′ an embedded
surface F very close to a minimal surface (what will be called a pseudo-minimal
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surface). This surface divides M ′ into a bounded number of compression bodies.
The number of connected components of F is at most 3/2(χc−(α′)− ‖α‖) and each
component has genus at most χc−(α′)/2− 1.

In the second and last section, we prove Theorem 0.3 thanks to combinatorial
arguments. The diameter of a pseudo-minimal surface in a hyperbolic 3-manifold is
bounded from above by a constant depending only on ε times its Euler characteristic.
Therefore, the diameter of F is controlled by a function of χc−(α′). As the starting
surface R′ can also be isotoped to a pseudo-minimal surface, its diameter is bounded
from above by a linear function of −χ(R′) = ‖α′‖ ≤ χc−(α′). The idea is to consider
the translates of R′ under the group G := π1(M)/π1(M

′) of deck transformations of
the regular cover. As there are d such translates, if χc−(α′) is very small compared

to d, the diameter of those surfaces and of F is very small compared to the number
of translates. Intuitively, there must be a lot of translates of R′ that are disjoint
and do not intersect the surface F . Indeed, combinatorial arguments show that if
` χc−(α′) ≤ 4

√
d, there are two copies of R′ that are disjoint and parallel to the same

component of F , with coherent orientations. Then [L1, Lemma 14] applies to show
that the covering M ′ is fibered, with fiber a copy of R′. Lemma 2.4 of [G] shows
then that M is already fibered, with fiber R.

Proofs of Corollaries 0.6 and 0.8 at the end of the second section are then straight-
forward from Theorem 0.3.

Acknowledgement: I would like to warmly thank my advisor, Michel Boileau,
whose encouragements, kindness and patience were essential ingredients in this work.
I am grateful to Juan Souto, Nicolas Bergeron, Joan Porti, Jean-Marc Schlenker,
Jean-Pierre Otal, Vincent Guirardel and Cyril Lecuire for very helpful conversations
during the elaboration of this paper. I also wish to thank the referee for his careful
reading and his valuable suggestions.

1. Circular decompositions and thin decomposition.

In order to prove Theorem 0.3, one needs to build a specific decomposition of a
closed hyperbolic 3-manifold M ′. Suppose that α′ is a non-trivial cohomology class
in H1(M ′,Z). Let R′ be an ‖α′‖-minimizing surface, and such that a minimal-genus
Heegaard surface S ′ for M ′

R′ = M ′\N (R′) realizes the circular characteristic χc−(α′),
i.e. χh−(M ′

R′) = |χ(S ′)| = χc−(α′).
Starting from the decomposition of M ′ cut along R′ and S ′ into two compression

bodies, we wish to find a way to build another decomposition by a bounded number of
connected surfaces into compression bodies such that the diameter of the separating
surfaces is bounded from above by a function depending only on χc−(α′), ε ≤ Inj(M ′)
and Vol(M ′). This control on the diameter can be obtained if the separating surfaces
have their Euler characteristics at least χ(S ′) and if they are isotopic to minimal
surfaces or to surfaces as closed as wanted to minimal surfaces. This is the case
if those surfaces are obtained from S ′ by surgery and correspond to incompressible
surfaces or strongly irreducible Heegaard surfaces. This occurs in a thin Heegaard
decomposition. Thus, the aim is to find a kind of Heegaard decomposition adapted
to this situation, keeping track of the given surface R′ corresponding to the given
non-trivial homology class. This is done by the notion of circular decomposition,
and to build the desired decomposition from the decomposition of M ′ by R′ and S ′
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corresponds to the construction of a thin circular decomposition. That is the object
of this first section.

A circular decomposition is the equivalent of a Heegaard decomposition, but this
decomposition is associated to a Morse function that no longer takes values in I =
[0, 1] but in the circle S1. According to [MG], we have the following definitions.

Definition 1.1. A circular Morse function is a Morse function f : M → S1.
If f : M → S1 is a circular Morse function, the handle decomposition of M given

by the function f is called the circular decomposition associated to f .

See F. Manjarrez-Gutiérrez [MG], Matsumoto [Mat] and Milnor [Mi] for further
details about circular Morse functions. Let f : M → S1 be a circular Morse function.
If we remove a small open neighborhood of a regular value x ∈ S1, by restriction of
f , we obtain a Morse function g of MR = M \N (R), which is the manifold M minus
a small regular open neighborhood of the surface R := f−1({x}), on the interval I.
Thus, the theory of Heegaard splittings and generalized Heegaard splittings applies
to the function g.

Another viewpoint is to see a circular decomposition as a handle decomposition of
the cobordism (M \ N (R), R× {1}, R× {−1}). Starting with a Heegaard splitting
of Heegaard surface S for MR = M \ N (R), one can change the order in which
1- and 2-handles are attached to get a new generalized Heegaard splitting (F1 =
R × {1}, S1, F2, . . . , Sn, Fn+1 = R × {−1}) for (MR, R × {1}, R × {−1}). Gluing
back R × {1} to R × {−1}, one obtains a circular decomposition for the manifold
M . Denote it by H = (F1, S1, F2, . . . , Sn, Fn+1), with F1 = Fn+1 = R. The surfaces
Fj divide M into n 3-manifolds with boundary W1, . . . ,Wn, and surfaces Sj are
Heegaard surfaces for those manifolds. For 1 ≤ j ≤ n, Sj divides the manifold Wj

into two compression bodies Aj and Bj, such that ∂+Aj = ∂+Bj = Sj, ∂−Aj = Fj
and ∂−Bj = Fj+1.

Let S be a closed surface. If S is connected, recall that the complexity of S is
c(S) = max(0, 2g(S) − 1). If S is the union of several connected components, the
complexity of S is the sum of the complexities of the components of S. There is a
definition of the complexity of a circular decomposition analogous to the complexity
of a generalized Heegaard splitting.

Definition 1.2. The circular width of a circular decomposition H = (F1, S1, F2,
. . . , Sn, Fn+1) is the set of the n integers (c(S1), . . . , c(Sn)), with repetitions and
arranged in monotonically non-increasing order. Widths are compared using the
lexicographic order.

The integer n ≥ 1 is called the length of the circular decomposition H = (F1, S1,
F2, . . . , Sn, Fn+1).

If S is an embedded closed surface in a 3-manifold M which is not a collection of
spheres, and c an essential simple closed curve on S bounding a disc D in M , one
can cut the surface S open along c and glue two copies of D to cap off the holes
and get a new closed surface S ′ of smaller complexity. This operation is called a
surgery.

Take H = (F1, S1, . . . , Sn, Fn+1) a circular decomposition for M , such that for
some index j, the Heegaard surface Sj for (Aj, Bj) is weakly reducible. As the Hee-
gaard surface Sj is weakly reducible, there exists a pair of disjoint compression discs
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for Sj, say DA embedded in Aj and DB in Bj. Performing surgeries along those two
discs, one gets a new circular decomposition H′ := (F1, . . . , Fj, Tj, Gj, T

′
j , Fj+1, . . . ,

Fn+1), where the surface Tj is obtained from Sj by surgery along DA, T ′j from Sj by
surgery along DB, and Gj from Sj by surgery along DA and DB.

Definition 1.3. This operation will be called a surgery of circular decompositions.

Sj

DB

DA

Gj

T ′j

Tj

Proposition 1.4. Let M be a hyperbolic, connected, oriented and closed 3-manifold.
Let R be an orientable, closed, non-separating, incompressible and embedded surface
in M . Denote by S a Heegaard surface for M \ N (R). Starting from the circular
decomposition H = (R, S,R) of M , there exists a finite number of surgeries to get
a circular decomposition H′ = (F1, S1, F2, . . . , Sn, Fn+1) with F1 = Fn+1 = R and
where parallel surfaces have been amalgamated, such that:

(1) the circular width of H′ is minimal among the widths of such circular decom-
positions obtained by a finite number of surgeries of H,

(2) each surface Sj is a strongly irreducible Heegaard surface for the Heegaard
decomposition (Aj, Bj) of Wj and g(Sj) ≤ g(S),

(3) each surface Fj is incompressible, no component of Fj is a sphere, and
g(Fj) ≤ g(S),

(4) n ≤ 1
2
(χ(R)− χ(S)),

(5) χ(R)− χ(S) =
∑n

j=1(χ(Fj)− χ(Sj)).
(6) Furthermore, if the decomposition H′ is of length at least 2, for every j, the

surfaces Fj and Fj+1 are not parallel.

Definition 1.5. Let H be a circular decomposition. A circular decomposition H′ =
(F1, S1, F2, . . . , Sn, Fn+1) that is circular-length-minimizing among all circular de-
compositions obtained from H by a finite number of surgeries and amalgamation
of parallel components is said to be a thin decomposition. We will call such a
decomposition a thin circular decomposition associated to H.

Proof of Proposition 1.4.
The proof of the first three points of this proposition is based on the proof of

[MG, Theorem 3.2], which is itself an adaptation of techniques of [ST2] to the case
of circular decompositions. Recall here the arguments (see also [L2, section 3]).

Starting with the circular decomposition H = (R, S,R), the aim is to perform a
certain number of surgeries to obtain a thin decomposition, i.e. of minimal complex-
ity. Each surgery corresponds to a change on the order in which 1- and 2-handles
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are attached, such that a surgery strictly decreases the circular width of the decom-
position. Thus, the number of necessary surgeries to get a thin decomposition is
finite.

Lemma 1.6. Let H = (F1, S1, . . . , Sn, Fn+1) be a circular decomposition for M ,
and suppose that for some index j, the Heegaard surface Sj for (Aj, Bj) is weakly
reducible. If H′ is the new circular decomposition obtained from H by surgery, the
circular width of H′ is strictly smaller.

Proof of Lemma 1.6.
Set H′ = (F1, . . . , Fj, Tj, Gj, T

′
j , Fj+1, . . . , Fn+1) the new circular decomposition

obtained from H by surgery as described above. As |χ(Tj)| =
∣∣χ(T ′j)

∣∣ = |χ(Sj)| − 2,
the circular width of this new circular decomposition is strictly smaller than this of
H. �

As χ(Tj) = χ(T ′j) = χ(Sj) + 2 and χ(Gj) = χ(Sj) + 4, one obtains −χ(Sj) =
−χ(Tj)+χ(Gj)−χ(T ′j). Thus, this surgery procedure does not modify the alternate
sum

∑
(χ(Fj)− χ(Sj)), proving point (5).

As this surgery procedure strictly decreases the circular width of the decomposi-
tion, there exists a finite number of such surgeries to get a circular decomposition
H′ = (F1, S1, . . . , Sn, Fn+1) of minimal circular width among the set of all decompo-
sitions obtained by surgeries from the starting circular decompositionH = (R, S,R).

To prove (2), recall [MG]. Just notice that if one of the Heegaard surfaces Sj
is not strongly irreducible, from Lemma 1.6, one can perform another surgery to
obtain a new circular decomposition of circular width strictly smaller than this of
H′, which is a contradiction if H′ is a length-minimizing decomposition.

The proof of point (3) is done in [MG]. The surface R = F1 = Fn+1 is incom-
pressible. Suppose by contradiction that one of the surfaces Fj is compressible, for
an index j between 2 and n. There exists then a compression disc D for Fj. Taking
an innermost disc, one can furthermore assume that D ∩ (∪nk=1Fk) = D ∩ Fj = ∂D.
Thus, the disc D entirely lies in the region Wj−1 bounded by the two surfaces Fj−1
and Fj, or is entirely embedded in the region Wj bounded by Fj and Fj+1. Suppose
for example that D is entirely embedded in Wj. From the boundary version of the
Haken Lemma [H], as Wj is ∂-reducible, every Heegaard splitting of Wj is reducible,
hence weakly reducible. This is a contradiction with point (2), proving the first part
of point (3).

If one of the components of a surface Fj is a 2-sphere, as M is irreducible, this
sphere bounds an embedded ball in M . Taking an innermost sphere, one obtains a
sphere bounding the Heegaard splitting of a 3-ball. But this splitting, if not trivial,
is reducible (see [Wa]), hence weakly reducible, contradicting point (2). This ends
the proof of point (3).

To prove point (4), notice that the surgery process as described above is in fact
a change on the order in which the handles are attached. More precisely, with the
notations above, if we consider a handle decomposition associated to H where 1- and
2-handles correspond to meridian discs for the Heegaard splittings, a surgery is a
handle reordering. The 2-handle corresponding to the meridian disc DB is attached
before the 1-handle corresponding to DA. Thus, this process does not change the
number of 1- and 2-handles. In the starting circular decomposition H = (R, S,R),
the number of 1- and 2-handles is equal to χ(R)−χ(S). So after each surgery, there
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are still 1
2
(χ(R) − χ(S)) 1-handles and 1

2
(χ(R) − χ(S)) 2-handles. As the number

of regions of a circular decomposition H′ is at most the number of 1- and 2-handles
in this decomposition, there are at most χ(R) − χ(S) regions in H. Therefore, the
number of even surfaces Fj is bounded above by 1

2
(χ(R) − χ(S)). In other words,

n ≤ 1
2
(χ(R)− χ(S)), which proves point (4).

Finally, for point (6) we recall the argument of [L2, Section 3]. If the length of
the decomposition is just 1, this means that there is only one incompressible surface
F1 = R = F2.

If the length of the decomposition H′ is at least 2, parallel surfaces can be amal-
gamated. Indeed, suppose that there exists two parallel surfaces Fj and Fj+1 for
some j. From point (2), the surface Sj is a strongly irreducible Heegaard surface
for the product region bounded by Fj and Fj+1. From the classification of Heegaard
splittings for products (see [ST1]), this means that Sj is parallel to Fj. The two
surfaces Fj and Fj+1 can then be amalgamated to a single surface, forgetting the
surface Sj, to obtain a new circular decomposition with complexity strictly smaller
than this of H′ and still verifying the other points of Proposition 1.4. �

Corollary 1.7. Let M , R and S be as above, and H′ = (F1 = R, S1, . . . , Fn+1 = R)
a thin circular decomposition associated to (R, S,R). Let F =

⋃
j Fj ∪

⋃
j Sj. Then,

(1)
∣∣χ(F )

∣∣ ≤ |χ(S)− χ(R)| |χ(S)|, and

(2) the surface F has at most 3
2
|χ(S)− χ(R)| connected components.

Proof of Corollary 1.7.
We adapt here the proof of [L1, Corollary 4]. First, notice that no compression

body in the complement of F is a punctured 3-ball, as no component of
⋃
j Fj∪

⋃
j Sj

is a 2-sphere.
As M is hyperbolic, no compression body of the thin circular decomposition can

be a solid torus.

Remark 1.8. Another way to prove point (4) of Proposition 1.4 starting from point
(5) is the following.

Recall that F1 = R = Fn+1. Point (5) of Proposition 1.4 can also be written:
(1)

χ(R)−χ(S) =
χ(F1)− χ(S1)

2
+
χ(F2)− χ(S1)

2
+
χ(F2)− χ(S2)

2
+. . .+

χ(Fn+1)− χ(Sn)

2
.

If H is a compression body that is not a punctured 3-ball, nor a solid torus, nor a
product, then χ(∂−H)−χ(∂+H) > 0 and this integer is even. As the 2n components
of the complementary of

⋃
j Fj ∪

⋃
j Sj are such compression bodies, the right hand

side of equality (1) is bounded from below by 2n. Therefore, 2n ≤ χ(R) − χ(S). It
is exactly point (4) of Proposition 1.4.

Thus, ∣∣χ(F )
∣∣ =

∣∣∣∣∣χ(
⋃
j

Fj ∪
⋃
j

Sj)

∣∣∣∣∣ =
n∑
j=1

|χ(Fj)|+
n∑
j=1

|χ(Sj)|

≤ 2n |χ(S)|
≤ |χ(R)− χ(S)| |χ(S)| .

If H is a compression body that is not a punctured 3-ball, nor a solid torus, nor
a product, one can check that |∂H| ≤ 3

2
(χ(∂−H) − χ(∂+H)). The sum over all
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compression bodies H in the complement of
⋃
j Fj ∪

⋃
j Sj of χ(∂−H) − χ(∂+H)

is equal to
∑

H(χ(∂−H) − χ(∂+H)) = 2
∑n

j=1(χ(Fj) − χ(Sj)) = 2(χ(R) − χ(S)).

Now, the number of components of F is at most 1
2

∑
H |∂H|, where H describes all

compression bodies that are the components of M \F which are not product regions.
But

1

2

∑
H

|∂H| ≤ 1

2

∑
H

3

2
(χ(∂−H)− χ(∂+H))

=
3

2

n∑
j=1

(χ(Fj)− χ(Sj))

=
3

2
|χ(R)− χ(S)| .

Therefore,
∣∣F ∣∣ ≤ 3

2
|χ(R)− χ(S)|, which ends the proof of Corollary 1.7. �

Thus, from the starting circular decomposition (R, S,R) of M , one can build a
decomposition of M into compression bodies by a surface F of bounded complexity.
The number of connected components of F is also bounded, and each component cor-
responds to an incompressible surface, or to a strongly irreducible Heegaard surface
for some submanifold of M .

The proof of Theorem 0.3 will require us to control the diameter of the surface
F =

⋃
j Fj ∪

⋃
j Sj. A way to do this is to control the metric of its components, for

example by showing that up to isotopy, they are very closed to minimal surfaces.

Definition 1.9. An embedded surface S in a Riemannian 3-manifold M is called
pseudo-minimal if it is orientable, closed, and S is a minimal surface or the
boundary of a regular neighborhood of a minimal non-orientable surface, possibly
with a little tube attached vertically in the I-bundle structure.

Part (1) of the following theorem comes from results of Frohman, Freedman, Hass
and Scott about incompressible surfaces ([FHS] and [FH]). Part (2) is a result of
Pitts and Rubinstein ([PR], see also [S, Existence Theorem of minimal surfaces],
[CDL] and [P]).

Theorem 1.10. Let N be a connected, oriented and closed hyperbolic 3-manifold.
(1) Any incompressible surface in N can be isotoped to a minimal surface or the

boundary of a small neighborhood of a non-orientable minimal surface.
(2) Any embedded surface corresponding to a strongly irreducible Heegaard surface

for a region of N lying between two (possibly empty) embedded, incompressible and
pseudo-minimal surfaces as above can be isotoped to a minimal surface, or to the
boundary of a small regular neighborhood of a non-orientable minimal surface, with
a small tube attached vertically in the I-bundle structure. �

The next corollary directly follows from Theorem 1.10 combined with Proposition
1.4.

Corollary 1.11. Let M be a hyperbolic, connected, oriented and closed 3-manifold.
Take H = (F1, S1, F2, . . . , Sn, Fn+1) a thin circular decomposition of M . Then, up
to isotopy, one can assume that all surfaces Fj and Sj are pseudo-minimal. �
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2. Homology classes and fibration of finite regular covers.

The aim of this section is to prove Theorem 0.3 and Corollaries 0.6 and 0.8.

Proof of Theorem 0.3.
The proof is an adaptation of the proof of [L1, Theorem 1 (3)] for a given cover

M ′ of M and a given non-trivial homology class, together with some calculations of
explicit constants.

Let M be a connected, oriented and closed hyperbolic 3-manifold as in the assump-
tions of Theorem 0.3, and ε ≤ Inj(M). Let α ∈ H1(M) be a non-trivial cohomology
class and R an ‖α‖-minimizing surface. Let M ′ → M be a regular finite cover of
M with degree d. Let R′ be a connected component of the preimage of R in the
cover M ′, and α′ the cohomology class in H1(M ′,Z) that is Poincaré-dual to [R′].

Claim . To prove Theorem 0.3, one can assume in addition that the surface R′

is ‖α′‖-minimizing and that a minimal-genus Heegaard surface S ′ for M ′
R′ realizes

the circular characteristic χc−(α′), i.e. χh−(M ′
R′) = |χ(S ′)| = χc−(α′), where M ′

R′ =
M ′ \ N (R′).

Proof of claim.
Let us show that this is not a problem to furthermore assume that the surface

R′ is ‖α′‖-minimizing and χc−(α′)-minimizing. Suppose that the theorem has been
proven in this particular case, and take R′ a component of the preimage of R in M ′

such that [R′] = α′. If R′′ is an ‖α′‖-minimizing and χc−(α′)-minimizing surface, as
we suppose that the theorem is proven in this case, M ′ fibers over the circle and
R′′ is a fiber. But as the surface R′ is a component of the preimage of R, it is
incompressible and in the same homology class as R′′. Thus it is also a fiber. By a
result of Gabai [G, Lemma 2.4], the homology class of R is also fibered in M . As
R is an embedded and incompressible surface (as it is ‖α‖-minimizing), this means
that the manifold M fibers over the circle, and that R is a fiber. �

It remains to show that under the assumptions of Theorem 0.3, and if in addition
R′ is ‖α′‖-minimizing and χc−(α′)-minimizing, then it is a fiber of a fibration of M ′

over the circle.
Applying Proposition 1.4 to the circular decomposition (R′, S ′, R′), one obtains a

thin circular decomposition H′ = (F1, S1, . . . , Fn+1) associated to (R′, S ′, R′), where
F1 = Fn+1 = R′. Moreover, F =

⋃
Fj ∪

⋃
Sj is a pseudo-minimal surface, and it

follows from Corollary 1.7 that
∣∣χ(F )

∣∣ ≤ |χ(R′)− χ(S ′)| |χ(S ′)| ≤ χc−(α′)2.
The interest of pseudo-minimal surfaces is that their metric is not far from the

metric of a minimal surface. Lackenby and Maher have shown that the diameter
of a minimal surface can be bounded from above by a constant depending only on
ε times its Euler characteristic (see [L2, Proposition 6.1] and [Mah, Lemma 4.2 p.
2249]). We establish the same kind of result for pseudo-minimal surfaces.

As F and R′ are pseudo-minimal, their diameter is then bounded from above by a
constant times respectively

∣∣χ(F )
∣∣ ≤ χc−(α′)2 and |χ(R′)| = ‖α′‖ ≤ χc−(α′). The idea

is to consider the translates of R′ into the action of the group G := π1(M)/π1(M
′)

of deck transformations of the regular cover M ′ → M . There are d such copies.
If d is big enough and χc−(α′) rather small, there are plenty of such copies, with

bounded diameter as they are isometrical to R′. As the diameters of F and R′ are
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bounded and small compared to d, there are lots of copies of R′ that are disjoint and
can not intersect F . A copy of R′ not intersecting F is an incompressible surface
lying in the complement of F , a union of compression bodies. Therefore, it must be
parallel to a negative component of the boundary of the compression body, which is
an incompressible component of F .

As the number of components of F is bounded, if the number d of copies of R′ is
really big, there must be a large number of copies of R′ that are disjoint and parallel
to the same component of F . Eventually, we show that if the inequality of Theorem
0.3 is satisfied, then there are at least two such surfaces with coherent orientation in
the product region they bound. This means that they are in fact fibers of a fibration
of M ′ over the circle. This is the idea of the proof of [L1, Theorem 1 (3)], together
with explicit calculations of geometric constants and combinatorial arguments.

Let us detail and make explicit calculations. First, let us try and estimate the
number of copies of R′ that are disjoint and in the complement of F .

As the surface F is not connected, it is more interesting to work with the notion
of ε-diameter instead of diameter for surfaces. Indeed, with this definition, small
components that are far apart are still considered ”small”.

Definition 2.1. Let ε > 0. The ε-diameter of a non-necessarily connected surface
F is the minimal number of balls of radius ε for the metric of F required to cover
the surface F .

The following lemma is an adaptation of Lackenby and Maher’s results for pseudo-
minimal surfaces: there is still an explicit bound on their ε-diameter.

Lemma 2.2. Let S be an embedded pseudo-minimal surface in N , a Riemannian
closed 3-manifold, whose sectional curvature is at most −1. Let ε ≤ Inj(N) and

a′ = 6

(
21

4
+

3

4π
+

3

4ε
+

2

sinh2( ε
4
)

)
.

Then the ε-diameter of the surface S is bounded from above by a′ |χ(S)| /3. Fur-
thermore, the ε-diameter of a pseudo-minimal surface Σ homotopic to S and close
enough is at most a′ |χ(Σ)|.

Proof of Lemma 2.2.
This lemma is a direct consequence of [Mah, Lemma 4.2 p. 2249] and [L2, Propo-

sition 6.1] in the case the surface S is minimal and orientable, and we can take
a′/6 instead of a′. If S is minimal, but not orientable, its homology class [S] is non
zero in H2(N,Z/2Z). By Poincaré’s duality, it corresponds to a non-trivial element
α ∈ H1(N,Z/2Z). As the homology class of the double cover of S can be represented
by the boundary of a small regular neighborhood of the non-orientable surface S,
we have 2[S] = 0 in H2(N,Z). If we take the double cover N ′ of N correspond-
ing to the kernel of α, the surface S lifts to a minimal orientable surface S ′. We
can apply the orientable version of Lemma 2.2, and bound the ε-diameter of S ′ by
a′/6 |χ(S ′)| = a′/6× 2 |χ(S)| = a′/3 |χ(S)|. As this number bounds also from above
the ε-diameter of S, this proves the lemma for a minimal non orientable surface,
with a′/3 instead of a′.
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If the surface S is just pseudo-minimal, it is the boundary of an arbitrarily small
regular neighborhood of a minimal surface S ′. As the diameter is at most a′/3 |χ(S ′)|,
with |χ(S)| ≤ 2 |χ(S ′)|, this ends the proof of Lemma 2.2. �

With this lemma, the ε-diameter of the surfaces F and R′ is explicitly bounded
from above. To study the geometric behavior of the translates of R′, an idea is to
look for an explicit control on the geometry of fundamental polyhedra for M in M ′,
which are also translated under the action of G.

Let D be a Dirichlet fundamental polyhedron for the manifold M in its universal
cover H3. The union of the translates of D under the action of the fundamental
group of M composes a tiling of H3. By the covering map H3 → M ′, this tiling
projects to a tiling of M ′ by d copies of D. Let D′ be one of those polyhedra. As
the cover M ′ → M is regular, the tiling of M ′ is the union of the translates of D′
under the action of the group G = π1(M)/π1(M

′).
The following lemma is a way to bound the diameter of a fundamental polyhedron
D in H3 in terms of the volume of the manifoldM and a lower bound for its injectivity
radius. The second part allows us to explicitly estimate the number of such polyhedra
a surface of given ε-diameter can intersect.

Lemma 2.3. Let D be a Dirichlet fundamental polyhedron for the manifold M ,

embedded in the universal cover M̃ ' H3. Let D be an upper bound for the diameter
of D in H3. We have the following estimate:

(2) diam(D) ≤ 8εVol(M)

π(sinh(2ε)− 2ε)
= D.

If S is an embedded surface in the finite cover M ′ of M , which can be covered by
at most λ embedded balls in M ′ of radius ε ≤ Inj(M), then S intersects at most L
images of D in M ′, with

(3) L = bπ(sinh(2D + 2ε)− 2D − 2ε)

Vol(M)
λc.

�
Proof of Lemma 2.3.

To prove inequality (2), first notice that diam(D) ≤ 2 diam(M). To prove it,
recall that there exists w ∈ H3 such that D = {x ∈ H3 , d(γ(w), x) ≥ d(w, x) ∀γ ∈
π1(M)}. If x and y ∈ D satisfy d(x, y) = diam(D), then

diam(D) = d(x, y) ≤ d(x,w) + d(y, w) ≤ 2 diam(M).

Take x and y ∈ M such that d(x, y) = diam(M), and let γ be a minimizing
geodesic from x to y. By definition, length (γ) = diam(M). Let B be a collection
of points in γ which is maximal among collections of points of γ such that two balls
of radius ε and whose centers are two distinct points of B have disjoint interiors.
Then, by maximality of B, the union of balls with centers in B and radius 2ε cover
the geodesic γ.

Thus, |B| ≥ length (γ)
4ε

. As balls of centers in B and radius ε have disjoint interiors,
considering volumes, we deduce:
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Vol(M) ≥
∑
u∈B

Vol(B(u, ε))

≥ length (γ)

4ε
Vol(BH3(ε))

≥ diam(M)

4ε
π(sinh(2ε)− 2ε),

proving inequality (2).
To prove inequality (3), denote by B the set of the centers of a collection of K

embedded balls in M ′ of radius ε′ covering the surface S. Let N = ∪x∈BB(x,D+ε′).
Those balls are not necessarily isometric to hyperbolic embedded balls in H3 as D+
ε′ > Inj(M). However, let us show that N contains every fundamental polyhedron
of M ′ intersecting S.

To prove it, let x be a point in a fundamental polyhedron of M ′ intersecting S.
Take y ∈ S such that d(x, y) = dist(x, S) ≤ D. As y is a point of S, there exists a
ball B(x, ε′) with x ∈ B containing y. Therefore d(z, x) ≤ d(z, y) + d(y, x) ≤ D+ ε′,
showing that z ∈ B(x, ε′ +D) ⊂ N .

Comparing volumes, we get:

LVol(D) ≤ Vol(N )

LVol(M) ≤ |B|Vol(BH3(ε′ +D))

L ≤ π(sinh(2ε′ + 2D)− 2ε′ − 2D)

Vol(M)
K,

proving inequality (3), as L is an integer. �

In the sequel, set a′ = 6
(

21
4

+ 3
4π

+ 3
4ε

+ 2
sinh2( ε

4
)

)
and D := 8εVol(M)

π(sinh(2ε)−2ε) as in

Lemmas 2.2 and 2.3. As D is an upper bound for the diameter of D in H3, it is also
an upper bound for the diameter of D′ in M ′.

As the surface F and the translates of R′ are pseudo-minimal surfaces, we then
obtain explicit bounds for the number of copies of D′ they intersect.

Lemma 2.4. Set κ := a′ π(sinh(2D+2ε)−2D−2ε)
Vol(M)

. If Σ is a pseudo-minimal surface in

M ′, Σ intersects at most κ |χ(Σ)| translates of D′ under the action of the group
G = π1(M)/π1(M

′) of deck transformations of the regular cover. From another
viewpoint, for a given translate of D′ in M ′, there exist at most κ |χ(Σ)| copies of Σ
under the action of G which intersect it.

Proof of Lemma 2.4.
Lemma 2.4 is straightforward from inequality (3) of Lemma 2.3. The embedded

surface Σ in M ′ can be covered by at most a′ |χ(Σ)| embedded balls in M ′ of radius ε.

Therefore, this surface cannot intersect more than bπ(sinh(2D+2ε)−2D−2ε)
Vol(M)

a′ |χ(Σ)|c ≤
π(sinh(2D+2ε)−2D−2ε)

Vol(M)
a′ |χ(Σ)| translates of D′ in M ′. �

Lemma 2.4 applies to the pseudo-minimal surface F . Thus, this surface intersects
at most κ

∣∣χ(F )
∣∣ ≤ κχc−(α′)2 translates of D′ in M ′. Let B be the subset of the

corresponding elements of G.
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Let also C be the subset of G corresponding to the translates of D′ that intersect
R′. Applying Lemma 2.4 again, |C| ≤ κ |χ(R′)| = κ‖α′‖.

The fundamental polyhedra are somehow intermediates to estimate the number
of disjoint translates of R′ that in addition do not intersect F . This is the crucial
following lemma. This lemma and its proof are adapted from the proof of [L1,
Lemma 13], but with explicit bounds.

Lemma 2.5. Set ` := 4
√

117κ2/8.

If ` χc−(α′) ≤ 4
√
d, under the action of G, there are at least m′ = 9χc−(α′)/2

translates of R′ that are disjoint and do not intersect F .

Proof of Lemma 2.5.
By contradiction, suppose that the lemma is false. Then, for each m′-tuple

(g1R
′, . . . , gm′R

′) of translates of R′, at least two of them intersect, or at least one
of them intersects F . There exist j and k, with 1 ≤ j < k ≤ m′, c1 and c2 ∈ C
such that gjc1 = gkc2, or there exist b ∈ B, c1 ∈ C and s such that gsc1 = b. In the
first case, g−1k gj ∈ CC−1, and in the second case, gs ∈ BC−1. This means that Gm′

is the union of the sets q−1jk (CC−1) and p−1s (BC−1), where for 1 ≤ j < k ≤ m′ and
1 ≤ s ≤ m′, qjk and ps are the maps

qjk : Gm′ → G

(g1, . . . , gm′) 7→ g−1k gj

ps : Gm′ → G

(g1, . . . , gm′) 7→ gs.

The cardinality of q−1jk (CC−1) is |G|m
′−1 |CC−1|, and the cardinality of p−1s (BC−1)

is |G|m
′−1 |BC−1|. Thus,

|G|m
′
≤

(
m′

2

)
|G|m

′−1 |C|2 +m′ |G|m
′−1 |C| |B|

dm
′ ≤

(
m′

2

)
dm
′−1(κ‖α′‖)2 +m′dm

′−1κ‖α′‖κχc−(α′)2.

As ‖α′‖ = |χ(R′)| ≤ |χ(S ′)| = χc−(α′), one has

(4) d ≤ κ2

2
m′(m′ − 1)χc−(α′)2 + κ2m′χc−(α′)3.

As m′ = 9χc−(α′)/2, this leads to

d ≤ 9κ2

4
χc−(α′)(

9χc−(α′)

2
− 1)χc−(α′)2 +

9κ2

2
χc−(α′)4

≤ 117κ2

8
χc−(α′)4 − 9κ2

4
χc−(α′)3

<
117κ2

8
χc−(α′)4 = `4 χc−(α′)4 ≤ d,

which is a contradiction. Therefore, the lemma holds. �

By Lemma 2.5, there exist at least 9χc−(α′)/2 translates of R′ such that any two of

them are disjoint, and which do not intersect the surface F either. As each of those
9χc−(α′)/2 incompressible surfaces is in the complement of F , which is a disjoint
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union of compression bodies, this surface is in fact parallel to a component of F .
From Corollary 1.7, F has at most 3χc−(α′)/2 components. Therefore, there are at

least three disjoint translates of R′ that are parallel to the same component of F .
Thus, those three translates are parallel. If the surface R′ is arbitrarily given an
orientation, each of the translates of R′ is oriented, and its orientation is given by
the orientation of R′. With those conventions, there are at least two of those parallel
translates whose orientations are coherent in the product region they bound. Thus,
there exists an incompressible surface R′′ in M ′ and h ∈ G an orientation preserving
homeomorphism such that R′′ and h(R′′) are parallel and disjoint in M ′. As R′′

is incompressible, Lemma 14 of [L1] applies: the cover M ′ fibers over the circle,
with fiber R′′. But as R′′ is a translate of the surface R′ under the action of G, if
p : M ′ → M is the covering map, the homology class of p−1(R) is fibered. This
ends the proof of Theorem 0.3. �

Proof of Corollary 0.6.

The proof is straightforward from Theorem 0.3. If limi→+∞
χc−(αi)

4√di
= 0, for i large

enough, ` χc−(αi) ≤ 4
√
di, and Theorem 0.3 applies. �

Proof of Corollary 0.8.
As the cover Mi → M is the i-sheeted cyclic cover associated to the class α and

αi = p∗i (α), ‖αi‖ = ‖α‖. Thus, χc−(αi) = ‖αi‖ + 2h(αi) = ‖α‖ + 2h(αi). If there

exists i ≥ i0 = d(2`‖α‖)4e such that h(αi)
4√i ≤

1
4`
, then

`χc−(αi) = `(‖α‖+ 2h(αi)) ≤ `‖α‖+
4
√
i/2 ≤ 4

√
i0/2 +

4
√
i/2 ≤ 4

√
i.

Theorem 0.3 then applies. �
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http ://hal-ups-tlse.archives-ouvertes.fr/tel-00680760/.

[S] Juan Souto. Finiteness of isotopy classes of heegaard splittings. Notes available at
http://www.math.ubc.ca/ jsouto/papers.html.

[ST1] Martin Scharlemann and Abigail Thompson. Heegaard splittings of (surface)× I are stan-
dard. Math. Ann., 295(3):549–564, 1993.

[ST2] Martin Scharlemann and Abigail Thompson. Thin position for 3-manifolds. In Geometric
topology (Haifa, 1992), volume 164 of Contemp. Math., pages 231–238. Amer. Math. Soc.,
Providence, RI, 1994.

[Wa] Friedhelm Waldhausen. Heegaard-Zerlegungen der 3-Sphäre. Topology, 7:195–203, 1968.
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