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ABSTRACT. We prove that the residual girth of any finitely generated linear
group is at most exponential. This means that the smallest finite quotient in
which the n-ball injects has at most exponential size. If the group is also not
virtually nilpotent, it follows that the residual girth is precisely exponential.

1. INTRODUCTION

Let T" be a group with a finite generating subset S, and | - |¢ the corresponding
word length. We assume for convenience that S is symmetric and contains the
unit, so that S™ is equal to the n-ball. The following three functions are attached
to (I', S):

e the growth: the cardinal br g(n) of S™;

e the systolic growth: the function op ¢ mapping n to the smallest k& such
that some subgroup H of index k contains no nontrivial element of the
n-ball; if no such k exists, we define it as +oo;

e the residual girth, or normal systolic growth o, g1 same definition, with
the additional requirement that H is normal.

The growth is always defined and is at most exponential, while the systolic
growth and residual girth take finite values if and only if I' is residually finite,
and in this case they can be larger than exponential, as the example in [BSe]
show. Furthermore, we have the obvious inequalities

br,s(n) < ors(2n+1) < op g(2n +1).

The asymptotic behavior of these functions, for finitely generated groups, does
not depend on the finite generating subset.

A simple example for the residual girth grows strictly faster than the systolic
growth is the case of the integral Heisenberg group, for which the growth and
systolic growth behaves as n? while the residual girth grows as n® (see [BSt, C]).
Also the systolic growth may grow faster than the growth and actually can grow
arbitrarily fast. We show here that in linear groups, this is not the case.

Theorem 1.1. Assume that I' admits a faithful finite-dimensional representation
over a field (or a product of fields). Then the residual girth (and hence the systolic
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growth) of T are at most exponential. In particular, if ' is not virtually nilpotent,
then its residual girth and its systolic growth are exponential.

Such a result was asserted by Gromov [G, p.334] for subgroups of SLy4(Z), under
some technical superfluous additional assumption (non-existence of nontrivial
unipotent elements).

The proof of Theorem 1.1 consists in finding small enough quotient fields of
the ring of entries, while ensuring that the n-ball is mapped injectively. The
argument can be simplified in case I' C GL4(Q), since then reduction modulo p
for all p large enough work with no further effort; in this case the finite quotients
are explicit, while in the general case we only find a suitable quotient field using
a counting argument.

Ezxample 1.2. The group Z!Z has an exponential residual girth. Another example
is (Z/6Z)1Z, which is linear over a product of 2 fields, but not over a single field.

Remark 1.3. Closely related functions are the residual finiteness growth, which
maps n to the smallest number sp g(n) such that for every g € S™ ~ {1}, there is
a finite index subgroup of I avoiding g, and sf. g(n) defined in the same way with
only normal finite index subgroups. For finitely generated group that are linear
over a field, a polynomial upper bound for these functions is established in [BM],
and in the case of higher rank arithmetic groups, the precise behavior is obtained
in [BK]: for instance, for SL4(Z) for d > 3, the normal residual finiteness growth
grows as n 1.

2. PRELIMINARIES ON POLYNOMIALS OVER FINITE FIELDS

Lemma 2.1. Let F' be a finite field with q elements. Given an integer n > 1,
the number of irreducible monic polynomials of degree n in F[t] is < ¢q"/n and

> (¢" —q"")/n.
Proof. The case n = 1 being trivial, we can assume n > 1. By Gauss’ formula
this number Ny(n) is equal to (1/n) >_,, w(n/d)q?, where p is Mobius’ function.
Let p > 1 be the smallest prime divisor of n. Then

Y uln/d)gt =g ="+ Y pn/d)gt <qt—qP+ > ¢

dln d|n,d>p dn,d>p

n/p—1
< —q"P+ Y <"
k=0

A similar argument shows that nN,(n) > ¢" — ¢**/?, which is > ¢" — ¢"~ ! if
n > 3; the cases n < 2 being trivial. O

Lemma 2.2. Let F be a field with q elements. Let P € F[t] be a nonzero
polynomial of degree < n. Then P survives in a quotient field of F[t] of cardinal
< 2ngq.



SYSTOLIC GROWTH OF LINEAR GROUPS 3

Proof. Let m > 1 be the largest number such that every irreducible polynomial
of degree m — 1 divides P. Let us check that ¢ < 2ngq; the case m = 1 being
trivial, we assume m > 2. By Lemma 2.1, there are > (¢™ 1 — ¢™2)/(m — 1)
monic irreducible polynomials of degree m — 1. Hence their product, which has
degree > ¢™ ' —¢™~2, divides P. Thus ¢! —¢™ 2 <n. Wehave 1 —¢~* > 1/2;
thus $¢™¢* < n, that is ¢™ < 2ng.

Some irreducible polynomial of degree m does not divide P, hence the quotient
provides a field quotient of cardinal ¢ < 2ng in which P survives. 0

Corollary 2.3. Let F be a field with q elements and P a nonzero polynomial in
Flty,...,t], of degree < n with respect to each indeterminate. Then P survives
in a quotient field of cardinal < (2n)*q.

Proof. Induction on k. The result is trivial for £ = 0. Write
P == Z 131'(751, e ,tk_l)t?c.
=0

Some P; is nonzero; fix such 7. Then there exists, by induction, some quotient
field L of Flt;,..., t;_1] of cardinal < (2n)¥~1q in which P, survives. Then the
image of P in Llt;] has degree < m and is nonzero; hence by Lemma 2.2, it
survives in a quotient field of cardinal 2n((2n)*1q) = (2n)*q. O

3. CONCLUSION OF THE PROOF

Proposition 3.1. FEvery finitely generated group that is linear over a field of
characteristic p has at most exponential residual girth.

Proof. Such a group embeds into GL4(K) where K is an extension of degree b
of some field K" = F,(ti,...,t;), and hence embeds into GLys(K”). Hence it is
no restriction to assume that the group is contained in GL4(F,(t1,...,tx)). We
let S be a finite symmetric generating subset with 1; it is actually contained in
GL4(F,[t1,-..,t][Q']) for some nonzero polynomial Q.

Write S = Q*T with A a non-negative integer and 7" C Matg(F,[t1,. .., tk]);
write s = #(5) = #(7T). If x is a matrix, let b(x) be the product of all its
nonzero entries (thus b(0) = 1). Let m be such that every entry of every element
of T has degree < m with respect to each variable. Then in 72", every entry
of every element has degree < 2nm with respect to each variable. Define x, =
HyeTgn b(y — 1). Thus =z, is a product of at most d?s* polynomials of degree
< 2nm with respect to each variable. Define x/, = z,Q; assume that @ has
degree < ¢ with respect to each variable, so that 2/, has degree < 2d*mns®" + ¢
with respect to each variable.

Then, by Corollary 2.3, x] survives in a finite field F,, of cardinal ¢ <
q(4d®mns®™ + 26)k. Thus S™ is mapped injectively into GLg(F},), which has
cardinal

< ¢ < ¢ (AdPmns® + 28)
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Since m, d, k, s, q are fixed, this grows at most exponentially with respect ton. [

Proposition 3.2. FEvery finitely generated group that is linear over a field of
characteristic 0 has at most exponential residual girth.

Proof. Similarly as in the proof of Proposition 3.1, we can suppose that the group
is contained in GL4(Q(t1,...,tx)). We let S be a finite symmetric generating
subset with 1; it is actually contained in GLg(Z[ty,...,t][r 'Q7']) for some
nonzero integer r > 1 and nonzero polynomial () with coprime coefficients.

Write S = (Qr)~*" with X\ a non-negative integer and T' C Maty(Z[t1, . .., tx]);
write s = #(S) = #(T'). Let R be an upper bound on coefficients of entries of
elements of T', and let M be an upper bound on the number of nonzero coefficients
of entries of elements of T. Then any product of 2n elements of T is a sum of
< M?" monomials, each with a coefficient of absolute value < R?". Since any
entry of an element in 72" is a sum of at most d?"~! such products, we deduce
that the coefficients of entries of elements of 72" are < d?" 'R*M?". There
exists a prime p, € [2d*""Y(RM)?n,4d*"~'(RM)*"]. There exists ny such that
for every n > ng, 2d**"*(RM)*n is greater than any prime divisor of r, and
2d*"~1(RM)?n is greater than the lowest absolute value of a nonzero coefficient
of Q. Now we always assume n > ng. Then S?" is mapped injectively into
GL(Z/p D), - 1]IQ]).

Let m be such that every entry of any element of 7" has degree < m with
respect to each variable. The previous proof provides a quotient GL4(F,) of
GL4((Z/pnZ)[t1, ..., t][Q"]) in which S™ is mapped injectively, such that GL4(F,)
has cardinal

< p* (4d*mns®™ + 2(5)’“12
Here m, d, s, k are independent of n. The latter number is
< (4d"Y(dRM)™ " (AdPmns® + 25)¢,
which grows at most exponentially with respect to n. 0

Proof of Theorem 1.1. First assume that " is linear over some field. By Propo-
sitions 3.1 and 3.2, the residual girth, and hence the systolic growth, is at most
exponential. If I' is not virtually nilpotent, then by the Tits-Rosenblatt alterna-
tive, it contains a free subsemigroup on 2 generators and hence has exponential
growth, and therefore has at least exponential systolic growth and residual girth.

Now assume that I' is linear over some product of fields. Let A be the ring
generated by entries of I'. This is a finitely generated reduced commutative ring;
hence it has finitely many minimal prime ideals, whose intersection equals the
set of nilpotent elements and hence is reduced to zero. Therefore I' embeds into
a finite product of matrix group over various fields. We conclude that I' has at
most exponential residual girth, using the following two general facts:
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e suppose that I'y, ..., [’y are finitely generated groups and I'; has residual

girth asymptotically bounded above by some function u; > 1, then the
residual girth of Hle I'; is asymptotically bounded above by [] u;;

e if Ay C A, are finitely generated groups then the residual girth of Ay is

asymptotically bounded above by that of A,.
O
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