
GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR
DEHN FUNCTIONS

YVES CORNULIER AND ROMAIN TESSERA

Abstract. We study the Dehn function of connected Lie groups. We show
that this function is always exponential or polynomially bounded, according
to the geometry of weights and of the 2-cohomology of their Lie algebras. Our
work, which also addresses algebraic groups over local fields, uses and extends
Abels’ theory of multiamalgams of graded Lie algebras, in order to provide
workable presentations of these groups.
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1. Introduction

1.1. Dehn function of Lie groups. The object of study in this paper is the
Dehn function of connected Lie groups. For a simply connected Lie group G
endowed with a left-invariant Riemannian metric, this can be defined as follows:
the area of a loop γ is the infimum of areas of filling discs, and the Dehn function
δG(r) is the supremum of areas of loops of length at most r. The asymptotic
behaviour of δG (when r → +∞) actually does not depend on the choice of a
left-invariant Riemannian metric. If G is an arbitrary connected Lie group and
K a compact subgroup such that G/K is simply connected (e.g. K is a maximal
compact subgroup, in which case G/K is diffeomorphic to a Euclidean space),
we can endow G/K with a G-invariant Riemannian metric and thus define the
Dehn function δG/K(r) in the same way; its asymptotic behaviour depends only
on G, neither on K nor on the choice of the invariant Riemannian metric, and is
called the Dehn function of G.

Let us provide some classical illustrating examples. If for some maximal com-
pact subgroupK, the spaceG/K has a negatively curvedG-invariant Riemannian
metric, then the Dehn function of G has exactly linear growth. Otherwise, G is
not Gromov-hyperbolic, and by a very general argument due to Bowditch [Bo95]
(not specific to Lie groups), the Dehn function is known to be at least quadratic.
On the other hand, the Dehn function is at most quadratic whenever G/K can be
endowed with a non-positively curved invariant Riemannian metric, notably when
G is reductive. It is worth emphasizing that many simply connected Lie groups
G fail to have a non-positively curved homogeneous space G/K and neverthe-
less have a quadratic Dehn function. Characterizing Lie groups with a quadratic
Dehn function is a very challenging problem, even in the setting of nilpotent
Lie groups. Indeed, although connected nilpotent Lie groups have an at most
polynomial Dehn function, there are examples with Dehn function of polynomial
growth with arbitrary integer degree. Besides, the Dehn function of a connected
Lie group is at most exponential, the prototypical example of a Lie group with
an exponential Dehn function being the three-dimensional SOL group.

A simple main consequence of the results we describe below is the following
theorem.
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Theorem A. Let G be a connected Lie group. Then the Dehn function of G is
either exponential or polynomially bounded.

Using the well-known fact that polycyclic groups are virtually cocompact lat-
tices in connected Lie groups, we deduce

Corollary B. The Dehn function of a polycyclic group is either exponential or
polynomially bounded.

Let us mention that in both results, “polynomially bounded” cannot be im-
proved to “of polynomial growth”, since S. Wenger [We11] has exhibited some
simply connected nilpotent Lie groups (with lattices) with a Dehn function sat-
isfying n2 ≺ δ(n) 4 n2 log n.

Our results are more precise than Theorem A: we characterize algebraically
which ones have a polynomially bounded or exponential Dehn function. In order
to state the result, we describe below two “obstructions” implying exponential
Dehn function; the first being related to SOL, and the second to homology in
degree 2; these two obstructions appeared in a related context in Abels’ seminal
work on p-adic algebraic groups [Ab87]. We prove that each of these obstructions
indeed implies that the Dehn function has an exponential growth, and conversely
that if none of these obstructions is fulfilled, then the group has an at most
polynomial Dehn function, proving in a large number of cases that the Dehn
function is at most quadratic or cubic.

These results can appear as unexpected. Indeed, it was suggested by Gromov
[Gro93, 5.A9] that the only obstruction should be related to SOL. This has been
proved in several important cases [Gro93, Dru04, LP04] but turns out to be false
in general.

Our approach relies on the dynamical structure arising from the action of G on
itself by conjugation. A crucial role is played by some naturally defined subgroups
that are contracted by suitable elements. The presence of these subgroups is
a non-discrete feature, which is invisible in any cocompact lattice (when such
lattices exist). In particular, it sounds unlikely that Corollary B can be proved
directly with no reference to ambient Lie groups, and the obstructions themselves
are not convenient to state directly in terms of the structure of those discrete
polycyclic groups.

The remainder of this introduction is organized as follows: in §1.2, we define a
combinatorial Dehn function for compactly presented locally compact groups, and
use it to state a version of Theorem A for algebraic p-adic groups. Then §1.3 is
dedicated to our main results. The most difficult part of the main theorem is the
fact that in the absence of the two obstructions, the Dehn function is polynomially
bounded. In §1.4, we describe a useful characterization of these obstructions in
terms of Lie algebra gradings. We apply these results to various concrete examples
in §1.5. We outline the general strategy in §1.6. We introduce an additional
condition under which we prove that the Dehn function is quadratic (Theorem
F). In §1.7, we sketch the proof of this theorem; this allows us emphasize the
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key ideas of our approach. A substantial part of our work is purely algebraic and
possibly of interest for other purposes, we introduce it independently in §1.8.

1.2. Riemannian versus Combinatorial Dehn function of Lie groups.
The previous approaches consisted of either working with groups admitting a
cocompact lattice and using combinatorial methods, or using the Riemannian
definition. Our approach, initiated in [CT10], consists of extending the combi-
natorial language and methods to general locally compact compactly generated
groups. In particular, Lie groups are treated as combinatorial objects, i.e. groups
endowed with a compact generating set and the corresponding Cayley graph.
The object of study is the combinatorial Dehn function, usually defined for dis-
crete groups, which turns out to be asymptotically equivalent to its Riemannian
counterpart. This unifying approach allows to treat p-adic algebraic groups and
connected Lie groups on the same footing.

We now give the combinatorial definition of Dehn function (rechristening the
above definition of Dehn function as Riemannian Dehn function); see §2.B
for more details. Let G be a locally compact group, generated by a compact
subset S. Let FS be the free group over the (abstract) set S and FS → G the
natural epimorphism, and K its kernel (its elements are called relations). We
say that G is compactly presented if for some `, K is generated, as a normal
subgroup of FS, by the set K` of elements with length at most ` with respect to
S, or equivalently if K is generated, as a group, by the union

⋃
g∈FS gK`g

−1 of
conjugates of K` in FS; this does not depend on the choice of S; the subset K` is
called a set of relators. Assuming this, if x ∈ K, the area of x is by definition
the number area(x) defined as its length with respect to

⋃
g∈FS gK`g

−1. Finally,
the Dehn function of G is defined as

δ(n) = sup{area(x) : x ∈ K, |x| ≤ n}.

In the discrete setting (S finite), this function takes finite values, and this remains
true in the locally compact setting. If G is not compactly presented, a good
convention is to set δ(n) = +∞ for all n. The Dehn function of a compactly
presented group G depends on the choices of S and `, but its asymptotic behavior
does not. In addition, for a simply connected Lie group, the combinatorial and
Riemannian Dehn functions have the same asymptotic behavior, see Proposition
2.C.1.

With this definition at hand, we can now state a version of Theorem A in a
non-Archimedean setting.

Theorem C. Let G be an algebraic group over some p-adic field. Then the Dehn
function of G is at most cubic, or G is not compactly presented.

Before providing more detailed statements, let us compare Theorems A and
C. It is helpful to have in mind a certain analogy between Archimedean and
non-Archimedean groups, where exponential Dehn function corresponds to not
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compactly presented. On the other hand, a striking difference between these two
theorems is the absence for p-adic groups of polynomial Dehn functions of arbi-
trary degree. The explanation of this fact can be summarized as follows. In the
connected Lie group setting, Dehn functions of “high polynomial degree” witness
to the presence of simply connected non-abelian nilpotent quotients, see Theo-
rem 10.H.1 for a precise statement. By way of contrast, any totally disconnected,
compactly generated locally compact nilpotent group is compact-by-discrete; and
if a compactly generated locally compact group G is isomorphic to the group of
Qp-points of some p-adic algebraic group, then any nilpotent quotient of G is
compact-by-abelian.

1.3. Main results. We now turn to more comprehensive statements. Let us first
introduce the two main classes of groups we will be considering in the sequel.

Definition 1.1. A real triangulable group is a Lie group isomorphic to a
closed connected group of real triangular matrices. Equivalently, it is a simply
connected solvable group in which for every g, the adjoint operator Ad(g) has
only real eigenvalues.

It can be shown that every connected Lie group G is quasi-isometric to a
real triangulable Lie group. Namely, there exist compactly generated Lie groups
G1, G2, G3 and maps

G← G1 → G2 ← G3,

where G3 is real triangulable, and each arrow is a proper continuous homomor-
phism with cocompact image and thus is a quasi-isometry, see Lemma 3.A.1.

Let A be an abelian group and consider a representation of A on a K-vector
space V , where K is a finite product of complete normed fields. Let V0 be the
largest A-equivariant quotient of V on which A acts with only eigenvalues of
modulus one.

Definition 1.2. A locally compact group is a standard solvable group if it is
topologically isomorphic to a semidirect product U o A so that

(1) A is a compactly generated locally compact abelian group
(2) U decomposes as a finite direct product

∏
Ui, where each Ui is normalized

by A and can be written as Ui = Ui(Ki), where Ui is a unipotent group
over some nondiscrete locally compact field of characteristic zero Ki;

(3) (U/[U,U ])0 = {0}.

For a group G satisfying (1) and (2), condition (3) implies that G is compactly
generated, and conversely if U is totally disconnected, the failure of condition (3)
implies that G is not compactly generated. If G is a compactly generated p-adic
group as in Theorem C, then it has a Zariski closed cocompact subgroup which is
a standard solvable group (with a single i and Ki = Qp). Many real Lie groups
have a closed cocompact standard solvable group; however, for instance, a simply
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connected nilpotent Lie group is not standard solvable unless it is abelian. We
now introduce a very special but important class of standard solvable groups.

Definition 1.3. A group of SOL type is group U o A, where U = K1 ×K2,
where K1, K2 are nondiscrete locally compact fields of characteristic zero, and
A ⊂ K∗1 × K∗2 is a closed subgroup of K∗1 × K∗2 containing, as a cocompact
subgroup, the cyclic group generated by some element (t1, t2) with |t1| > 1 > |t2|.
Note that this is a standard solvable group. We call it a non-Archimedean
group of SOL type if both K1 and K2 are non-Archimedean.

Example 1.4. If K1 = K2 = K and A is the set of pairs (t, t−1), then G is the
usual group SOL(K). More generally, A is the set of pairs (tk, t−`) where (k, `)
is a fixed pair of positive integers, then this provides another group, which is
unimodular if and only k = `. Another example is (R ×Qp) o Z, where Z acts
as the cyclic subgroup generated by (p, p) (note that |p|R > 1 > |p|Qp); the latter
contains the Baumslag-Solitar group Z[1/p] o Z as a cocompact lattice.

Also, define, for λ > 0, the group SOLλ as the semidirect product R2 o R
where R is identified with the subgroup {(t, tλ) : t > 0} of (R∗)2. Note that
SOL1 has index 2 in SOL(R); there are obvious isomorphisms SOLλ ' SOLλ−1 ,
and the SOLλ, for λ ≥ 1, are pairwise non-isomorphic. These are the only real
triangulable groups of SOL type.

Definition 1.5. (SOL obstruction) A locally compact group has the SOL ob-
struction (resp. non-Archimedean SOL obstruction) if it admits a homomorphism
with dense image to a group of SOL type (resp. non-Archimedean SOL type).

That the SOL obstruction implies that the Dehn function grows at least expo-
nentially is the contents of the forthcoming Theorems E.1 and E.2.

In the positive direction, we start with following result, which generalizes
[Gro93, 5.A9], [Dru04, Theorem 1.1 (2)], [LP04] and [CT10].

Theorem D. Let G = U o A be a standard solvable group. Suppose that every
closed subgroup of G containing A (thus of the form V o A with V a closed A-
invariant subgroup of U) is a standard solvable group and does not satisfy the
SOL obstruction. Then G has an at most quadratic Dehn function.

The main result of [CT10] is essentially the case when the normal subgroup U
is abelian (but on the other hand works in arbitrary characteristic), which itself
generalizes results of Gromov [Gro93], Druţu [Dru04], Leuzinger-Pittet [LP04].

Theorem D turns out to be a particular instance of the much more general
Theorem F below, but is considerably easier: the material is the length estimates
of the beginning of Section 6 and Gromov’s trick described in §2.E. A direct
proof of Theorem D is given in §6.D.

In [Gro93, 5.B′4], quoth Gromov, “We conclude our discussion on lower and
upper bounds for filling area by a somewhat pessimistic note. The present meth-
ods lead to satisfactory results only in a few special cases even in the friendly
geometric surroundings of solvable and nilpotent groups.”
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Indeed, for standard solvable groups without the SOL obstruction, it seems
that Theorem D is the best result that can be gotten without bringing forward
new ideas. The first example of a standard solvable group without the SOL
obstruction but not covered by Theorem D is Abels’ group A4(K) (see the pre-
vious subsection). In this particular example, the authors obtain a quadratic
upper bound for the Dehn function in [CT13]. In this case, the group is tractable
enough to work with explicit matrices, but such a pedestrian approach becomes
hopelessly intricate in an arbitrary group as in Theorem E.4.

In a more general context, we have to deal with groups without the SOL
obstruction but not satisfying the assumptions of Theorem D. In this context,
we have to introduce the 2-homological obstruction. For this, we need to recall
a fundamental notion introduced and studied by Guivarc’h [Gui80] and later by
Osin [Os02]. Let G be a real triangulable group. Its exponential radical G∞ is
defined as the intersection of its lower central series and actually consists of the
exponentially distorted elements in G. Let g∞ be its Lie algebra. In the case of
a standard solvable group, the role of exponential radical is played by U itself (it
can be checked to be equal to the derived subgroup of G, so is a characteristic
subgroup).

Definition 1.6. (2-homological obstruction)

• The real triangulable group G is said to satisfy the 2-homological ob-
struction if H2(g∞)0 6= {0}, or equivalently if the A-action on H2(g∞)
has some nonzero invariant vector.
• The standard solvable groupG = UoA is said to satisfy the 2-homological

obstruction if H2(u)0 6= {0}, that is to say, H2(uj)0 6= {0} for some j. If
moreover j can be chosen so that Kj is non-Archimedean, we call it the
non-Archimedean 2-homological obstruction.

In most cases, including standard solvable groups, the 2-homological obstruc-
tions can be characterized by the existence of suitable central extensions. For
instance, if a real triangulable group G has a central extension G̃, also real tri-
angulable, with nontrivial kernel Z such that Z ⊂ (G̃)∞ then it satisfies the
2-homological obstruction.

The converse is true when G admits a semidirect decomposition G∞ oN , but
nevertheless does not in general, see §11.E.

We are now able to state our main theorem, which immediately entails Theo-
rems A and C.

Theorem E. Let G be a real triangulable group, or a standard solvable group.

• if G satisfies one of the two non-Archimedean (SOL or 2-homological)
obstructions, then G is not compactly presented;
• otherwise G is compactly presented and has an at most exponential Dehn

function. Moreover, in this case
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– if G satisfies one of the two (SOL or 2-homological) obstructions,
then G has an exponential Dehn function;

– if G satisfies none of the obstructions, then it has a polynomially
bounded Dehn function; in the case of a standard solvable group, the
Dehn function is at most cubic.

This result can be seen as both a generalization and a strengthening of the
following seminal result of Abels [Ab87].

Theorem (Abels). Let G be a standard solvable group over a p-adic field. Then
G is compactly presented if and only if it satisfies none of the non-Archimedean
obstructions.

Let us split Theorem E into several independent statements. The first two pro-
vide lower bounds and the last two provide upper bounds on the Dehn function.

Theorem E.1. Let G be a standard solvable or real triangulable group. If G
satisfies the SOL (resp. non-Archimedean SOL) obstruction, then G has an at
least exponential Dehn function (resp. is not compactly presented).

We provide a unified proof of both assertions of Theorem E.1 in Section 12.
Note that the non-Archimedean case is essentially contained in the “only if”
(easier) part of Abels’ theorem above, itself inspired by previous work of Bieri-
Strebel, notably [BiS78, Theorem A]. Part of the proof consists in estimating the
size of loops in the groups of SOL type, where our proof is inspired by the original
case of the real 3-dimensional SOL group, due to Thurston [ECHLPT92], which
uses integration of a well-chosen differential form. Our method in Section 12 is
based on a discretization of this argument, leading to both a simplification and
a generalization of the argument.

Theorem E.2. Let G be a standard solvable or real triangulable group. If G sat-
isfies the 2-homological (resp. non-Archimedean 2-homological) obstruction, then
G has an at least exponential Dehn function (resp. is not compactly presented).

The case of standard solvable groups reduces, after a minor reduction, to a
simple and classical central extension argument, see §11.B. The case of real
triangulable groups is considerably more difficult; in the absence of splitting of
the exponential radical, we construct an “exponentially distorted hypercentral
extension”. This is done in Section 11.

Theorem E.3. Let G be a real triangulable group. Then G has an at most
exponential Dehn function.

Let G = U o A be a standard solvable group and U◦ the identity component
in U . If G/U◦ is compactly presented, then G is compactly presented with an at
most exponential Dehn function.

Since compact presentability is stable under taking extensions [Ab72], for an
arbitrary locally compact group G with a closed connected normal subgroup C,
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it is true that G is compactly presented if and only G/C is compactly presented.
We do not know if this can be generalized to the statement that if G/C has Dehn
function 4 f(n), then G has Dehn function 4 max(f(n), exp(n)). Theorem E.3,
which follows from Theorem 3.B.1 and Corollary 3.B.6, contains two particular
instances where the latter assertion holds, which are enough for our purposes. The
first instance, namely that every connected Lie group has an at most exponential
Dehn function, was asserted by Gromov, with a sketch of proof [Gro93, Corollary
3.F′5].

Example 1.7. Fix n ∈ Z with |n| ≥ 2. Consider the group Gn = (R×Qn)onZ,
where Qn is the product of Qp where p ranges over distinct primes divisors of n.
Here U◦ ' R and G/U◦ ' Qn on Z, which, as a hyperbolic group (it is an HNN
ascending extension of the compact group Zn), has a linear Dehn function. So,
by Theorem E.3, Gn has an at most exponential Dehn function. Since |n| ≥ 2,
it admits a prime factor p, so Gn admits the group of SOL type (R×Qp) on Z
as a quotient, and therefore Gn satisfies the SOL obstruction and thus has an
at least exponential Dehn function by Theorem E.1. We conclude that Gn has
an exponential Dehn function. This provides a new proof that its lattice, the
Baumslag-Solitar group

BS(1, n) = 〈t, x | txt−1 = xn〉,
has an exponential Dehn function. This is actually true for arbitrary Baumslag-
Solitar groups BS(m,n), |m| 6= |n|, for which the exponential upper bound was
first established in [ECHLPT92, Theorem 7.3.4 and Example 7.4.1] and indepen-
dently in [BGSS92], and the exponential lower bound, attributed to Thurston,
was obtained in [ECHLPT92, Example 7.4.1].

Let us provide a useful corollary of Theorems E.1 and E.3.

Corollary E.3.a. Let G = U o A be a standard solvable group in which A has
rank 1 (i.e., has a closed infinite cyclic cocompact subgroup). Then exactly one
of the following occurs

• G satisfies the non-Archimedean SOL obstruction and thus is not com-
pactly presented;
• G satisfies the SOL obstruction but not the non-Archimedean one; it is

compactly presented with an exponential Dehn function;
• G does not satisfy the SOL obstruction; it has a linear Dehn function and

is Gromov-hyperbolic.

It is indeed an observation that if A has rank 1 and G does not satisfy the
SOL obstruction, then some element of A acts on G as a compaction (see Def-
inition 4.B.4) and it follows from [CCMT15] that G is Gromov-hyperbolic, or
equivalently has a linear Dehn function. In this special case where A has rank 1,
the 2-homological obstruction, which may hold or not hold, implies the SOL
obstruction and is accordingly unnecessary to consider; see also Theorem D.
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Turning back to Theorem E, the fourth and most involved of all the steps is
the following.

Theorem E.4. Let G be a standard solvable (resp. real triangulable) group not
satisfying neither the SOL nor the 2-homological obstructions. Then G has an at
most cubic (resp. at most polynomial) Dehn function.

The proof of Theorem E.4 for standard solvable groups is done in Section
6, relying on algebraic preliminaries, occupying Sections 8 and 9. We actually
obtain, with some additional work, a similar statement for “generalized standard
solvable groups”, where A is replaced by some nilpotent compactly generated
group N (see Theorem 10.H.1). The case of real triangulable groups requires an
additional step, namely a reduction to the case where the exponential radical is
split, in which case the group is generalized standard solvable. This reduction is
performed in §3.C, and relies on results from [C11].

1.4. The obstructions as “computable” invariants of the Lie algebra.
The obstructions were introduced above in a convenient way for expository rea-
sons, but the natural framework to deal with them uses the language of graded
Lie algebras, which we now describe.

Let G be either a standard solvable group U o A or a real triangulable group
with exponential radical also denoted, for convenience, by U . Let u be the Lie al-
gebra of U ; it is a Lie algebra (over a finite product of nondiscrete locally compact
fields of characteristic zero). It is, in a natural way, a graded Lie algebra. In both
cases, the grading takes values into a finite-dimensional real vector space, namely
Hom(G/U,R). It is introduced in §4.B, relying on Theorem 4.A.2 (see §1.5 for a
representative particular case.) In this setting, there are useful restatements (see
Propositions 4.C.3 and 4.D.9) of the obstructions. We say that α ∈ Hom(G/U,R)
is a weight of G (or of U , when u is endowed with the grading) if uα 6= 0 and
is a principal weight of G if α is a weight of U/[U,U ]. The definitions imply
that 0 is not a principal weight (although it can be a weight). We say that two
nonzero weights α, β are quasi-opposite if 0 ∈ [α, β], i.e., β = −tα for some t > 0.
We write U = Ua×Una as the product of its Archimedean and non-Archimedean
parts. Then we have the following restatements:

• G satisfies the SOL obstruction⇔ U admits two quasi-opposite principal
weights (Propositions 4.C.3 and 4.D.9);
• G satisfies the non-Archimedean SOL obstruction ⇔ Una admits two

quasi-opposite principal weights (Proposition 4.C.3 applied to G/G0);
• G satisfies the 2-homological obstruction ⇔ H2(u)0 6= {0};
• G satisfies the non-Archimedean 2-homological obstruction⇔ H2(una)0 6=
{0};
• G fails to satisfy the assumption of Theorem D⇔ 0 belongs to the interval

joining some pair of weights.
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Here, H2(u) denotes the homology of the Lie algebra u; the grading on u in
the real vector space Hom(G/U,R) canonically induces a grading of H2(u) in the
same space (see §8.A), and H2(u)0 is its component in degree zero.

Another important module associated to u is Kill(u), the quotient of the second
symmetric power u } u by the submodule generated by elements of the form
[x, y]} z − x} [y, z]; thus, in case of a single field (that is, U = U1 in Definition
1.2), the invariant quadratic forms on u are elements in the dual of Kill(u).

Theorem F. Let G = U o A be a standard solvable group not satisfying any of
the SOL or 2-homological obstructions. Suppose in addition that Kill(u)0 = {0}.
Then G has an at most quadratic Dehn function (thus exactly quadratic if A has
rank at least two).

Theorem F is proved in §10.E. Part of it is proved along with Theorem E.4 and
involves the same difficulties, except that the welding relations do not appear.

The condition Kill(u)0 6= {0} corresponds to the existence of certain central
extensions of G as a discrete group. Using asymptotic cones, it will be shown
in a subsequent paper that it implies, in many cases (without the SOL and 2-
homological obstructions), that the Dehn function grows strictly faster than a
quadratic function.

1.5. Examples. Let us give a few examples. All are standard solvable connected
Lie groups G = U o A so that the action of A on the Lie algebra u of U is R-
diagonalizable. In this context, we call Hom(A,R) the weight space. The grading
of the Lie algebra u in Hom(A,R) is given by

uα = {u ∈ u | ∀v ∈ A, v−1uv = eα(v)u}.
When we write the set of weights, we use boldface for the set of principal

weights. We underline the zero weight (or just denote � to mark zero if zero is
not a weight).

1.5.1. Groups of SOL type. For a group of SOL type (Definition 1.3), the weight
space is a line and the weights lie on opposite sides of zero:

1 � 2

By definition it satisfies the SOL obstruction. On the other hand, it satisfies the
2-homological obstruction only in a few special cases. For instance, (R×Qp)opZ
does not satisfy the 2-homological obstruction, and the real group SOLλ (see
Example 1.4) satisfies the 2-homological obstruction only for λ = 1.

1.5.2. Gromov’s higher SOL groups. For the group R3oR2 where R2 acts on R3

as the group of diagonal matrices with positive diagonal entries and determinant
one (often called higher-dimensional SOL group, but not of SOL type nor even
satisfying the SOL obstruction according to our conventions), the weight space
is a plane in which the weights form a triangle whose center of gravity is zero:
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2

�
1 3

Since there are no opposite weights, we have (u⊗u)0 = 0 and therefore H2(u)0

and Kill(u)0 (which are subquotients of (u⊗u)0) are also zero. It was stated with a
sketch of proof by Gromov that this group has a quadratic Dehn function [Gro93,
5.A9]. Druţu obtained in [Dru98, Corollary 4.18] that it has a Dehn function
4 n3+ε, and then obtained a quadratic upper bound in [Dru04, Theorem 1.1],
a result also obtained by Leuzinger and Pittet in [LP04]. The quadratic upper
bound can also be viewed as an illustration of Theorem D. (The assumption that
0 is the center of gravity is unessential: the important fact is that 0 belongs to
the convex hull of the three weights but does not lie in the segment joining any
two weights.)

1.5.3. Abels’ first group. The group G = A4(K) consists of matrices of the form
1 u12 u13 u14

0 s2 u23 u24

0 0 s3 u34

0 0 0 1

 ; si ∈ K×, uij ∈ K.

Its weight configuration is given by

23
13 24

14
12 34

This example is interesting because it does not satisfy the SOL obstruction but
admits opposite weights. A computation shows that H2(u)0 = 0 and Kill(u)0 = 0
(see Abels [Ab87, Example 5.7.1]).

If Ḡ = Ū o A is the quotient of G by its one-dimensional center, then G
does not satisfy the SOL obstruction but satisfies H2(ū)0 6= 0, i.e. satisfies the
2-homological obstruction.

This example was studied specifically by the authors in the paper [CT13],
where it is proved that it has a quadratic Dehn function, which also follows from
Theorem F.

1.5.4. Abels’ second group. This group was introduced in [Ab87, Example 5.7.4].
Consider the group U o A, where A ' R2 and U is the group corresponding to
the quotient of the free 3-nilpotent Lie algebra generated by the 3-dimensional
K-vector space of basis (X1, X2, X3) by the ideal generated by [Xi, [Xi, Yj]] for
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all i, j ∈ {1, 2, 3}. Its weight structure is as follows

2
12 23

∗∗
1 3

31

(The sign ∗∗ indicates that the degree 0 subspace u0 is 2-dimensional.) A com-
putation (see Remark 8.D.3) shows that H2(u)0 = 0 and Kill(u)0 is 1-dimensional.

This example was introduced by Abels as typically difficult because although
H2(u)0 vanishes, U is not the multiamalgam of its tame subgroups (see §1.7);
as we show in this paper, this is reflected in the fact that Kill(u)0 is nonzero.
This results in a significant additional difficulty in order to estimate the Dehn
function, which is at most cubic by Theorem E.4.

1.5.5. Semidirect products with SL3. We consider the groups V (K) o SL3(K),
where V is one of the following three irreducible modules: V = V10, the standard
3-dimensional module; V20 = Sym2(V10), the 6-dimensional second power of V10

and V11, the 8-dimensional adjoint representation. (The notation is borrowed
from [FuH, Lecture 13], writing Vij instead of Γij.) These groups are not solvable
but have a cocompact K-triangulable subgroup, namely V (K) o T3(K), where
T3(K) is the group of lower triangular matrices. It is a simple verification that
for an arbitrary nontrivial irreducible representation, the group V (K) o T3(K)
admits exactly three principal weights, namely the two principal negative roots
r21, r32 of SL3 itself, and the highest weight of the representation Vab, which can
be written as aL1− bL3, where ±L1, L2, L3 are the minimal vectors of the weight
lattice, arranged as in the following picture.

−L3

L2 L1

r21 �
−L1 −L2

L3

r31 r32

The three principal weights always form a triangle with zero contained in its
interior. In particular, V (K) o T3(K) does not satisfy the SOL obstruction. Let
us write the weight diagram for each of the three examples (we mark some other
points in the weight lattice as · for the sake of readability).

More specifically, for V10, the weights configuration looks like
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L2 L1

r21 �
. .

. L3

r31 r32

We see that there are no quasi-opposite weights at all. This is accordingly a case
for which Theorem D applies directly. Thus K3 o SL3(K) has a quadratic Dehn
function (it can be checked to also hold for Kd o SLd(K) for d ≥ 3).

For V20, writing Lij = Li + Lj, the weights are as follows

2L2 L12 2L1

. .
r21 � .

L23 L13

. . .
r31 r32

. 2L3 .

Thus there are quasi-opposite weights but no opposite weights. Theorem 10.E.1
implies that V20(K) o SL3(K) has a quadratic Dehn function.

For V11, writing Lij = Li − Lj, the weights are as follows

L23 L13

. . .
. .

r21, L21 ∗∗ L12

. .
. . .

r31, L31 r32, L32

In this case, there are opposite weights, there is an invariant quadratic form in
degree zero (akin to the Killing form), defined by φ(rji, Lij) = 1 for all i < j and
all other products being zero, so Kill(u)0 6= 0. However, a simple computation
shows that H2(u)0 = 0. So Theorem E.4 implies that sl3(K) o SL3(K) has an at
most cubic Dehn function.

1.6. Description of the strategy. Let us now describe the main ideas that
underlie the proof of Theorems E.4 and F. We then proceed to sketch, with more
details, the proof of Theorem F.
General picture. A central idea, already essential in Gromov’s approach is to
use non-positively curved subgroups (called tame subgroups in the sequel). It
was previously used in Abels’ work on compact presentability of p-adic groups
[Ab87]. Abels considers a certain abstract group, obtained by amalgamating
the tame subgroups over their intersections (more details are given in 1.7). Our
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combinatorial approach to the Dehn function allows us to take advantage of the
consideration of this “multiamalgam” Ĝ. One similarly defines a multiamalgam
of the tame Lie subalgebras, denoted by ĝ.
Strategy. To simplify the discussion, let us assume that G is standard solvable
over a single nondiscrete locally compact field of characteristic zero K, satisfying
none of the SOL and 2-homological assumptions. Roughly speaking, the strategy
is as follows. Ideally, one would like to obtain Ĝ = G; this turns out to be true
under the additional assumption that Kill(u)0 vanishes. In general we obtain that

Ĝ is a central extension of G, and describe generators of the central kernel.
Second, we need to be able to decompose any combinatorial loop into boundedly

many loops corresponding to relations in the tame subgroups. It turns out that
both steps are quite challenging. While Abels’ work provides substantial material
to tackle the first step, we had to introduce completely new ideas to solve the
second one.
The first step: giving a compact presentation for G. Under the assumption
that the group G does not satisfy the SOL obstruction, we show, improving a
theorem of Abels, that the multiamalgam is a central extension of G. Thus we
have Ĝ = Û o A, where Û is a central extension of U , whose central kernel is
centralized by A. At first sight, it seems that the condition H2(u)0 = 0 should be

enough to ensure that Ĝ = G. However, it turns out that in general, Û is a “wild”
central extension, in the sense that it does not carry any locally compact topology
such that the projection onto U is continuous. This strange phenomenon is easier
to describe at the level of the Lie algebras. There, we have that ĝ = ûo a, where
û is a central extension in degree 0 of u, seen as Lie algebras over Q. Now, if in
the last statement, we could replace Lie algebras over Q by Lie algebras over K,
then clearly H2(u)0 = 0 would imply that û = u. This happens if and only if the

natural morphism HQ
2 (u)0 → H2(u)0 is an isomorphism; we show in Section 8

that this happens if and only if the module Kill(u)0 (see §1.4) vanishes. In fact,
there are relatively simple examples, already pointed out by Abels where Kill(u)0

does not vanish (see the previous subsection). As a consequence, even when none
of the obstructions hold, we need to complete the presentation of G with a family
of so-called welding relations, which encode generators of the kernel of Û → U .
At the Lie algebra level, these relations encode K-bilinearity of the Lie bracket.
The second step: reduction to special relations. The second main step
is to reduce the estimation of area of arbitrary relations to that of relations of
a special form (e.g., relations inside a tame subgroup). This idea amounts to
Gromov and is instrumental in Young’s approach for nilpotent groups [Y06] and
for SLd≥5(Z) [Y13]; it is also used in [CT10, CT13]. The main difference in this
paper is that we have to perform such an approach without going into explicit
calculations (which would be extremely complicated for an arbitrary standard
solvable group, since the unipotent group U is essentially arbitrary). Our trick to
avoid calculations is to use a presentation of U that is stable under “extensions of
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scalars”. Let us be more explicit, and write U = U(K), so that U(A) makes sense
for any commutative K-algebra A. We actually provide a presentation, based on
Abels’ multiamalgam and welding relations, of U(A) for any K-algebra A. When
applying it to a suitable algebra A of functions of at most polynomial growth,
we obtain area estimates (in the sketch of §1.7, we do this with the algebra A
of sequences of elements of at most exponential growth). This is the core of our
argument; it is performed in §10.E (in the setting of Theorem F) and in §10.G
in general, relying on the general approach developed in §7.B. The presentation
itself is established in Sections 8 and 9.
Last step: computation of the area of special relations. For a standard
solvable group not satisfying the SOL and 2-homological obstructions, these re-
lations are of two types: those that are contained (as loops) in a tame subgroup
and thus have an at most quadratic area; and the more mysterious welding re-
lations. We show that welding relations have an at most cubic area. When the
welding relations are superfluous, namely when Kill(u)0 vanishes, Theorem 10.E.1
asserts that G then has an at most quadratic Dehn function. A study based on
the asymptotic cone, in a paper in preparation by the authors, will show that
conversely, in some cases where Kill(u)0 does not vanish, the Dehn function of G
grows strictly faster than quadratic. We mention this to enhance the important
role played by the welding relations in the geometry of these groups. We suspect
that they might be relevant as well in the study of the Dehn function of nilpotent
Lie groups.

1.7. Sketch of the proof of Theorem F. In the following, we emphasize the
main ideas, omitting some technical issues occurring in the detailed, rigorous
proof completed in §10.E.

To begin with, let us explain in detail the notion of multiamalgam. Let G be
a group and (Hi) a family of subgroups. The multiamalgam Ĝ of the Hi is the
quotient of the free product of the Hi by the obvious amalgamation relations
(identifying Hi ∩ Hj to its image in both Hi and Hj for all i, j). We say that

G is the multiamalgam of the Hi if the canonical homomorphism Ĝ → G is an
isomorphism.

Basic example: suppose that G =
⊕

Gi. Then G is the multiamalgam of the
family of subgroups (Gi ⊕ Gj)i 6=j. This is because G is the quotient of the free
product by the commutation relations, and each of these commutation relations
lives within one pair of summands.

Consider now a standard solvable group G = U o A satisfying the hypotheses
of Theorem F. We call tame subgroup of G a subgroup of the form V oA, where
V is a closed A-invariant subgroup such that some element of A acts on V as a
contraction.

Let (UioA)1≤i≤ν be the family of maximal tame subgroups. There are finitely
many.
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We now define a presentation of the multiamalgam Ĝ. Let Si be a compact
symmetric neighborhood of 1 in Ui, T a compact symmetric generating subset of
A with nonempty interior, and S =

⊔
SitT . Let R be the set of bounded length

relators of the following four types:

• bounded length relators of (A, T ),
• relators of length 3 inside S,
• relators of the form ts′t−1s−1 for s, s′ ∈ S, t ∈ T ,
• (amalgamation relators) relators of the form s−1s′ when s ∈ Si, s

′ ∈ Sj
have the same image in Ui ∩ Uj.

Fix k ≥ 1 and let ℘ ∈ {1 . . . , ν}k be a k-tuple of indices. Let W℘(n) be the set

of group words in the free group FS of the form
∏k

j=1 tjsjt
−1
j where tj ∈ FT with

|tj| ≤ n and sj ∈ S℘j . Let δ℘(n) be the supremum of areas (for the presentation
〈S | R〉) of those null-homotopic words in W℘(n).

Gromov’s trick (see §2.E) says that there exists k and ℘ such that δ℘(n) � n2

implies that the Dehn function of G is � n2. Showing that Gromov’s trick can
be performed requires some length estimates which take some work but we do
not insist on this here. So we fix k and are reduced to showing δ℘(n) � n2.

For each n, we fix some w(n) ∈ W℘(n); we decompose it as

w(n) =
k∏
i=1

tj(n)sj(n)tj(n)−1.

Let us proceed to show that the area of w(n) is finite and quadratically bounded
in terms of n. For each n, define σj(n) as the element of U℘j represented by

tj(n)sj(n)tj(n)−1. Then
∏k

i=1 σj(n), viewed as an element of the free product
U1 ∗ · · · ∗ Uν , has a trivial image in U .

Let Kexp be the K-algebra of sequences in K with at most exponential growth.
Viewing σj as a function of n, simple estimates show that σj ∈ U℘j(Kexp).

Using the universal property of the multiamalgam, there is a canonical well-

defined homomorphism from the multiamalgam ̂U(Kexp) of the Ui(K
exp) to U(Kexp).

It is at this point that we use in an essential way the assumptions of Theorem
F, namely that G does not satisfy the SOL and 2-homological obstructions, and
Kill(u)0 = {0}. These assumptions, thanks to the preliminary algebraic work

of Sections 8 and 9, imply that this homomorphism ̂U(Kexp) → U(Kexp) is an
isomorphism (Corollary 9.D.4). For q, r ∈ {1, . . . , ν}, denote by ηqr the inclusion
of Uq ∩ Ur into Uq. So, the multiamalgam of the Ui(K

exp) is the quotient of the
free product by the normal subgroup generated by the relators ηqr(x)ηrq(x)−1,
when (q, r) ranges over pairs and x ranges over Uq(K

exp) ∩ Ur(Kexp).
Therefore, there exists a finite family (µm(n))1≤m≤p of elements of U(Kexp), and

elements qm, rm ∈ {1, . . . , ν}, such that µm(n) ∈ Uqm ∩ Urm , elements (gm(n)) in
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the free product of the Ui(K
exp) such that

k∏
j=1

σj =

p∏
m=1

gmηqmrm(µm)ηrmqm(µm)−1g−1
m .

Thus for every n we have, in U1 ∗ · · · ∗ Uν
k∏
j=1

σj(n) =

p∏
m=1

gm(n)ηqmrm(µm)(n)ηrmqm(µm)(n)−1gm(n)−1.

Denote by ĝm(n) a choice of word of length≤ Cn representing gm(n) in UqmoA,
in the generators Sqm ∪ T ; this can be done because gm(n) has exponential size,
so can be written as t−cnstcn with s ∈ Sqm and t ∈ T , and c independent of n.

We also define simultaneously ̂ηqmrm(µm)(n) and ̂ηrmqm(µm)(n) to be of the form
t−cnstcn and t−cns′tcn, with s ∈ Sqm , s′ ∈ Srm having the same image in Uqm∩Urm .

So the word

w′(n) = w(n)−1

p∏
m=1

ĝm(n) ̂ηqmrm(µm)(n) ̂ηrmqm(µm)(n)−1 ĝm(n)
−1

.

is null-homotopic in (U1 ∗ · · · ∗ Uν) o A and has an at most linear length.

Let us obtain a uniform bound on the area of ̂ηqmrm(µm)(n) ̂ηrmqm(µm)(n)−1 for
each m. We have

̂ηqmrm(µm)(n) ̂ηrmqm(µm)(n)−1 = t−cnss′−1tcn;

since ss′−1 is a relator, its area is equal to 1. Thus the area of w(n)w′(n) is ≤ p
(independently of n).

This shows that we are reduced to proving that w′(n) has an at most quadratic
area. For convenience, we rewrite

w′(n) =
ν′∏
m=1

hm(n),

where hm is a word in T ∪ S℘′m for some ν ′ and ν ′-tuple ℘′, independent of n.

Let us show that the area of a word w′ =
∏ν′

m=1 hm that is null-homotopic in
(U1 ∗ · · · ∗ Uν′) o A is at most quadratic with respect to the total length

∑
|hm|

(with a constant depending only on ℘′). This is shown by induction on ν ′. Since
w′ is null-homotopic, there exists either m such that hm is null-homotopic, or
there exists m such that ℘′m = ℘′m+1. In the second case, this reduces to the case
of ν ′ − 1. In the first case, it also reduces to the case of ν ′ − 1, at the cost of
replacing hm with 1, which has at most quadratic cost since U℘′m o A has an at
most quadratic Dehn function. So w′(n) has an at most quadratic area. It follows
that w(n) has an at most quadratic area. Since this holds for every choice of w,
this shows that δ℘(n) � n2. Thus G has an at most quadratic Dehn function.
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This completes the sketch of proof of Theorem F. The first two conditions
(absence of SOL and 2-homological obstructions) were necessary as otherwise,
the Dehn function is at least exponential. On the other hand, in the proof of
Theorem E.4 we also have to proceed when the Killing module is not assumed
zero in degree 0. In this case, U can be described as a quotient of the mul-
tiamalgam by some welding relators, in a way that is inherited to U(Kexp) (see
10.D). So, in the above proof, some further relations appear (in addition to the

̂ηqmrm(µm)(n) ̂ηrmqm(µm)(n)−1), and we establish (§10.F) that these further rela-
tions have at most cubic area with respect to some compact presentation (where
the additional relators are some welding relations of bounded length).

1.8. Introduction to the Lie algebra chapters. Although Sections 8 and 9
can be viewed as technical sections when primarily interested in the results about
Dehn functions, they should also be considered as self-contained contributions to
the theory of graded Lie algebras. Recall that graded Lie algebras form a very rich
theory of its own interest, see for instance [Fu, Kac]. Let us therefore introduce
these chapters independently. In this context, the Lie algebras are over a given
commutative ring A, with no finiteness assumption. This generality is essential
in our applications, since we have to consider (finite-dimensional) Lie algebras
over an infinite product of fields. We actually consider Lie algebras graded in a
given abelian group W , written additively.

1.8.1. Universal central extensions. Recall that a Lie algebra is perfect if g =
[g, g]. It is classical that every perfect Lie algebra admits a universal central
extension. We provide a graded version of this fact. Say that a graded Lie algebra
is relatively perfect in degree zero if g0 ⊂ [g, g] (in other words, H1(g)0 = {0}).
In §8.B, to any graded Lie algebra g, we canonically associate another graded
Lie algebra g̃ along with a graded Lie algebra homomorphism τ : g̃ → g, which
has a central kernel, naturally isomorphic to the 0-component of the 2-homology
module H2(g)0.

Theorem G. (Theorem 8.B.4) Let g be a graded Lie algebra. If g is relatively

perfect in degree zero, then the morphism g̃
τ→ g is a graded central extension

with kernel in degree zero, and is universal among such central extensions.

An important feature of this result is that it applies to graded Lie algebras
that are far from perfect: indeed, in our case, the Lie algebras are even nilpotent.

1.8.2. Restriction of scalars. In §8.C, we study the behavior of H2(g)0 under
restriction of scalars. We therefore consider a homomorphism A → B of com-
mutative rings. If g is a Lie algebra over B, then it is also a Lie algebra over A
and therefore to avoid ambiguity we denote its 2-homology by HA

2 (g) and HB
2 (g)

according to the choice of the ground ring. There is a canonical surjective A-
module homomorphism HA

2 (g)→ HB
2 (g); we call its kernel the welding module
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and denote it by WA,B
2 (g). It is a graded A-module, and WA,B

2 (g)0 is also the
kernel of the induced map HA

2 (g)0 → HB
2 (g)0.

These considerations led us to introduce the Killing module. Let g be a Lie
algebra over the commutative ring B. Consider the homomorphism T from g⊗3

to the symmetric square g} g, defined by

T (u⊗ v ⊗ w) = u} [v, w]− [u,w]} v

(all tensor products are over B here). The Killing module is by definition the
cokernel of T . The terminology is motivated by the observation that for every B-
module m, HomB(KillB(g),m) is in natural bijection with the module of invariant
B-bilinear forms g× g→ m. If g is graded, then Kill(g) is canonically graded as
well.

Theorem H. Let Q ⊂ K be fields of characteristic zero, such that K has infinite
transcendence degree over Q. Let g be a finite-dimensional graded Lie algebra
over K, relatively perfect in degree zero (i.e., H1(g)0 = {0}). Then the following
are equivalent:

(i) WQ,K
2 (g)0 = {0};

(ii) WQ,R
2 (g⊗K R)0 = {0} for every commutative K-algebra R;

(iii) KillK(g)0 = {0}.
In particular, assuming moreover that H2(g)0 = {0}, these are also equivalent

to:

(iv) HQ
2 (g)0 = {0};

(v) HQ
2 (g⊗K R)0 = {0} for every commutative K-algebra R.

The interest of such a result is that (iii) appears as a checkable criterion for the
vanishing of a complicated and typically infinite-dimensional object (the welding
module). Let us point out that this result follows, in case g is defined over Q, from
the results of Neeb and Wagemann [NW08]. In our application to Dehn functions
(specifically, in the proof of Theorems 10.E.1 and 10.G.1), we make an essential
use of the implication (iii)⇒(v), where Q = Q, K is a nondiscrete locally compact
field, and R is a certain algebra of functions on K. That (iii) implies the other
properties actually does not rely on the specific hypotheses (restriction to fields,
finite dimension), see Corollary 8.C.8. The converse, namely that the negation of
(iii) implies the negation of the other properties, follows from Theorem 8.C.13.

1.8.3. Abels’ multiamalgam. Section 9 is devoted to the study of Abels’ multia-
malgam ĝ and to its connection with the universal central extension g̃ → g.
Here, we again consider arbitrary Lie algebras over a commutative ring R, but
we now assume that the abelian group W is a real vector space. Given a graded
Lie algebra, a Lie subalgebra is called tame if 0 does not belong to the convex
hull of its weights. Abels’ multiamalgam ĝ is the (graded) Lie algebra obtained
by amalgamating all tame subalgebras of g along their intersections (see 9.C for
details); it comes with a natural graded Lie algebra homomorphism ĝ→ g. Abels
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defines a 2-tame nilpotent graded Lie algebra to be such that 0 does not belong
to the convex hull of any pair of principal weights (this condition is related to the
condition that the SOL-obstruction is not satisfied). A more general notion of
2-tameness, for arbitrary W-graded Lie algebras, is introduced in 9.A. Although
Abels works in a specific framework (p-adic fields, finite-dimensional nilpotent
Lie algebras), his methods imply with minor changes the following result.

Theorem (essentially due to Abels, see Theorem 9.C.2). If g is 2-tame, then ĝ→
g is the universal central extension in degree 0. In other words, ĝ is canonically
isomorphic to g̃.

This means that in this case, ĝ is an excellent approximation of g, the discrep-
ancy being encoded by the central kernel H2(g)0.

We actually need the translation of this result in the group-theoretic setting,
which involves significant difficulties. Assume now that the ground ring R is
a commutative algebra over the field Q of rationals. Recall that the Baker-
Campbell-Hausdorff formula defines an equivalence of categories between nilpo-
tent Lie algebras over Q and uniquely divisible nilpotent groups. Then g is the
Lie algebra of a certain uniquely divisible nilpotent group G, and we can define
the multiamalgam Ĝ of its tame subgroups, i.e. those subgroups corresponding to
tame subalgebras of g. Note that it does not follow from abstract nonsense that
Ĝ is controlled in any way by g, because Ĝ is defined in the category of groups
and not of uniquely divisible nilpotent groups. In a technical tour de force, Abels
[Ab87, §4.4] managed to prove that Ĝ is nilpotent and asked whether the exten-

sion Ĝ → G is central. The following theorem, which we need for our estimates
of Dehn function, answers the latter question positively.

Theorem I (Theorem 9.D.2). Let g be a 2-tame nilpotent graded Lie algebra

over a commutative Q-algebra R. If g is 2-tame, then Ĝ is nilpotent and uniquely
divisible, and Ĝ→ G corresponds to ĝ→ g under the equivalence of categories. In
particular, the kernel of Ĝ→ G is central and canonically isomorphic to HQ

2 (g)0.

1.8.4. On the “computational” aspect. Let g be a Lie algebra (over some com-
mutative ring) graded in some abelian group. Theorems E and F involve the
conditions H2(g)0 = {0} and Kill(g)0 = {0}. Typically, in the cases of interest,
g is a finite-dimensional nilpotent Lie algebra over a field, and these conditions
mean the surjectivity of some explicit matrices. There are simple families of
examples for which g has dimension ' n3, while gO =

⊕
α 6=0 gα has dimension

' n2, so that most of the contribution to dim(g) is in degree zero. Hence, when
computing H2(g)0 and Kill(g)0, the main contribution comes from those terms
involving g0. It turns out that under mild assumptions fulfilled in both theorems
(implied by the failure of the SOL obstruction), we can get rid of these terms.

Namely, recalling that the homology module H2(g) is the cokernel of the map
d3 : Λ3g→ Λ2g, we observe (see §8.D.1 for details) that d3 maps (Λ3gO)0 → Λ2gO;
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let HO2 (g)0 be the cokernel of the latter module homomorphism; it is endowed
with a canonical map HO2 (g)0 → H2(g)0.

Similarly, Kill(u) is the cokernel of the map T : g⊗3 → S2g (the second sym-
metric power) mapping x⊗ y ⊗ z to [x, y]} z − x} [y, z], which maps ((gO)⊗3)0

into (S2gO)0; let KillO(g)0 be the cokernel of the latter; it admits a canonical
module homomorphism into Kill(g)0.

The following theorem is contained in Theorem 8.D.2 for H2 and in Theorem
8.D.9 for the Killing module.

Theorem J. Let g be a nilpotent Lie algebra (over any commutative ring) graded
in some real vector space. Suppose that for every α we have g0 =

∑
β/∈{0,α,−α}[gβ, g−β].

Then the natural module homomorphisms HO2 (g)0 → H2(g)0 and KillO(g)0 →
Kill(g)0 are isomorphisms.

The assumption is satisfied if g is nilpotent and 2-tame, that is, g/[g, g] has no
pair {α, β} of weights such that 0 belongs to the segment [α, β] [Ab87, Lemma
4.3.1(c)].

1.9. Guidelines.

• The reader interested in the proof of Theorem E.1 can directly go to
Section 12, which is essentially independent.
• The reader interested in the proof of Theorem E.2 can directly go to

Section 11, and refer when necessary to the preliminaries of Sections 4, 5,
and, more scarcely, Section 8.
• The reader interested in the proof of the polynomial upper bounds will

find the first important steps in Section 3 and the weight definitions in
Section 4, and then can proceed to Sections 6, 7, and 10, and refer when
necessary to all the preceding sections.
• The reader interested specifically in the algebraic results, as described in
§1.8, can directly go to Sections 8 and 9, and refer when necessary to the
preliminary Section 5.

Although being of preliminary nature here, Sections 2 (introducing the Dehn
function) and 4 (weights and tameness conditions, Cartan grading) can be read
for their own interest.

1.10. Acknowledgements. We are grateful to Christophe Pittet for several
fruitful discussions. We thank Cornelia Druţu for discussions and pointing out
useful references. We thank Pierre de la Harpe for many useful corrections. We
are grateful to the referee for a thorough work and various suggestions improving
the presentation of the paper.

2. Dehn function: preliminaries and first reductions

This section contains general preliminaries on the Dehn function. In particular,
we state Gromov’s trick in §2.E, essentially following arguments from [CT10].
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2.A. Asymptotic comparison.

Definition 2.A.1. If f, g are real functions defined on any set where ∞ makes
sense (e.g., in a locally compact group, it usually refers to convergence to the point
at infinity in the 1-point compactification), we say that f is asymptotically
bounded by g and write f � g if there exists a constant C ≥ 1 such that for all
x close enough to ∞ we have

f(x) ≤ Cg(x) + C;

if f � g � f we write f ' g and say that f and g have the same asymptotic
behavior, or the same '-asymptotic behavior.

Definition 2.A.2. If f, g are non-decreasing non-negative real functions defined
on R+ or N, we say that f is bi-asymptotically bounded by g and write f 4 g if
there exists a constant C ≥ 1 such that for all x

f(x) ≤ Cg(Cx) + C;

if f 4 g 4 f we write f ≈ g, and say that f and g have the same bi-asymptotic
behavior, or the same ≈-asymptotic behavior.

Besides the setting, the essential difference between '-asymptotic and ≈-
asymptotic behavior is the constant at the level of the source set. For instance,
2n ≈ 3n but 2n '/ 3n.

2.B. Definition of Dehn function. If G is a group and S any subset, we denote
by |g|S the (possibly infinite) word length of g ∈ G with respect to S; the length
| · |S takes finite values on the subgroup generated by S.

If H is a group and R ⊂ H, we define the area of an element w ∈ H as the
(possibly infinite) word length of w with respect to the union

⋃
h∈H hRh

−1; we
denote it by areaR(w). It takes finite values on the normal subgroup generated
by R.

Now let S be an abstract set and FS the free group over S, and π : FS → G a
surjective homomorphism. Its kernel is denoted by K; elements in K are called
relations. If a subset R of K is given, the elements in the normal subgroup
generated by R are called null-homotopic. Thus any null-homotopic word is a
relation, and conversely, if R generates K as a normal subgroup (then R is called
a system of relators), then relations are null-homotopic. By a common abuse
of terminology, elements in a system of relators are called relators.

We define the Dehn function

δS,π,R(n) = max(bn/2c, sup{areaR(w) : w ∈ K, |w|S ≤ n}).
(The term n/2 is not serious, and only avoids some pathologies. Intuitively, it
corresponds to the idea that the area of a word sns−n, which is zero by definition,
should account for at least n.) We like to think of δS,π,R as the Dehn function
of G, but in this general setting, this function as well as its asymptotic behavior
can depend on the choice of S, π and R. It can also take infinite values. Note
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that often S is a given subset of G and since π is obviously chosen as the unique
homomorphism extending the identity of S, we write the Dehn function as δS,R.

Let now G be a compactly generated LC-group (LC-group means locally com-
pact group), and S a compact generating symmetric subset whose interior con-
tains 1. View S as an abstract set and consider the surjective homomorphism
FS → G which is the identity on S, and K its kernel. Let K(d) be the intersec-
tion of K with the d-ball in (FS, | · |S). We say that G is compactly presented
if for some d ≥ 0, the subset K(d) generates K as a normal subgroup. This
does not depend on the choice of S (but the minimal value of d can depend).
If so, the function δS,K(d) takes finite values (see Lemma 2.B.2 below), and its
≈-asymptotic behavior does not depend on the choice of S and d.

The latter is then called the Dehn function of G. If G is not compactly
presented, we say by convention that the Dehn function is infinite. For instance,
when we say that a compactly generated LC-group G has a Dehn function< f(n),
we allow the possibility that G is not compactly presented, i.e. its Dehn function
is (eventually) infinite.

Proposition 2.B.1. The ≈-behavior of the Dehn function is a quasi-isometry
invariant of the compactly generated locally compact group.

On the proof. This follows from a more general statement for arbitrary connected
graphs. In this case, the Dehn function can be defined as soon that the graph
is large-scale simply connected, i.e., can be made simply connected by adding 2-
cells with a bounded number of edges, thus defining a notion of area for arbitrary
loops. The quasi-isometry invariance of the asymptotic behavior of the Dehn
function for arbitrary connected graph is similar to the usual one showing that
the Dehn function is a quasi-isometry invariant among finitely generated groups,
see [Al91] or [BaMS93, Theorem 26]. �

Lemma 2.B.2. As above, let G be an LC-group with a compact symmetric gen-
erating subset S, and K the kernel of the canonical homomorphism FS → G.
Assume that, for some d ≥ 4, the intersection K(d) of the d-ball in FS with K
generates K as a normal subgroup. Then δS,K(d)(n) is finite for all n.

Proof. Fix n. Denote by Sn the product of n copies of S, with the product
topology (rather than the n-ball in FS). Consider the product map p : Sn → FS,
and let (Sn)0 be the inverse image of K(n) in Sn; thus (Sn)0 is a closed subset of
Sn, hence is compact. By assumption, the area function areaK(d) ◦ p takes finite
values on (Sn)0. We have to show that it is bounded on (Sn)0; thus it is enough to
show that this function is locally bounded. Indeed, given s = (s1, . . . , sn) ∈ (Sn)0,
there exists a neighborhood V of s in (Sn)0 such that for all s′ = (s′1, . . . , s

′
n) ∈ V

and all 1 ≤ k ≤ n, we have the element (s1 . . . sk)
−1(s′1 . . . s

′
k) represents an

element tk ∈ S. Note that tn = 1.
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Fix s′ ∈ V , and define t1, . . . , tn ∈ S as above. Set t0 = 1, and define, for
0 ≤ k ≤ n

s(k) = (s1, . . . , sk, tk, s
′
k+1, . . . , s

′
n) ∈ (Sn+1)0

Then p(s(0)) = p(s′), p(s(n)) = p(s), and for all 0 ≤ k ≤ n− 1

areaK(d)(p(s
−1
(k−1)s(k))) =areaK(d)

(
(s′k+2 . . . s

′
n)−1s′k+1

−1
t−1
k sk+1tk+1(s′k+2 . . . s

′
n)
)

=areaK(d)(s
′
k+1
−1
t−1
k sk+1tk+1) ≤ 1;

it follows that areaK(d)(p(s
′)−1p(s)) ≤ n. Therefore

areaK(d)(p(s
′)) ≤ areaK(d)(p(s)) + n, ∀s′ ∈ V,

proving the local boundedness. �

2.C. Dehn vs Riemannian Dehn. Let X is a Riemannian manifold. If γ is a
Lipschitz loop in X, define the area of γ as the infimum of areas of Lipschitz disc
fillings of γ. Define the filling function of X as the function mapping r to the
supremum F (r) of areas of all Lipschitz disc fillings of Lipschitz loops of length
≤ r.

Proposition 2.C.1. Let G be a locally compact group with a proper cocompact
isometric action on a simply connected Riemannian manifold X. Then G is
compactly presented and the Dehn function of G satisfies

δ(n) ≈ max(F (n), n).

(The max(·, n) is essentially technical: unless X has dimension ≤ 1 or is com-
pact, it can be shown that F (r) grows at least linearly.)

The proof is given, for G discrete, by Bridson [Bri02, Section 5]. Here we only
provide a complete proof of the easier inequality F (n) 4 δ(n), because the proof
in [Bri02] makes a serious use of the assumption that G is finitely presented.
For the converse inequality δ(n) 4 max(F (n), n), the (highly technical) proof
given in [Bri02] uses general arguments of filling in Riemannian manifolds and a
general cellulation lemma, and the remainder of the proof carries over our broader
context, so we shall only provide a brief sketch of the converse.

Lemma 2.C.2. Let X be a simply connected Riemannian manifold with Isom(X)
acting cocompactly on X. Then the Riemannian area of loops of bounded length
is bounded.

Proof. Write G = Isom(X). By cocompactness, there exists r0 such that for
every x ∈ X, the exponential is (1/2, 2)-bilipschitz from the r0-ball in TxX to
X. In particular, given a loop of length ≤ r0, it passes through some point x;
its inverse image by the exponential at x has length ≤ 2r0 and can be filled by
a disc of area ≤ πr2

0 in TxX, and its image by the exponential is a filling of area
≤ 4πr2

0 in X.
Now fix a positive integer m0 ≥ 6/r0. Let D be an m−1

0 -metric lattice in X,
that is, a maximal subset in X in which any two distinct points have distance
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≥ m−1
0 . Note that every point in X is at distance ≤ m−1

0 to some element in
D. Also note that, by properness of X, the intersection of D with any bounded
subset is finite. For any x, y ∈ D with d(x, y) ≤ 3m−1

0 , fix a geodesic path S(x, y)
between x and y. Consider a compact subset Ω such that GΩ = X.

Consider a 1-Lipschitz loop f : [0, k] → X and let us bound the Riemannian
area of f by some constant depending only of k. By homogeneity, we can suppose
that f(0) ∈ Ω. For all 0 ≤ n ≤ km0, let xn be a point in D that is m−1

0 -
close to f(nm−1

0 ). Fix geodesic paths joining xn and f(nm−1
0 ). So there is a

homotopy from f to the concatenation of the S(xn, xn+1) through km0 “squares”
of perimeter at most 6m−1

0 ≤ r0. By the above, each of these km0 squares can
be filled with area ≤ π4r2

0. The remaining loop is a concatenation of k segments
of the form S(xn, xn+1) with xn ∈ D (with n taken modulo km0). For given k,
there are only finitely many such loops, since all the points xn are at distance
≤ k/2 + m−1

0 to Ω. Since X is simply connected, each of these loops has finite
area. So the remaining loop has area ≤ ak for some ak < ∞. So we found a
Lipschitz filling of the original loop, of area ≤ ak + km0πr

2
0. �

Partial proof of Proposition 2.C.1. Fix a compact symmetric generating set S in
G and a set R of relators. Fix x0 ∈ X. Set r = sups∈S d(x0, sx0). If s ∈ S, fix a
r-Lipschitz map js : [0, 1] → X mapping 0 to x0 and 1 to sx0. If w = s1 . . . sk,
define jw : [0, k] → X as follows: if 0 ≤ ` ≤ k − 1 and 0 ≤ t ≤ 1, jw(` + t) =
s1 . . . s`js`+1

(t). It is doubly defined for an integer, but both definitions coincide.
So jw is r-Lipschitz. If w represents 1 in G, then jw(0) = jw(k).

If w is a word in the letters in S and represents the identity, let A(w) be the
area of the loop jw.

By Lemma 2.C.2, A(w) is bounded when w is bounded. Also, it is clear that
A(gwg−1) = A(w) for all group words g. This shows that there exists a constant
C > 0, namely C = supr∈RA(r), such that A(w) ≤ Carea(w) for some constant
C.

For some r0, every point in X is at distance ≤ r0 of a point in Gx0. Consider
a loop of length k in X, given by a 1-Lipschitz function u : [0, k] → X. For
every n (modulo k), let gnx0 be a point in Gx0 with d(gnx0, u(n)) ≤ r0. We have
d(gnx0, gn+1x0) ≤ 2r0 + 1. By properness, there exists N (depending only on r0)
such that g−1

n gn+1 ∈ SN . If σn is a word of length N representing g−1
n gn+1, and

σ = σ0 . . . σk−1, then we pass from u to jσ by a homotopy consisting of k squares
of perimeter ≤ 4r0 +2. By Lemma 2.C.2, there is a bound M0 on the Riemannian
area of such squares. So the Riemannian area of u is bounded by kM0 +A(jσ) ≤
kM0 + Carea(σ) ≤ kM0 + δS,R(Nk). This shows that F (k) ≤ kM0 + δS,R(Nk).

For the (more involved) converse inequality, we only give the following sketch:
let ρ > 0 be such that each point in X is at distance < ρ/8 to Gx0, and assume in
addition that ρ > ρκ = π

2
√
κ
, where κ is an upper bound on the sectional curvature

of X. Let S be the set of elements in G such that d(gx0, x0) ≤ ρ and R the set
of words in FS, of length at most 12 and representing 1 in G. Then the proof in
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[Bri02, §5.2] shows that 〈S | R〉 is a presentation of G with Dehn function δ(n)
bounded above by 4λκ(F (ρn) + ρn+ 1), where λκ = 1/min(4

√
κ/π, α(r, κ)) and

α(r, κ) is the area of a disc of radius r in the standard plane or sphere of constant
curvature κ. �

2.D. Two combinatorial lemmas on the Dehn function. This subsection
contains several general lemmas about the Dehn function, which will be used at
some precise parts of the paper.

2.D.1. Free products. Recall that a function R≥0 → R is superadditive if it sat-
isfies f(x + y) ≥ f(x) + f(y) for all x, y. For instance, the function r 7→ rα is
superadditive for every α ≥ 1.

Lemma 2.D.1. Let f be a superadditive function. Let (Gi) be a finite family of
(abstract) groups, each with a presentation 〈Si | Ri〉, with Dehn function ≤ f .
Then the free product H of the Gi has Dehn function δ ≤ f with respect to the
presentation 〈

⊔
Si |

⊔
Ri〉.

Proof. Let w = s1 . . . sn be a null-homotopic word with n ≥ 1. Because H is a
free product, there exists i and 1 ≤ j ≤ j+k−1 ≤ n such that every letter s` for
j ≤ ` ≤ j + k− 1 is in Si and sj . . . sj+k−1 represents the identity in Gi. So, with
the corresponding cost, which is ≤ f(k), we can simplify w to the null-homotopic
word s1 . . . sj−1sk . . . sn. Thus δ(n) ≤ f(k) + δ(n − k) (with 1 ≤ k ≤ n). Using
the property that f is superadditive, we can thus prove by induction on n that
δ(n) ≤ f(n) for all n. (This argument is used in [GS99] for finitely generated
groups.) �

2.D.2. Conjugating elements.

Lemma 2.D.2. Let 〈S | R〉 be a group presentation, and r a bound on the length
of the words in R. Then for every null-homotopic w ∈ FS, with length n and area
α, we can write, in FS, w =

∏α
i=1 girig

−1
i with ri ∈ R±1 ∪ {1} and gi ∈ FS, with

the additional condition |gi|S ≤ n+ rα.

Proof. We start with the following claim: consider a connected polygonal planar
complex, with n vertices on the boundary (including multiplicities); suppose that
the number of polygons is α and each has at most r edges. Fix a base-vertex.
Then the distance in the one-skeleton of the base-vertex to any other vertex is
≤ n+ rα. Indeed, pick an injective path: it meets at most n boundary vertices.
Other vertices belong to some face, but each face can be met at most r times. So
the claim is proved.

Now a van Kampen diagram for a null-homotopic word of size n and area
α with relators of length ≤ r satisfies these assumptions, the distance from the
identity to some vertex corresponds to the length to the conjugating element that
comes into play. Thus the gi can be chosen with |gi|S ≤ n+ rα. �
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2.E. Gromov’s trick.

Definition 2.E.1. Let FS be the free group over an abstract set S, let G be
an arbitrary group, and let π : FS → G be a surjective homomorphism. We
call (linear) combing of (G, π) (or, informally, of G if π is implicit), a subset
F ⊂ FS such that 1 ∈ F and some constant C ≥ 1, we have the property that
π(S)n ⊂ π(SCn ∩ F) for all n ≥ 0.

Example 2.E.2. Let T be any generating subset of a finitely generated abelian
group A. Suppose that {t1, . . . , t`} ⊂ T is also a generating subset. Then the

set of words {
∏`

j=1 t
mj
j } where (mj) ranges over Z`, is a combing of FT → A. If

every element of T is equal or inverse to some ti, the constant C can be taken
equal to 1.

The following is, up to minor changes explained below, established in [CT10,
Proposition 4.3]:

Theorem 2.E.3 (Gromov’s trick). Let f : R>0 → R>0 be a function such that
for some α > 1, the function r 7→ f(r)/rα is non-decreasing.

Let S be an abstract set, let G be an arbitrary group, and let π : FS → G be a
surjective homomorphism. Let R ⊂ FS be a subset contained in Ker(π). Consider
a combing F ⊂ FS.

Assume that for all n, the area with respect to R of any w ∈ Ker(π) of the
form w = w1w2w3 with maxi |wi| ≤ n with wi ∈ F is ≤ f(n). Then 〈S | R〉 is a
presentation of G (i.e., R generates Ker(π) as a normal subgroup) and for some
constants C ′, C ′′ > 0, the Dehn function of G with respect to R is ≤ C ′f(C ′′n).

Remark 2.E.4. The statement in [CT10, Proposition 4.3] is awkward because it
purportedly considers a locally compact group without specifying a presentation
and gives a conclusion on its Dehn function as a function (and not an asymptotic
type of function). Actually the local compactness assumption is irrelevant and
the correct statement is the one given here, the proof given in [CT10] applying
without modification. The setting is just that of a group presentation; it is even
not necessary to assume that the relators have bounded length.

Second, the assumption was for words w of length ≤ n, while here we assume
that all wi have length ≤ n; this is more natural and handy, and requires no
change in the proof.

Third, [CT10, Proposition 4.3] is stated with the function n 7→ nα for α > 1,
but it relies on [CT10, Lemma 4.1], which allows much more general functions.
At the time [CT10] it was not obvious to the author how to state a general
result without a complicated technical assumption, but it turns out that the
non-decreasing assumption of f is very general: we are not even aware of any
non-hyperbolic compactly presented locally compact group whose Dehn function
is not ≈-equivalent to a function f such that, say, f(r)/r3/2 is non-decreasing.

Proof of Theorem 2.E.3. We first claim that for any k ≥ 3, any n and any w =
w1 . . . wk ∈ Ker(π) with wi ∈ F and supi |wi| ≤ n, we have areaR(w) ≤ fk(n) =
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kf(Ckn/2). Indeed, for every i the length of π(w1 . . . wi) is ≤ n/2, so we can find
ui ∈ F with π(ui) = π(w1 . . . wi) and |ui| ≤ Cn/2, with u0 = uk = 1. Then

w =
k∏
i=1

wi =
k∏
i=1

ui−1wiu
−1
i ;

since π(ui−1wiu
−1
i ) = 1, by assumption we have areaR(ui−1wiu

−1
i ) ≤ f(Ckn/2).

Then, denoting δ = δS,R, by [CT10, Lemma 4.2], we have, for all n ≥ k,

δ(n) ≤ kδ(2(C + 1)n/k) + fk(Cdn/ke), ∀n ≥ k

(where we have fk(Cdn/ke) rather than fk(Ckdn/ke) because we consider here
supi |wi| rather than

∑
i |wi|). So, using that dn/ke ≤ 2n/k, we have

δ(n) ≤ kδ(2(C + 1)n/k) + kf(C2n), ∀n ≥ k.

If we define uk(r) = kf(C2r), then we claim that zuk(y)/uk(yz) tends to zero
uniformly in y ≥ 1, k ≥ 1, when z → ∞. Indeed, writing f(r) = rαv(r) with v
non-decreasing, we have

zuk(y)

uk(yz)
=

z(C2y)αv(C2y)

(C2yz)αv(C2yz)
=

v(C2y)

zα−1v(C2yz)
≤ 1

zα−1
.

This uniform convergence to zero allows to use [CT10, Lemma 4.1], which yields
that for some r0, some k, and some constant c > 0, we have f(r) ≤ cuk(r) for all
r ≥ r0. Thus δ(r) ≤ ckf(C2r) for all r ≥ r0.

(Here the value of the constant C ′ = ck is hidden behind the estimates from
the proof [CT10, Lemma 4.1] but the constant C ′′ = C2 is explicit, C being given
in Definition 2.E.1.) �

3. Geometry of Lie groups: Metric reductions and exponential
upper bounds

In the study of upper bounds for the Dehn function of Lie groups, there are two
important reduction steps, described in this section. The first (§3.A) allows to re-
duce the problem to triangulable groups, with no cost on the Dehn function. The
second (§3.C) passes to a generalized standard solvable group, with a polynomial
cost on the Dehn function. In between (§3.B), we describe a general retraction
argument in Lie groups, proving in particular that connected Lie groups have an
at most exponential Dehn function.

3.A. Reduction to triangulable groups. The following lemma is essentially
borrowed from [C08].

Lemma 3.A.1. For every connected Lie group G, there exists a series of proper
homomorphisms with cocompact images G ← G1 → G2 ← G3, with G3 triangu-
lable. In particular, G3 is quasi-isometric to G and the Dehn functions of G3 and
G are ≈-equivalent.
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Proof. Let N be the nilradical of G. By [C08, Lemma 6.7], there exists a closed
cocompact solvable subgroup G1 of G containing N , and a cocompact embedding
G1 ⊂ H2 with H2 a connected solvable Lie group, such that H2 is generated
by G1 and its center Z(H2). In particular, every normal subgroup of G1 is
normal in H2. Let W be the largest compact normal subgroup of H2 and define
L2 = H2/W , so L2 is a connected solvable Lie group whose derived subgroup has a
simply connected closure. By [C08, Lemma 2.4], there are cocompact embeddings
L2 ⊂ G2 ⊃ G3, with G2 and G3 connected Lie groups, and G3 triangulable.

The latter statement follows from the fact that continuous proper homomor-
phisms with cocompact images are quasi-isometries, along with Proposition 2.B.1,
which says that the ≈-behavior of the Dehn function is a quasi-isometry invari-
ant. �

3.B. At most exponential Dehn function.

Theorem 3.B.1 (Gromov). Every connected Lie group has an at most exponen-
tial Dehn function.

As usual, Gromov gives a rough sketch of proof [Gro93, Corollary 3.F′5], but
we are not aware of a complete written proof.

The basic idea is that the law can be described using polynomials and expo-
nentials, but this is not enough because iterated exponentials would be an issue.
A workable lemma is the following.

Recall that an exponential polynomial Rn → Rn′ is a real-valued function
each of whose n′ coordinates is a polynomial in the coordinates x1, . . . , xn and in
exponentials eλjxi for suitable complex scalar numbers λj.

Lemma 3.B.2. Every simply connected solvable Lie group is isomorphic to a Lie
group described as (Rm ×R`, ∗) with the law of the form

(u1, v1) ∗ (u2, v2) = (P (v1, v2, u1, u2), v1 + v2); (u, v)−1 = (T (v, u),−v),

where P is an exponential polynomial depending polynomially on the variable
(u1, u2) (that is, not involving exponentials in the coordinates of u1 and u2), and
where T is an exponential polynomial depending polynomially on the variable u.

For instance, the law of SOLλ can be described as

(x1, y1, v1) ∗ (x2, y2, v2) = (ev2x1 + x2, e
−λv2y1 + y2, v1 + v2)

(here (`,m) = (2, 1)).

Proof. Let N be the derived subgroup of G and H a Cartan subgroup; both
are a simply connected nilpotent Lie group. By [Bou, Chap. 7,§1,2,3] (see also
Proposition 4.D.4), we have NH = G. Consider a supplement subspace of the
Lie algebra of M = N∩H in the Lie algebra of H, and define V as its exponential
(it is usually not a subgroup). Set m = dim(V ) and ` = dim(N). We identify
V and N to Rm and R` through the exponential and a choice of bases of log(V )
and log(N).



32 CORNULIER AND TESSERA

The product map M × V → H is an algebraic isomorphism of varieties, which
yields a decomposition H = M × V , for which the law is given by polynomials;
for the moment we just need to use the fact that the product (0, v)(0, v′) can be
described as (Q(v, v′), v + v′) for some polynomial Q on 2k variables.

The adjoint action of h on n is given by some Lie algebra homomorphism
φ : h→ End(n).

If h ∈ H and n ∈ N , we have

hnh−1 = exp(Ad(h) log(n)) = exp(exp(φ(log(h))) log(n)).

Beware that in this expression, the first exp is the exponential of the Lie algebra
N , with inverse log (both being polynomials), while the second is the operator
exponentiation on n. The operator exp(φ(log(h))) is a polynomial in the entries
and exponentials of the coefficients of log(h) (the exponentials appear because
φ(log(h)) is not necessary nilpotent), possibly with complex coefficients.

Hence after identification of H and N to real vector spaces using the Lie alge-
bras, we can write hnh−1 = R(h, n), where R is a polynomial in the coefficients
of h and n, and in some (possibly complex) exponentials of the coefficients of h.

Also, describe the product of 3 elements in N by a polynomial: nn′n′′ =
S(n, n′, n′′).

The product map yields a decomposition G = V N , and for v, v′ ∈ V , n, n′ ∈ N ,
we have (nv)(n′v′) = nvn′v−1v(vv′), so in coordonates, we have

(n, v)(n′, v′) =
(
S
(
n, vn′v−1, Q(v, v′)

)
, v + v′

)
=
(
S
(
n,R(v, n′), Q(v, v′)

)
, v + v′

)
.

That the inverse map has the given form is similar, since (nv)−1 = (v−1n−1v)v−1.
�

Lemma 3.B.3. If G is a simply connected solvable Lie group with a left-invariant
Riemannian metric, there is an exponentially Lipschitz strong deformation retrac-
tion of G to the trivial subgroup, i.e. a map F : G× [0, 1]→ G such that for all
g, F (g, 0) = g and F (g, 1) = 1, and such that for some constant C, if B(n) is
the n-ball in G then F is exp(Cn)-Lipschitz in restriction to B(n)× [0, 1].

Proof. We identify G with Rm ×R` and write its law as

(u1, v1) ∗ (u2, v2) = (u1 + u2, P (u1, u2, v1, v2)); (u, v)−1 = (−u,−v),

with P as in Lemma 3.B.2.
Define, for ((u, v), t, τ) ∈ G× [0, 1]2,

s((u, v), t, τ) = (tu, τv).

We need an upper bound on the differential of s at a given point (u0, v0, t0, τ0).
Let Lg denote the left translation by g, given by h 7→ g ∗ h.
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Then(
L−1

(t0u0,τ0v0) ◦ s
) (
L(u0,v0)(u, v), t, τ

)
=
(
T (τ0v0, t0u0),−τ0v0

)
∗
(
tP (v0, v, u0, u), τv0 + τv

)
=
(
P
(
− τ0v0, τv0 + τv, T (τ0v0, t0u0), tP (v0, v, u0, u)

)
,−τ0v0 + τv0 + τv

)
We can write it as Q(τ0v0, τv0, τv, v0, v; t0, t, u0, u), where Q = (Q1, Q2), Q1 is an
exponential polynomial depending polynomially on the last four variables and Q2

is a polynomial.
It follows that each partial derivative of Q1 with respect to the variables

(u, v, t, τ) is an exponential polynomial R in the same variables, polynomial on
the last four variables (with coefficients depending only the group law). Each
such partial derivative, when (u, v, t, τ) = (0, 0, t0, τ0), is equal to R(τ0v0, τ0v0,
0, v0, 0; t0, t0, u0, 0), which can be rewritten as R′(τ0v0, v0; t0, u0), with R′ an ex-
ponential polynomial that is polynomial in the last two variables. Hence, keeping
in mind that τ0, t0 belong to [0, 1], the partial derivatives of Q1 at (0, 0, t0, τ0) at
any (0, 0, t0, τ0) are bounded above by c1e

c2‖v0‖(1 + ‖u0‖)c3 , where c1, c2 are pos-
itive constants depending only on the group law and the choice of left-invariant
Riemannian metric µ.

Therefore, the differential of s at any (u0, v0, t0, τ0), for the left-invariant Rie-
mannian metric µ, has the same bound.

If (u0, v0) ∈ B(2n) (the 2n-ball around 1 in G), then ‖v0‖ ≤ n (up to rescaling
µ) and ‖u0‖ ≤ ec4n (for some fixed constant c4). So, for every (u0, v0, t0, τ0) ∈
B(2n)× [0, 1]2, the differential of s at (u0, v0, t0, τ0) is bounded by eCn, for some
positive constant C only depending on (G, µ). In particular, since any two points
in B(n) can be joined by a geodesic within B(2n), we deduce that the restriction
of s to B(n)× [0, 1]2 is eCn-Lipschitz.

The function (g, t) 7→ s(g, t, t) is the desired retraction. (We used an extra vari-
able τ by anticipation, in order to reuse the argument in the proof of Proposition
3.B.5.) �

Proof of Theorem 3.B.1. By Lemma 3.A.1, we can restrict to the case of a simply
connected solvable (actually triangulable) group G. Given a loop of size n in G
based at the unit element, Lemma 3.B.3 provides a Lipschitz homotopy with
exponential area to the trivial loop. �

Remark 3.B.4. Using Guivarc’h’s estimates on the word length in simply con-
nected solvable Lie groups [Gui73, Gui80], we see that there exists a constant C ′

such that if B(n) is the n-ball in G, then F (B(n), [0, 1]) is contained in the ball
B(C ′n) (here F is the function constructed in the proof of Lemma 3.B.3). Thus
in particular, F provides a filling of every loop of linear size, with exponential
area and inside a ball of linear size. In particular, any virtually connected Lie
group (and cocompact lattice therein) has a linear isodiametric function.
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Let G = (Ua×Una)oZd be a standard solvable group. The group G1 = UaoZd

can be embedded as a closed cocompact subgroup into a virtually connected Lie
group G2 with maximal compact subgroup K. Consider a left-invariant Riemann-
ian metric on the connected manifold G2/K. The composite map G1 → G2/K is
a G-equivariant quasi-isometric injective embedding; endow G1 with the induced
metric. Endow Una o Zd with a word metric with respect to a compact gener-
ating subset, and endow G with a metric induced by the natural quasi-isometric
embedding G→ (Una o Zd)×G2.

Proposition 3.B.5. Let G be a standard solvable group of the form (Ua×Una)o
Zd, with the above metric. Then there is an exponentially Lipschitz homotopy
between the identity map of G and its natural projection π to Una oZd. Namely,
for some constant C, there is a map

σ :
(
(Ua × Una) o Zd

)
× [0, 1]→ (Ua × Una) o Zd,

such that for all g ∈ G, σ(g, 0) = g and σ(g, 1) = π(g), and σ(g, t) = g if
g ∈ Una o Zd, and σ is eCn-Lipschitz in restriction to B(n)× [0, 1].

Proof. As in the definition of standard solvable group, write G = UoZd and U =
Ua×Una. Since Ua is a simply connected nilpotent Lie group, we can identify it to
its Lie algebra thorough the exponential map. Define, for (v, w, u) ∈ Ua×UnaoZd

and t ∈ [0, 1], σ(v, w, u, t) = (tv, w, u). By the computation in the proof of Lemma
3.B.3, σ is eCn-Lipschitz in restriction to B(n)× [0, 1]; the presence of w does not
affect this computation. �

Corollary 3.B.6. Under the assumptions of the proposition, if G/U0 ' Una oA
is compactly presented with at most exponential Dehn function, then G has an at
most exponential Dehn function.

Proof. Given a loop γ of size n in G, the retraction of Proposition 3.B.5 interpo-
lates between γ and its projection γ′ to G/G0. The interpolation has an at most
exponential area because the retraction is exponentially Lipschitz; γ′ has linear
length and hence has at most exponential area by the assumption. So γ has an
at most exponential area. �

3.C. Reduction to split triangulable groups.

Proposition 3.C.1 ([C11]). Let G be a triangulable real group and E = G∞

its exponential radical. There exists a triangulable group Ğ = E o V and a
homeomorphism φ : G → Ğ, so that, denoting by dG and dĞ left-invariant word

distances on G and Ğ

• φ restricts to the identity E → E,
• E is the exponential radical of Ğ
• V is isomorphic to the simply connected nilpotent Lie group G/E,



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 35

• the map φ quasi-preserves the length: for some constant C > 0,

C−1|g| ≤ |φ(g)| ≤ C|g|; ∀g ∈ G

and is logarithmically bilipschitz

D(|g|+ |h|)−1dG(g, h) ≤ dĞ(g, h) ≤ D(|g|+ |h|)dG(g, h); ∀g, h ∈ G,

where C ′ > 0 is a constant and where D is an increasing function satis-
fying D(n) ≤ C ′ log(n) for large n.

Corollary 3.C.2. Set {H,L} = {G, Ğ}. Suppose that the Dehn function δL of
L satisfies δL(n) 4 nα.

Then for any ε > 0, the Dehn function δH of H satisfies

δH(n) 4 log(n)α+εδL(n log(n)) 4 log(n)2α+εnα.

Proof. Suppose, more precisely, that every loop of length n in L can be filled with
area δ(n) in a ball of radius s(n); note that s can be chosen to be asymptotically
equal to δ (by Lemma 2.D.2).

Start with a combinatorial loop γ of length n in H. It maps (by φ or φ−1) to
a “loop” in L, in the Cn-ball, in which every pair of consecutive vertices are at
distance ≤ C log(n). Join those pairs by geodesic segments and fill the resulting
loop γ′ of length ≤ Cn log(n) by a disc consisting of δ(Cn log(n)) triangles of
bounded radius (say, ≤ C), inside the s(Cn log(n))-ball. Map this filling back to
H. We obtain a “loop” γ′′ consisting of Cn log(n) points, each two consecutive
being at distance ≤ C log(s(Cn log(n))), with a filling by δ(Cn log(n)) triangles
of diameter at mostC log(s(Cn log(n))). Interpolate γ′′ by geodesic segments, so
as to obtain a genuine loop γ1. So γ′′ is filled by γ and Cn log(n) “small” loops
of size

≤ C log(s(Cn log(n))) + 1 ≤ C log(C ′(Cn log(n))α) + 1 ≤ C1 log(n).

The loop γ′′ itself is filled by δ(Cn log(n)) triangles of diameter at most
C log(s(Cn log(n))) and thus of size ≤ 3C1 log(n).

We know that H has its Dehn function bounded above by C2e
cn. So each of

these small loops has area ≤ C2 exp(3c(C1 log(n))) = C ′nc
′
. We deduce that γ

can be filled by

(Cn log(n) + δ(Cn log(n)))C ′nc
′ � n1+c′+max(1,α)

triangles of bounded diameter.
We deduce that H has a Dehn function of polynomial growth, albeit with an

outrageous degree, the constants c′ being out of control. Anyway, this provides
a proof that H has a Dehn function ≤ C3n

q for some q, and we now repeat the
above argument with this additional information.

The small loops of size C1 log(n) therefore have area ≤ C3(C1 log(n))q and the
δ(Cn log(n)) triangles filling γ′′ can now be filled by ≤ C3(3C log(s(Cn log(n))))q
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triangles of bounded diameter. We deduce this time that γ can be filled by at
most

Cn log(n)C3(C1 log(n))q + 3CC3 log(s(Cn log(n)))qδ(Cn log(n))

≈ log(s(n log(n)))qδ(n log(n))

triangles of bounded diameter.
We have

log(s(n log n)) ≤ log(s(n2)) � log(n2α) � log(n),

so we deduce that the Dehn function of γ is

4 log(n)qδ(n log(n)).

Since δ(n) 4 nα, the previous reasoning can be held with q of the form α + ε
for any ε > 0. This proves the desired result. �

Remark 3.C.3. A variant of the proof of Corollary 3.C.2 shows that if the Dehn
function of Ğ is exponential, then the Dehn function of G is < exp(n/ log(n)2),
but is not strong enough to show that the Dehn function of G is exponential, nor
even < exp(n/ log(n)α) for small α ≥ 0.

4. Gradings and tameness conditions

This preliminary section describes basics on the weight decomposition of stan-
dard solvable groups and real triangulable groups.

In §4.A, we state a general weight decomposition theorem for finite-dimensional
representations of nilpotent groups over complete normed fields. We use it to
introduce weights in standard solvable groups in §4.B, where we provide some
useful characterizations. We introduce the tameness conditions in §4.C, which
allow to reinterpret the SOL obstructions in a more conceptual way. In §4.D, we
deal with the Cartan grading in real triangulable groups, which is also needed
in §11.

4.A. Grading in a representation.

Lemma 4.A.1. Let H ⊂ G be an inclusion of finite index between nilpotent
groups. Then any homomorphism f : H → R has a unique extension f̃ : G→ R.

Proof. If g ∈ G and gk ∈ H, the element f(gk)/k does not depend on k, we define

it as f̃(g); note that this is the only possible choice for f̃ and already proves

uniqueness. To prove the existence, we need to check that f̃ is a homomorphism.
Since checking f̃(xy) = f̃(x) + f̃(y) only involves two elements, we can suppose
that G and H are finitely generated. We can also suppose that they are torsion-
free, as the problem is not modified if we mod out by the finite torsion subgroups.
So G and H have the same rational Malcev closure, and every homomorphism
H → R extends to the rational Malcev closure. Necessarily, the extension is
equal to f̃ in restriction to G, so f̃ is a homomorphism. (Note that R could be
replaced in the lemma by any torsion-free divisible nilpotent group.) �
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Recall that for every complete normed field K, the norm on K extends to every
finite extension field in a unique way [DwGS, Theorem 5.1, p. 17].

Theorem 4.A.2. Let K be a non-discrete complete normed field. Let N be a
nilpotent topological group and V a finite-dimensional vector space with a contin-
uous linear N-action ρ : N → GL(V ). Then there is a canonical decomposition

V =
⊕

α∈Hom(N,R)

Vα,

where, for α ∈ Hom(N,R), the subspace Vα is the sum of characteristic subspaces
associated to irreducible polynomials whose roots have modulus eα(ω) for all ω ∈
N ; moreover we have, for α ∈ Hom(N,R)

Vα ={0} ∪
{
v ∈ V r {0} : ∀ω ∈ N, lim

n→+∞
‖ρ(ω)n · v‖1/n = eα(ω)

}
=

{
v ∈ V : ∀ω ∈ N, lim

n→+∞
‖ρ(ω)n · v‖1/n ≤ eα(ω)

}
(Note that we do not assume that ρ(N) has a Zariski-connected closure.)

Proof. Let us begin with the case when K is algebraically closed. Let N be
the Zariski closure of ρ(N); decompose its identity component N0 = D × U into
diagonalizable and unipotent parts. Consider the corresponding projections d and
u into D and U. Define N0 = ρ−1(N0); it is an open subgroup of finite index in N .
Let D be the (ordinary) closure of the projection d(ρ(N0)). We can decompose,
with respect to D, the space V into weight subspaces: V =

⊕
γ∈Hom(D,K∗) Vγ,

where Vγ = {v ∈ V : ∀d ∈ D, d · v = γ(d)v}. Write (log |γ|)(v) = log(|γ(v)|),
so log |γ| ∈ Hom(D,R). For δ ∈ Hom(D,R), define Vδ =

⊕
{γ: log |γ|=δ} Vγ, so

that V =
⊕

δ∈Hom(D,R) Vδ. If δ ∈ Hom(D,R), then δ ◦ d ◦ ρ ∈ Hom(N0,R). So

by Lemma 4.A.1, it uniquely extends to a homomorphism δ̂ : N → R, which is
continuous because its restriction δ ◦ d ◦ ρ to N0 is continuous. Note that δ 7→ δ̂
is obviously injective.

If v ∈ Vδ r {0} and ω ∈ N0, write it as a sum v =
∑

γ∈I vγ where 0 6= vγ ∈
Vγ, where I is a non-empty finite subset of Hom(D,K∗), actually consisting of
elements γ for which log |γ| = δ. Then, changing the norm if necessary so that
the norm is the supremum norm with respect to the norms on the Vγ (which does
not affect the limits because of the exponent 1/n), we have

‖ρ(ω)nv‖1/n = sup
γ∈I
‖u(ρ(ω))nd(ρ(ω))nvγ‖1/n

=|γ(d(ρ(ω)))| sup
γ∈I
‖u(ρ(ω))nvγ‖1/n

= exp(δ̂(ω)) sup
γ∈I
‖u(ρ(ω))nvγ‖1/n;
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the spectral radii of both u(ρ(ω)) and its inverse being equal to 1 and vγ 6= 0, we

deduce that lim ‖u(ρ(ω))nvγ‖1/n = 1. It follows that lim ‖ρ(ω)nv‖1/n = exp(δ̂(ω))
for all ω ∈ N0 and v ∈ Vδ r {0}. If ω ∈ N , there exists k such that ωk ∈ N0.
Writing fω(n) = ‖ρ(ω)nv‖1/n, we therefore have

lim
n→∞

fω(kn) = lim
n→∞

fωk(n)1/k = exp(δ̂(ωk))1/k = exp(δ̂(ω));

on the other hand a simple verification shows that limn→∞ f(n + 1)/f(n) = 1,

and it follows that limn→∞ fω(n) = exp(δ̂(ω)).

It follows in particular that the spectral radius of ρ(ω)±1 on Vδ is exp(±δ̂(ω))

and since the δ̂ are distinct, it follows that Vδ is the sum of common characteristic
subspaces associated to eigenvalues of modulus exp(δ̂(ω)) for all ω.

Conversely, suppose that v ∈ V and that there exists α ∈ Hom(N,R) such that
for all ω ∈ N we have lim

n→+∞
‖ρ(ω)n ·v‖1/n ≤ eα(ω), and let us check that v ∈

⋃
Vδ.

Observe that lim
n→+∞

(‖ρ(ω)n · v‖ ‖ρ(ω−1)n · v‖)1/n ≤ 1. Write v =
∑

δ∈J vδ with

vδ ∈ Vδ and suppose by contradiction that J contains two distinct elements δ1, δ2.
So δ̂1 6= δ̂2 and there exist ω0 ∈ N such that δ̂1(ω) > δ̂2(ω). Then

1 ≥ lim
n→+∞

(‖ρ(ω0)n · v‖ ‖ρ(ω−1
0 )n · v‖)1/n

≥ lim
n→+∞

‖ρ(ω0)n · vδ1‖1/n‖ρ(ω−1
0 )n · vδ2‖1/n

= exp(δ̂1(ω0)− δ̂2(ω0)) > 1,

a contradiction; thus v ∈
⋃
Vδ. This concludes the proof in the algebraically

closed case.
Now let K be arbitrary. The above decomposition can be done in an algebraic

closure of K, and is defined on a finite extension L of K, so W = V ⊗K L =⊕
α∈Hom(N,R) Wα, where Wα satisfies all the characterizations. Consider a K-

linear projection π of L onto K; it extends to a K-linear projection π′ = idV ⊗Kπ
of W = V ⊗K L onto V , which commutes with the action of ρ(N). Clearly V =∑

α π
′(Wα). Since K is a complete normed field, π′ is Lipschitz. It then follows

from the definition that π′ maps Wα into itself (where we naturally consider the
inclusion V ⊂ W ): this follows from the characterization of those elements of Wα

as those v ∈ W such that for all ω ∈ N we have lim
n→+∞

‖ρ(ω)n · v‖1/n ≤ eα(ω). It

follows that V =
⊕

α Vα, where Vα = π′(Wα) =
⊕

α(Wα ∩ V ). So the proof is
complete.

Note that the proof, as a byproduct, characterizes the elements v of
⋃
α∈Hom(N,R) Vα

as those in V for which, for all ω ∈ N , we have lim
n→+∞

(‖ρ(ω)n ·v‖ ‖ρ(ω)−n ·v‖)1/n ≤
1 (which is actually a limit, and equal to 1, if v 6= 0). �

4.B. Grading in a standard solvable group. Let G = U o A be a standard
solvable group in the sense of Definition 1.2. It will be convenient to consider the
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product ring K =
∏τ

j=1 Kj; it is endowed with the supremum norm, and view U

as U(K). We thus call G a standard solvable group over K. In a first reading,
the reader can assume there is a single field K = K1.

Since K is a finite product of fields, a finite length K-module is the same as
a direct sum V =

⊕
Vj, where each Vj is a finite-dimensional Kj-vector space.

The length of V as a K-module, is equal to
∑

j dimKj
Vj.

Let uj be the Lie algebra of Uj. So u =
∏

j uj is a Lie algebra over K and the
exponential map, which is truncated by nilpotency, is a homeomorphism u→ U .
This conjugates the action of D on U to a linear action on u, preserving the Lie
algebra structure; for convenience we denote it as an action by conjugation.

We endow uj with the action of A, and with the grading in Hom(A,R), as
introduced in Theorem 4.A.2. Thus u itself is graded by uα =

⊕
j uj,α. The

finite-dimensional vector space W = Hom(A,R) is called the weight space.
This is a Lie algebra grading:

[uα, uβ] ⊂ uα+β, ∀α, β ∈ Hom(A,R).

Note that since A is a compactly generated locally compact abelian group, it
is isomorphic to Rd1×Zd2×K for some integers d1, d2, and K a compact abelian
group. In particular, if d = d1 + d2, then the weight space W = Hom(A,R) is a
d-dimensional real vector space.

If we split u as the direct sum u = ua ⊕ una of its Archimedean and non-
Archimedean parts, the weights of ua and una, respectively, are called Archimedean
weights and non-Archimedean weights.

Example 4.B.1. Assume that the action of A on u is diagonalizable. If Kj = R
and the diagonal entries are positive, we have

(uj)α = {x ∈ uj : ∀v ∈ A, v−1xv = eα(v)x}
and if Kj = Qp and the diagonal entries are powers of p, we have

(uj)α = {x ∈ uj : ∀v ∈ A, v−1xv = p−α(v)/ log(p)x}.

Example 4.B.2 (Weights in groups of SOL type). Let G = (K1×K2)oA be a
group of SOL type as in Definition 1.3, where A contains as a cocompact subgroup
the cyclic subgroup generated by some element (t1, t2) with |t1| > 1 > |t2|. Then
the weight space is a one-dimensional real vector space, and with a suitable
normalization, the weights are α1 = log(|t1|) > 0 and α2 = log(|t2|) < 0, and
Uαi = Ki. It is useful to think of the weight αi with multiplicity qi, namely the
dimension of Ki over the closure of Q in Ki (which is isomorphic to R or Qp for
some p). In particular, G is unimodular if and only if q1α1 + q2α2 = 0.

For instance, if G = (R × Qp) op Z, then u = R × Qp, ulog(p) = R × {0},
u− log(p) = {0} ×Qp.

For an arbitrary standard solvable group, we define the set of weights

Wu = {α : uα 6= {0}} ⊂ Hom(A,R).
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It is finite. Weights of the abelianization u/[u, u] are called principal weights
of u.

Lemma 4.B.3. Every weight of u is a sum of ≥ 1 principal weights; 0 is not a
principal weight.

Proof. The first statement is a generality about nilpotent graded Lie algebras. If
P is the set of principal weights and v =

⊕
α∈P uα, then u = v + [u, u], i.e., v

generates u modulo the derived subalgebra. A general fact about nilpotent Lie
algebras (see Lemma 6.B.3 for a refinement of this) then implies that v generates
u. The first assertion follows.

The condition that 0 is not a principal weight is a restatement of Definition
1.2(3). �

Definition 4.B.4. If U is a locally compact group and v a topological automor-
phism, v is called a compaction if there exists a compact subset Ω ⊂ U that
is a vacuum subset for v, in the sense that for every compact subset K ⊂ U
there exists n ≥ 0 such that vn(K) ⊂ Ω. If every neighborhood of 1 is a vacuum
subset, we say that v is a contraction.

Proposition 4.B.5. Let U o A be a standard solvable group. Equivalences:

(i) some element of A acts as a compaction of U ;
(ii) some element of A acts as a contraction of U ;

(iii) 0 is not in the convex hull in W of the set of weights;
(iv) 0 is not in the convex hull in W of the set of principal weights.

Proof. Automorphisms of U are conjugate, through the exponential, to linear au-
tomorphisms; in particular, contractions and compactions coincide, being char-
acterized by the condition that all eigenvalues have modulus < 1. Thus (i)⇔(ii).

By Lemma 4.B.3, weights are sums of principal weights, and thus (iii)⇔(iv).
If v ∈ A acts as a contraction of U , then α(v) < 0 for every weight α. Thus

α 7→ α(v) is a linear form onW , which is positive on all weights. Thus (ii)⇒(iii).
Conversely, let L be the set of linear forms ` of W = Hom(A,R) such that

`(α) > 0 for every weight α ∈ Wu. Suppose that 0 is not in the convex hull of
Wu, or equivalently that L 6= ∅. Since the image of A in the bidual W∗ linearly
spans W∗, it has a cocompact closure in bidual W∗; since L is a nonempty open
convex cone, it follows that it has a non-empty intersection with the image of A
in the bidual W∗. Thus there exists v ∈ A such that α(v) > 0 for every weight
α. So (iii)⇒(ii) holds. �

4.C. Tameness conditions in standard solvable groups. Motivated by Propo-
sition 4.B.5, we introduce the following terminology:

Definition 4.C.1. We say that the standard solvable group G = U oA (or the
graded Lie algebra u) is

• tame if 0 is not in the convex hull of the set of weights;
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• 2-tame if 0 is not in the segment joining any pair of principal weights;
• stably 2-tame if 0 is not in the segment joining any pair of weights.

To motivate the adjective “stably”, observe that u is stably 2-tame if and only
if every graded subalgebra of u is 2-tame.

The importance of 2-tameness, first brought forward by Abels, will appear
gradually in the paper, starting with Proposition 4.C.3.

Remark 4.C.2. Clearly

tame ⇒ stably 2-tame ⇒ 2-tame ;

the converse implications do not hold in general; however they hold when W is
1-dimensional, i.e. when A has a discrete cocompact infinite cyclic subgroup.

Also, when u is abelian, then 2-tame and stably 2-tame are obviously equiva-
lent.

The following characterization of 2-tameness will be needed to show in §4.C.3
that if G is not 2-tame then it has an at least exponential Dehn function.

Proposition 4.C.3. Let G = U o A be a standard solvable group. Then G is
not 2-tame if and only if there exists a group V oE of type SOL (see Definition
1.3) and a homomorphism f into V o E whose image contains V and is dense.

Proof. In general, let V o E be a standard solvable group, and consider a con-
tinuous homomorphism f : U o A → V o E with dense image (assuming that
the closure of the image is cocompact would be enough). Since U and V are the
derived subgroups of the two groups, we have f(U) ⊂ V . Since f(U) ⊂ V , pass-
ing to the quotients, f induces a continuous homomorphism A → E with dense
image, which induces an injective linear map f ∗ : Hom(E,R)→ Hom(A,R).

Denote by f the Lie algebra map it induces u → v. If we consider the weight
decomposition u =

⊕
α∈Hom(A,R) uα, we see that either f(uα) is zero, or α has the

form f ∗(β) and f(uα) ⊂ vβ. In particular, f(u) is contained in the sum of vβ,
where β ranges over elements in Hom(E,R) such that f ∗(β) is a weight of UoA.
In particular, if we assume that f(U) = V , we deduce that f ∗ maps weights to
weights.

Assume now that V o E is a group of type SOL; since E is abelian, f factors
through a homomorphism U/[U,U ] o A → V o E. Recall from Example 4.B.2
that for a group of SOL type, the set of weights consists of a quasi-opposite
pair, i.e. a pair of nonzero elements such that the segment joining them contains
zero. Since f ∗ is injective R-linear and maps weights to weights, we deduce that
U/[U,U ] o A admits a quasi-opposite pair of weights.

Conversely, suppose that U oA, where U/[U,U ] has two nonzero weights α, β
with β = tα for some t < 0.

To construct the map f , first mod out by [U,U ], so we are reduced to the case
when U is abelian. Modding out if necessary by all other nonzero weights, we
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can suppose that u = uα ⊕ uβ. Write uα =
⊕

j uj,α, and mod out all uj,α except
one, so that uα is a Lie algebra over a single field Kj; again modding out by a
maximal invariant subspace and possibly replacing Kj with a finite extension, we
can assume that uα is 1-dimensional over Kj, with a scalar action. Similarly we
can assume that uβ is 1-dimensional over Kj′ , with a scalar action. We can mod
out by the kernel of the homomorphism A→ K∗j×K∗j′ ; let B be the closure of its
image. Since α and β are proportional, E contains a cyclic cocompact subgroup.
The resulting group V oE, where V = Kj×Kj′ , is of type SOL and the resulting
homomorphism U o A→ V o E has a dense image containing V . �

Remark 4.C.4. The homomorphism to a group of type SOL cannot always be
chosen to have a closed image. For instance, let Z2 act on R2 by

(m,n) · (x, y, z) = (2−m3−nx, 2m3ny).

Let G = R2 o Z2 be the corresponding standard solvable group. Then every
nontrivial normal subgroup of G contains either R× {0} or {0} ×R; thus every
proper quotient of G is tame and it follows that no quotient of G is of SOL type.

Let G = U o A is a standard solvable group in the sense of Definition 1.2.
The Lie algebra u of U admits a grading in the weight space W = Hom(A,R),
introduced in §4.B. Define the set of weights of u as the finite subset Wu = {α ∈
W : uα 6= {0}}.

We say that a subset of Wu is conic if it is of the form Wu ∩ C, with C an
open convex cone not containing 0. Let C be the set of conic subsets of Wu. If
C ∈ C, define

uC =
⊕
α∈C

uα;

this is a graded Lie subalgebra of u; clearly it is nilpotent. Let UC be the closed
subgroup of U corresponding to uC under the exponential map and GC = UCoA.
In particular, if v ∈ A, define H(v) = {α ∈ Wu : α(v) > 0}.

Definition 4.C.5. The GH(v) are called the essential tame subgroups of G.
The GC are called the standard tame subgroups of G.

Note that each essential tame subgroup is standard tame, and there finitely
many standard tame subgroups; moreover every standard tame subgroup is a
finite intersection of essential tame subgroups.

Remark 4.C.6. These notions can be developed in a broader context, avoiding
references to gradings and Lie algebras. Let G be a locally compact group with
a fixed semidirect product decomposition G = U o A.

A tame subgroup of G (relative to the given semidirect decomposition) is
defined as a subgroup of the form V o A, which is tame, i.e., in which some
element of A acts on V as a compaction (in the sense of Definition 4.B.4).
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For v ∈ A, if we define Uv as the contraction subgroup

(4.C.7)

{
x ∈ U : lim

n→+∞
v−nxvn = 1

}
,

then v acts as a compaction on Uv ([CCMT15, Prop. 6.17]) and therefore Uv oA
is tame. We call this a essential tame subgroup. Then standard tame
subgroups are defined as finite intersections of essential tame subgroups; this
can be shown to match the previous definition in the setting of standard solvable
groups.

4.D. Cartan grading and weights. Here we introduce the notion of Cartan
grading, especially in the context of real triangulable Lie algebras; this will es-
pecially be needed in §11. Triangulable Lie groups are not standard solvable in
general and although the treatment is analogous to that in §4.B, we have to face
some specific difficulties.

All Lie algebras in this §4.D are finite-dimensional over a fixed field K of
characteristic zero.

Definition 4.D.1. If g is a Lie algebra, let g∞ =
⋂
k≥1 g

k be the intersection of
its lower central series, so that g/g∞ is the largest nilpotent quotient of g.

Definition 4.D.2. If G is a triangulable Lie group with Lie algebra g, define its
exponential radical G∞ as the intersection of its lower central series (so that
its Lie algebra is equal to g∞).

We need to recall the notion of Cartan grading of a Lie algebra, which is used
in §11.D and §11.E. Let n is a nilpotent Lie algebra; denote by n∨ the space of
homomorphisms from n to K (that is, the linear dual of n/[n, n]).

Let v be an n-module (finite-dimensional) with structural map ρ : n → gl(v).
If α ∈ n∨, define the characteristic subspace

vα =
⋃
k≥1

{v ∈ v : ∀g ∈ n, (ρ(g)− α(g))kv = 0}.

The subspaces vα generate their direct sum; we say that v is K-triangulable
if v =

⊕
α∈n∨ vα; this is automatic if K is algebraically closed. If v is a K-

triangulable n-module, the above decomposition is called the natural grading
(in n∨) of v as an n-module. If v = v0, we call v a nilpotent n-module.

Definition 4.D.3 ([Bou]). A Cartan subalgebra of g is a nilpotent subalgebra
that is equal to its normalizer.

We use the following proposition, proved in [Bou, Chap. 7,§1,2,3] (see Definition
4.D.1 for the meaning of g∞).

Proposition 4.D.4. Every Lie algebra admits a Cartan subalgebra. If n is a
Cartan subalgebra, then g = n + g∞ and n contains the hypercenter of g (the
union of the ascending central series).
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If g is solvable, any two Cartan subalgebras of g are conjugate by some elemen-
tary automorphism exp(ad(x)) with x ∈ g∞ (here ad(x) is a nilpotent endomor-
phism so its exponential makes sense). �

Let us provide a simple way to recognize a Cartan subalgebra.

Proposition 4.D.5. Let g be a Lie algebra graded in some abelian group W (see
§8.A if necessary). Assume that g0 is nilpotent and that for every α 6= 0, we have
[g0, gα] = gα. Then g0 is a Cartan subalgebra in g.

Proof. We have to show that the normalizer h of g0 in g is g0 itself. This is a
graded subalgebra; hence we have to show that hα = 0 for all α 6= 0. Since [g0, hα]
is contained in both g0 and gα, we deduce that [g0, hα] = 0.

To show that h = g0, it is enough to do it in the case K is algebraically
closed. For α 6= 0, we can decompose the module gα with respect to the action
of the nilpotent Lie algebra g0 as a sum of characteristic subspaces Vλ, for ho-
momorphisms λ : g0 → K. Then V0 = 0 since the contrary would contradict
[g0, gα] = gα. On the other hand, since hα is contained in the centralizer of g0, it
is contained in V0. We deduce that it is zero. �

Example 4.D.6. For λ ∈ K, let g(λ) be the 4-dimensional Lie algebra with basis
(u, x, y, z) and nonzero brackets [x, y] = z, [u, x] = x, [u, y] = λy, [u, z] = (1+λ)z.
Then a Cartan subalgebra is given as follows:

• if λ /∈ {−1, 0}, it can be taken to be the 1-dimensional subalgebra gener-
ated by u;
• if λ = −1, as the abelian subalgebra generated by u, z;
• if λ = 0, as the abelian subalgebra generated by u, y.

Indeed, we can consider the grading in Z for which u has weight 0, x has weight 1,
y has weight λ, and z has weight 1 + λ. Then it satisfies the condition of Propo-
sition 4.D.5. Other illustrating examples of Cartan subalgebras in triangulable
Lie algebras can be found in [C08, Ex. 4.1 and 4.2].

We now turn to a partial converse for Proposition 4.D.5.
Let g be a Lie algebra and n a Cartan subalgebra. For the adjoint represen-

tation, g is an n-module. Assume that g is K-triangulable as an n-module (e.g.,
this holds if K is algebraically closed). The corresponding natural grading is
called the Cartan grading of g (relative to the Cartan subalgebra n); moreover
the Cartan grading determines n, namely n = g0. We call weights the set of
α such that gα 6= 0. The Cartan grading is a Lie algebra grading, i.e. satisfies
[gα, gβ] ⊂ gα+β for all α, β ∈ n∨. In addition it satisfies [g0, gα] = gα for all α 6= 0;
hence it fulfills the conditions of Proposition 4.D.5.

We have n+g∞ = g, and g∞ ⊂ [g, g], so the projection n→ g/[g, g] is surjective,
inducing an injection (g/[g, g])∨ ⊂ n∨.

Now assume that g is K-triangulable. Then all the weights of the Cartan
grading lie inside the subspace (g/[g, g])∨ of n; the advantage is that this space
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does not depend on n, allowing to refer to a weight α without reference to a the
choice of a Cartan subalgebra (although the weight space gα still depends on this
choice). In view of Proposition 4.D.4, any two Cartan gradings of g are conju-
gate. In particular, the set of weights, viewed as a finite subset of (g/[g, g])∨, does
not depend on the Cartan grading. Actually, the subspace linearly spanned by
weights is exactly (g/r)∨, where r ⊃ [g, g] is the nilpotent radical of g. The prin-
cipal weights of g are by definition the weights of the Lie algebra g∞/[g∞, g∞]
(that is, the nonzero weights of the Lie algebra g/[g∞, g∞]); note that every
nonzero weight is a sum of principal weights, as a consequence of the following
lemma, which relies on the (basic) results of §8.A.2.

Lemma 4.D.7. Define gO =
⊕

α 6=0 gα. Then g∞ is the subalgebra generated by
gO.

Proof. It is clear from the definition that [n, gα] = gα for all α 6= 0 and therefore
gO ⊂ g∞. Conversely, since g0 = n is nilpotent, Lemma 8.A.5 implies that g∞ is
contained in the subalgebra generated by gO. �

If m is a g-module, define mg = {x ∈ m : ∀g ∈ g, gx = 0}.

Lemma 4.D.8. Let g be a K-triangulable Lie algebra with a Cartan grading,
and i ≥ 1. Then Hi(g

∞)g 6= {0} if and only if Hi(g
∞)0 6= {0}.

Proof. By definition of Cartan grading, we haveHi(g
∞)g ⊂ Hi(g

∞)0; this provides
one implication.

Note, that Hi(g
∞) is a trivial g∞-module, hence can be viewed as a (g/g∞)-

module, and for any α, Hi(g
∞)α is a nonzero g0-submodule; since it is stable

under both g0 and g∞; since g = g∞ + g0 we deduce that each Hi(g
∞)α is a

g-submodule of Hi(g
∞) and Hi(g

∞)g0 = Hi(g
∞)g.

On the other hand, it follows from the definition of Cartan grading that (g⊗i)0

is a nilpotent g0-module; hence its subquotient Hi(g
∞)0 is also a nilpotent g0-

module and hence is a nilpotent g-module by the previous remark. Hence if
Hi(g

∞)0 6= 0, then Hi(g
∞)g0 is nonzero as well. �

Now consider a real triangulable Lie algebra g, or the corresponding real tri-
angulable Lie group. We call weights of g the weights of graded Lie subalgebra
g∞ endowed with the Cartan grading from g (note that since g = g0 + g∞, this
is precisely the set of weights of the graded Lie algebra g, except possibly the 0
weight).

We define a real triangulable Lie algebra g, or the corresponding real triangu-
lable Lie group G, to be tame, 2-tame, or stably 2-tame exactly in the same
fashion as in Definition 4.C.1. In the case G is also a standard solvable group
U oD, we necessarily have u = g∞ and its grading is also the Cartan grading; in
particular whether G is tame (resp. 2-tame, stably 2-tame) does not depend on
whether G is viewed as a real triangulable Lie group or a standard solvable Lie
group.
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For α > 0, define SOLα as the semidirect product R2 oR, where the action is
given by t · (x, y) = (etx, e−αty). Note that apart from the obvious isomorphisms
SOLα ' SOL1/α, they are pairwise non-isomorphic.

In a way analogous to Proposition 4.C.3, we have

Proposition 4.D.9. Let G be a real triangulable group. Then G is not 2-tame
if and only if it admits SOLα as a quotient for some α > 0.

Proof. The “if” part can be proved in the same lines as the corresponding state-
ment of Proposition 4.C.3 and is left to the reader.

Conversely, assume that G is not 2-tame. Clearly, G/[G∞, G∞] is not 2-tame,
so we can assume that G∞ is abelian. Endow g with a Cartan grading; then since
g∞ is abelian, 0 is not a weight of g∞ and hence g = g∞o g0. Let G = G∞oG0

be the corresponding decomposition of G.
In the same way as in the proof of Proposition 4.C.3, we can pass to a quotient

that is still not 2-tame, for which the new G∞ is 2-dimensional. Since the action
of G0 on G∞ is given by two proportional weights, its kernel has codimension 1 in
N ; in particular this kernel is normal in G; we see that the quotient is necessarily
isomorphic to SOLα for some α > 0. �

5. Algebraic preliminaries about nilpotent groups and Lie
algebras

5.A. Divisibility and Malcev’s theorem. Recall that a group G is divisible
(resp. uniquely divisible) if for every n ≥ 1, the power map G→ G mapping x to
xn, is surjective (resp. bijective). The following lemma is very standard.

Lemma 5.A.1. Every torsion-free divisible nilpotent group is uniquely divisible.

Proof. We have to check that xk = yk ⇒ x = y holds in any torsion-free nilpotent
group. Assume that xk = yk and embed the finitely generated torsion-free nilpo-
tent group Γ = 〈x, y〉 into the group of upper unipotent matrices over the reals.
Since the latter is uniquely divisible (the k-th extraction of root being defined by
some explicit polynomial), we get the result. �

Let NQ be the category of nilpotent Lie algebras over Q (of possibly infinite
dimension) with Lie algebras homomorphisms, and N the category of nilpo-
tent groups with group homomorphisms, and NQ its subcategory consisting of
uniquely divisible (i.e. divisible and torsion-free, by Lemma 5.A.1) groups. If
g ∈ NQ, consider the law ~g on g defined by the Campbell-Baker-Hausdorff
formula.

Theorem 5.A.2 (Malcev [Mal49a, St70]). For any nilpotent Lie algebra g over
Q, (g,~g) is a group and if f : g → h is a Lie algebra homomorphism, then f
is also a group homomorphism (g,~g) → (h,~k). In other words, g 7→ (g,~g),
f 7→ f is a functor from NQ to N . Moreover, this functor induces an equivalence
of categories NQ → NQ.



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 47

The contents of the last statement is that

• any group homomorphism (g,~g) → (h,~h) is a Lie algebra homomor-
phism;
• any uniquely divisible nilpotent group (G, •) has a unique Q-Lie algebra

structure g = (G,+, [·, ·]) such that ~g = •.
Recall that an element in a group is divisible if it admits n-roots for all n ≥ 1.

Lemma 5.A.3 (see Lemma 3 in [Ho77]). In a nilpotent group, divisible elements
form a subgroup.

Lemma 5.A.4 (see Theorem 14.5 in [Ba60]). Let G be nilpotent and uniquely di-
visible, with lower central series (Gn). Then G/Gn is torsion-free (hence uniquely
divisible) for all n. �

The following lemma is needed in the proof of Theorem 9.D.2.

Lemma 5.A.5. In the category of s-nilpotent groups, any free product of uniquely
divisible groups is uniquely divisible.

Proof. First, the free groups in this category are torsion-free: to see this, it is
enough to consider the case of a free group of finite rank in this category; such a
group is of the form F/F i with F a free group; it is indeed torsion free for all i:
this is a result about the lower central series of a non-abelian free group and is
due to Magnus [Mag35] (see also [Se, IV.6.2]).

Let G1, G2 be torsion-free uniquely divisible s-nilpotent groups and G1 ∗s G2

their s-nilpotent free product, which is divisible by Lemma 5.A.3. Denote by (N i)
the lower central series of G1 ∗G2. Let g be a non-trivial element in G1 ∗s G2 =
(G1 ∗G2)/N s+1 and let us show that g is not torsion in this group. By [Mal49b],
a free product of torsion-free nilpotent groups is residually torsion-free nilpotent,
and therefore there exists t ≥ s + 1 such that the image of g is not torsion in
(G1∗G2)/N t. Applying Lemma 5.A.4 to (G1∗G2)/N t, we see that (G1∗G2)/N s+1

is torsion-free, so since g is non-trivial, it is not torsion. So G1 ∗s G2 is uniquely
divisible by Lemma 5.A.1. �

5.B. Powers and commutators in nilpotent groups. This subsection in-
cludes several lemmas, which will be used at various places of the paper.

Denote by ((·, ·)) group commutators, namely

((x, y)) = x−1y−1xy,

and n-fold group commutators

(5.B.1) ((x1, . . . , xn)) = ((x1, ((x2, . . . , xn)))).

Define similarly n-fold Lie algebra brackets. When n ≥ 2 is not specified, we just
call them iterated group commutators or Lie algebra brackets.

IfG is a group, its lower central series is defined byG1 = G andGi+1 = ((G,Gi))
(the group generated by commutators ((x, y)) when (x, y) ranges over G × Gi).
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The group G is s-nilpotent if Gs+1 = {1}. In particular, 0-nilpotent means trivial,
1-nilpotent means abelian, and more generally, s-nilpotent means that (s + 1)-
fold group commutators vanish in G. Similarly, if g is a Lie algebra, its lower
central series is defined in the same way (and does not depend on the ground
commutative ring), and s-nilpotency has the same meaning.

The following lemma will be used in the proof of Lemma 6.E.4.

Lemma 5.B.2. Let N be an s-nilpotent group, and let i be an integer. Then
there exists an integer m = m(i, s) such that for all x, y ∈ N , we can write

((x, yi)) = w1 . . . wm,

where each wj (1 ≤ j ≤ m) is an iterated commutator (or its inverse) whose
letters are x±1 or y±1, that is, wj = ((tj,1, . . . , tj,kj)) for some kj ≥ 2 and tj,i ∈
{x±1, y±1}.

Example 5.B.3. In a 3-nilpotent group N , we have, for all x, y ∈ N and i ∈ Z

((x, yi)) = ((x, y))i((y, x, y))−i(i−1)/2.

Proof of Lemma 5.B.2. We shall prove the lemma by induction on s. The state-
ment is obvious for s = 0 (i.e. when N is the trivial group), so let us suppose
s ≥ 1. Applying the induction hypothesis modulo the s-th term of the descending
series of N , one can write ((x, yi)) = wz, where w has the form w1 . . . wm′ where
m′ = m(i, s − 1), and where z lies in the s-th term of the lower central series
of the subgroup generated by x and y, which will be denoted by H. Since the
word length according to S = {x±1, y±1} of both ((x, yi)) and w is bounded by
a function of i and s, this is also the case for z. Now H is generated by the set
of iterated commutators T = {((x1, x2 . . . , xs)) | x1, . . . , xs ∈ S}. Therefore, z
can be written as a word in T±1, whose length only depends on s and i. So the
lemma follows. �

The following lemma will be used in the proof of Lemma 6.B.3.

Lemma 5.B.4. In any uniquely divisible s-nilpotent group, if xi = exp vi

((x1, . . . , xs)) = exp[v1, v2, . . . , vs].

Proof. (Refer to (5.B.1) for the conventions defining iterated Lie brackets or group
commutators.) Use the convenient convention to identify the group and the Lie
algebra through the exponential and with this convention, the lemma simply
states that

((x1, . . . , xs)) = [x1, x2, . . . , xs] ∀x1, . . . , xs ∈ G.

We prove the result by induction on s; it is trivial for s = 1 (abelian groups);
assume it holds for s−1. By induction, ((x2, . . . , xs)) = [x2, . . . , xs] +O(s), where
O(s) means some combination of s-fold Lie algebra brackets.
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It follows from the Baker-Campbell-Hausdorff formula that if [x, y] is central
then ((x, y)) = [x, y]. We can apply this to x = x1 and y = ((x2, . . . , xs)). This
yields

((x1, ((x2, . . . , xs)))) = [x1, [x2, . . . , xs] +O(s)] = [x1, . . . , xs]. �

The following proposition is the key new feature in the proof of Theorem 9.D.2.

Proposition 5.B.5. Let x, y be elements of a uniquely divisible nilpotent group
G. Let N be the normal subgroup generated by the elements of the form xry−r,
where r ranges over Q. Then N is divisible. Equivalently, G/N is torsion-free.

We need the following lemma.

Lemma 5.B.6. Let x, y be elements of a uniquely divisible nilpotent group G,
and n an integer. Then (xy−1)1/n is contained in the normal subgroup generated
by {x1/ky−1/k : k ∈ Z}.

Proof. LetG be s-nilpotent. By [BrG11, Lemma 5.1] (see however Remark 5.B.7),
there exists a sequence of rational numbers a1, b1, . . . , ak, bk such that in any
uniquely divisible s-nilpotent group H and any u, v ∈ H, we have

(uv−1)1/n = u1/nv−1/n

k∏
i=1

uaivbi .

In particular, picking (H, u, v) = (R, 1,
√

2), we see that
∑
ai =

∑
bi = 0.

Therefore, if d is a common denominator to a1, . . . , bk and n,
∏k

i=1 u
aivbi as well as

u1/nv−1/n belong to the normal subgroup generated by u1/dv−1/d, hence (uv−1)1/n

as well. In particular, this applies to (H, u, v) = (G, x, y). �

Remark 5.B.7. In the above proof, we used [BrG11, Lemma 5.1] to be concise.
However, this is not very natural, because the latter is proved using the Hall-
Petrescu formula; the problem is that in this formula, exponents are put outside
the commutators. The proof of the Hall-Petrescu formula can easily be modified
to prove by induction on the degree of nilpotency a similar formula with exponents
inside the commutators. In [BrG11], in order to shorten the argument (as we also
do), instead of processing this induction, they work with a much simpler induction
based on the Hall-Petrescu formula; this is very unnatural, because if we do not
allow ourselves to use the Hall-Petrescu formula, to go through the latter is very
roundabout; moreover the exponents ak, bk obtained in [BrG11] depend on s,
while in a direct induction, we pass from the s-nilpotent case to the (s + 1)-
nilpotent case by multiplying on the right by some suitable iterated commutator
of powers.

Proof of Proposition 5.B.5. By Lemma 5.B.6, N contains elements (xry−r)ρ for
any ρ ∈ Q. So N is generated as a normal subgroup by the divisible subgroups
Nr = {(xry−r)ρ : ρ ∈ Q}, and therefore N is divisible by Lemma 5.A.3. �
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The following lemma is used in the proof of Lemma 9.B.1.

Lemma 5.B.8. Let g be a Lie algebra over the commutative ring R. Let m be
a generating R-submodule of g. Define g[1] = m, and by induction the submodule
g[i] = [g[1], g[i−1]] for i ≥ 2 (namely, the submodule generated by the brackets of
the given form). Let (gi) be the lower central series of g. Then for all i we have
gi =

∑
m≥i g

[m].

Proof. Let us check that

(5.B.9)
[
g[i], g[j]

]
⊂ g[i+j] ∀i, j ≥ 1.

Note that (5.B.9) holds when either i = 1 or j = 1. We prove (5.B.9) in general
by induction on k = i + j ≥ 2, the case k = 2 being already settled. So suppose
that k ≥ 3 and that the result is proved for all lesser k. We argue again by
induction, on min(i, j), the case min(i, j) = 1 being settled. Let us suppose that
i, j ≥ 2 and i + j = k and let us check that (5.B.9) holds. We can suppose that
j ≤ i. By the Jacobi identity and then the induction hypothesis

[g[i], g[j]] =[g[i], [g[1], g[j−1]]]

⊂[g[1], [g[i], g[j−1]]] + [g[j−1], [g[1], g[i]]]

⊂[g[1], g[i+j−1]] + [g[j−1], g[1+i]]

⊂g[i+j] + [g[j−1], g[1+i]]

Since j ≤ i, we have min(j− 1, i+ 1) < min(i, j), the induction hypothesis yields
[g[j−1], g[1+i]] ⊂ g[i+j] and (5.B.9) is proved.

It follows from (5.B.9) that, defining for all i ≥ 1

g{i} =
∑
j≥i

g[j],

the graded submodule g{i} is actually a Lie subalgebra of g. Let us check by
induction on i ≥ 1 that gi = g{i}. Since g[1] generates g, it follows that g{1} =
g = g1. Now, suppose i ≥ 2 and the equality holds for i − 1. Then gi is, in our
notation, the Lie subalgebra generated by

[g, gi−1] = [g, g{i−1}] =

[
g,
∑
j≥i−1

g[j]

]

=
∑
j≥i−1

[
g, g[j]

]
=
∑
j≥i−1

g[j+1] = g{i};

since g{i} is a Lie subalgebra we deduce that gi = g{i}. �
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5.C. Lazard’s formulas. Lazard’s formulas (which will be used in §10.D and
§10.F) are, in a sense, inversion formulas for the Baker-Campbell-Hausdorff for-
mula: roughly speaking, they express the Lie algebras laws in terms of the group
law; actually it involves taking roots and we find it convenient to state them
by “canceling denominators” as below. Here, F2 denotes the free group on 2
generators).

Theorem 5.C.1 (Lazard [La54]). For every s ≥ 1, there exist group words
As, Bs ∈ F2 and positive integers qs, q

′
s, such that for every simply connected s-

nilpotent Lie group G with Lie algebra g, and all x, y ∈ G, writing X = log(x) ∈ g,
Y = log(y) ∈ g, we have

log(As(x, y)) = qs(X + Y ) and log(Bs(x, y)) = q′s[X, Y ]

Here A stands for Add, and B for Bracket.

Remark 5.C.2. We see that we have the formal equality of group wordsAs(x, 1) =
xqs . Indeed, As(x, 1) has the form x` for some ` ∈ Z, and by evaluation in R we
obtain ` = qs. Similarly, we have the formal equality Bs(x, 1) = 1.

The usual Lie ring axioms are reflected in the following proposition:

Proposition 5.C.3. In every s-nilpotent group G, abbreviating A = As, B = Bs,
q = qs, we have identities ∀x, y, z ∈ G,

A(x, y) = A(y, x); B(x, y) = B(y, x)−1 ;

B(A(x, y), z) = A(B(x, z), B(y, z)) ;

A(A(x, y), zq) = A(xq, A(y, z)) ;

B(xk, y) = B(x, yk) = B(x, y)k ∀k ∈ Z.

Proof. If G is a simply connected nilpotent Lie group, this follows from the
corresponding identities in the Lie algebra: commutativity of addition, anti-
commutativity of the bracket, distributivity, associativity of addition; in the last
equality if follows from the fact that log(xk) = k log(x). Therefore this holds in
every subgroup of such a group G, and in particular in any finitely generated free
s-nilpotent group, and therefore in any s-nilpotent group, by substitution. �

6. Dehn function of tame and stably 2-tame groups

In §6.A, we introduce the class of tame groups, showing in particular that their
Dehn function is at most quadratic. In §6.C, we formulate and prove a version of
Gromov’s trick for standard solvable groups involving its tame subgroups. This
result relies on some lengths estimates on nilpotent algebraic groups over local
fields, which are obtained in §6.B. Then §6.D is dedicated to the proof of Theorem
D from the introduction (which is reformulated in terms of 2-tameness). Finally
we extend this result to generalized 2-tame groups in §6.E.
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6.A. Tame groups. We introduce here a class of locally compact groups, called
tame groups, including tame standard solvable groups from Definition 4.C.1.

Tame groups are, for our purposes, the best-behaved. Using a “large-scale
Lipschitz homotopy”, these groups are shown to be compactly presented with an
at most quadratic Dehn function and a have simple presentation (Theorem 6.A.4
and Corollary 6.A.7).

While standard solvable groups are “usually” not tame, their geometrical study
will be based on the family of their tame subgroups.

Definition 6.A.1. We call a tame group any locally compact group with a
semidirect product decomposition G = U oA, where A is a compactly generated
abelian group, such that some element of A acts as a compaction of U (in the
sense of Definition 4.B.4), in which case we call U oA a tame decomposition.

Recall that this means that there exist v ∈ A and a compact subset Ω (called
vacuum subset) of U such that

⋃
n≥0 v

nΩv−n = U uniformly on compact subsets,
in the sense that for every compact subset K of U there exists n such that K ⊂
vnΩv−n. If we apply this to Ω itself, so that v−nΩvn ⊂ Ω, we see, by replacing Ω
with the larger

⋃
0≤k≤n−1 v

−nΩvn =
⋃
k≥0 v

−nΩvn, that we can suppose v−1Ωv ⊂
Ω, in which case we call Ω a stable vacuum subset.

Remark 6.A.2. If G = U oA is a tame decomposition, and if W is the largest
compact subgroup in A, then W admits a direct factor A′ in A (isomorphic to
Rk ×Z` for some k, ` ≥ 0), so that G = UW oA′; if x ∈ A acts as a compaction
on U then it also acts as a compaction on UW , and so does the projection of x
on A′ (because the set of compactions of a given locally compact group is stable
by multiplication by inner automorphisms [CCMT15, Lemma 6.16]). This shows
that assuming that A = Rk × Z` is not really a restriction.

We are going to prove that tame groups are compactly presented with an at
most quadratic Dehn function; in order to make quantitative statements, we use
the following language.

Let v ∈ A be an element acting (by conjugation on the right) as a compaction
of U . Let m be an integer. Let SU be a compact symmetric subset of U with
unit. Let T be a compact symmetric generating subset of A with unit.

Definition 6.A.3. We say that (m,SU , T ) is adapted to U oA and v if v ∈ T ,
the subset SU is a stable vacuum subset for the right conjugation u 7→ v−1uv
by v, and there exist non-negative integers k, ` ≥ 1 with k + ` ≤ m such that
v−kS2

Uv
k ⊂ SU and (v`w)−1SU(v`w) ⊂ SU for all w ∈ T .

There always exists such an adapted triple; more precisely, for every symmetric
generating subset T of A containing {1, v} and every symmetric stable vacuum
subset SU ⊂ U of v, (m,SU , T ) is adapted for all m large enough. Also, if SU is a
stable vacuum subset for some v ∈ A and T is arbitrary, then (2, SU , T ∪ {v±k})
is adapted to vk for large enough k.
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Theorem 6.A.4. Let G be a tame group with a tame decomposition U oA, with
an element v acting as a compaction of U . Denote by π the canonical projection
G→ A.

Let (m,SU , T ) be adapted to UoA and v in the above sense. Then S = SU ∪T
is a compact generating subset of G, and G being endowed with the corresponding
word metric, the function

γ : G×N→ G; (g, n) 7→ gvn

is 1-Lipschitz in each variable and satisfies: γ(g, 0) = g, and d(γ(g, n), vnπ(g)) ≤
1 whenever n ≥ m|g|. �

The function γ should be understood as “locally” a large-scale homotopy be-
tween the identity of G and its projection onto A. This is only “local” since the
time needed to reach A depends on the size of the element. See however Remark
6.A.10.

Proof of Theorem 6.A.4. Since v−1SUv ⊂ SU , we have v−1Sv ⊂ S. So, for n ≥ 0,
the automorphism g 7→ v−ngvn is 1-Lipschitz, and since the left multiplication
by vn is an isometry, we deduce that γ(·, n) is 1-Lipschitz. Also, assuming that
v ∈ T , it is immediate that γ(g, ·) is 1-Lipschitz.

It remains to prove the last statement. Consider an element in U , of size at
most n. We can write it as

g =
n∏
i=1

siui

with si ∈ T and ui ∈ SU . Defining ti = si . . . sn, we deduce

g = tn

(
n∏
i=1

tiuit
−1
i

)
.

So tn = π(g) and

v−`ngv`n = π(g)

(
n∏
i=1

v−`ntiuit
−1
i v`n

)
.

By definition of `, the element vi = v−`ntiuit
−1
i v`n belongs to SU . So

v−`ngv`n = π(g)

(
n∏
i=1

vi

)
.

Since v−k(S2
U)vk ⊂ SU , setting j = dlog2(n)e, we have v−kj(SnU)vkj ⊂ SU . Thus

we obtain
v−`n−kdlog2(n)egv`n+kdlog2(n)e ∈ π(g)SU ,

since for all n we have dlog2(n)e ≤ n and k+` ≤ n, we obtain d(gvmn, vmnπ(g)) ≤
1. �

A first consequence is an efficient way of writing elements in a tame group:
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Corollary 6.A.5. Under the assumptions of Theorem 6.A.4, for every x ∈ G of
with |x|S = n, we can write x = π(x)vmnsv−mn and s ∈ SU .

Proof. Define s = (vmnπ(x))−1γ(x,mn). By the theorem, s ∈ SU , while x =
π(x)vmnsv−mn. �

The corollary allows us to introduce the following definition, which will be
used in the sequel. Let G = U o A be tame and v ∈ A act as a compaction
on U . Let (m,SU , T ) be adapted to U o A and v in the sense of Definition
6.A.3, and S = SU ∪ T . By Corollary 6.A.5, if x ∈ U and n = |x|S, the element
s = v−mnxvmn belongs to SU .

Definition 6.A.6. For x ∈ U with |x|S = n as above, we define x ∈ FS as the
word vmnsv−mn, which has length 2mn+ 1 and represents x.

We now write the consequence of Theorem 6.A.4, that tame groups have a
“nice” presentation and a good control on the Dehn function.

Corollary 6.A.7. Under the assumptions of Theorem 6.A.4, G admits a pre-
sentation with generating set S in which the relators are the following

(1) All relators of the form s1s2s3 for s1, s2, s3 ∈ SU , whenever s1s2s3 = 1 in
U ;

(2) all relators of the form ws1w
−1s2 whenever w ∈ T , s1, s2 ∈ A and

ws1w
−1s2 = 1 in G;

(3) a finite set R3 of defining relators of A (with respect to the generating
subset T ) including all commutation relators.

The Dehn function of this presentation is bounded above by mn2 +δT,R3(n), where
δT,R3 is the Dehn function of the presentation 〈T | R3〉 of the abelian group A.

Corollary 6.A.8. If G is a tame locally compact group, then it has an at most
quadratic Dehn function. �

This follows since A has an at most quadratic Dehn function.

Remark 6.A.9. Since G has a 1-Lipschitz retraction onto A (namely the canoni-
cal projection), we deduce that the Dehn function of G is exactly quadratic when
A has rank at least 2. On the other hand, if A has rank one (i.e., contains Z as
a cocompact lattice), then G is hyperbolic and thus its Dehn function is linear
[CCMT15].

Proof of Corollary 6.A.7. Start from a combinatorial loop γ0 = (ui)i of length n.
This is a combinatorial loop in the Cayley graph of (G,S), i.e., d(ui, ui+1) ≤ 1.
Since γ : (g, n) 7→ gvn is 1-Lipschitz by Theorem 6.A.4, each γj = (uiv

j)i is also
a loop of length n. Define µj as the loop (vjπ(ui))i in A. We know that for
j ≥ mn, we have d(µj(i), γj(i)) ≤ 1 for all i. So the “homotopy” consists in

γ0  γ1  · · · γmn  µmn
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and is finished by a homotopy from µmn to a trivial loop inside A. So we have to
describe each step of this homotopy.

To go from γj to γj+1, we use n squares, each with vertices of the form

(uiv
j, ui+1v

j, ui+1v
j+1, uiv

j+1)

for i = 1, . . . n (modulo n). To describe this square, we discuss whether u−1
i ui+1

belongs to SU or T : in the first case this is a relator of the form (2) and in the
second case it is a relator of the form (3).

To go from γmn to µmn, we use n squares vith vertices

(uiv
mn, ui+1v

mn, π(ui+1)vmn, π(ui)v
mn).

We discuss again: if u−1
i ui+1 ∈ T , this is a relator of the form (3). If u−1

i ui+1 ∈ SU ,
actually π(ui) = π(ui+1) and this square actually degenerates to a triangle of the
form (1).

Finally, the loop µmn, of length n can be homotoped within A to a constant
loop with area ≤ δT,R3(n). �

Remark 6.A.10 (Asymptotic cones of tame groups are contractible). Let X be
a metric space and ω a nonprincipal ultrafilter on the set of positive integers. If
(xn), (yn) are sequences in X, define dω((xn), (yn)) = limω d(xn, yn)/n ∈ [0,∞].
The asymptotic cone (Coneω(X), dω) is defined as the metric space consisting of
those sequences (xn) with dω((xn), (x0)) <∞, modulo identification of (xn) and
(yn) whenever dω((xn), (yn)) = 0.

A straightforward corollary of Theorem 6.A.4 is that if G is a tame locally
compact group, then all its asymptotic cones are contractible. Indeed, the large-
scale Lipschitz mapping γ induces a Lipschitz map

γ̃ : Coneω(G)×R≥0 → Coneω(G)

((xn), t) 7→ γ(xn, btnc)
such that γ̃(x, 0) = x and γ̃(x, t) ∈ Coneω(A) if t ≥ C|x|. Defining h(x, t) =
γ̃(x, t|x|), then h is continuous, h(x, 0) = x and h(x,C) ∈ Coneω(A) for all
x ∈ Coneω(G). In other words, h is a homotopy between the identity of Coneω(G)
and a map whose image is contained in Coneω(A). Since Coneω(A) is (bilipschitz)
homeomorphic to a Euclidean space, this shows that Coneω(G) is contractible.

6.B. Length in nilpotent groups. As in Definition 1.2, let G = U o A be a
standard solvable group. We fix a decomposition U =

∏d
j=1 U(j), where U(j) =

U(j)(Kj), where Kj is some nondiscrete locally compact field. We write K =⊕d
j=1 Kj. We say that a subgroup V of U is K-closed if it is a direct product∏d
j=1 V(j), where V(j) = V ∩ U(j) is Zariski-closed in U(j).

The condition that V is K-closed is equivalent to the requirement that log(V )
is a Lie K-subalgebra of the Lie K-algebra u of U . When K is R or Qp for some
prime p, it is just equivalent to the condition that V is closed (for the ordinary
topology) and divisible.
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We fix on G an admissible finite family U1, . . . , Uν of tame subgroups of U ,
where by admissible we mean it fulfills all the following conditions:

(1) each Ui is K-closed in U
(2) U is generated by

⋃ν
i=1 Ui.

(3) each Ui is normalized by A.

For instance, we can choose them to be the standard tame subgroups (there are
finitely many, see Definition 4.C.5), but in the proof of Theorem 6.D.1 we will
make another choice.

We can find a compact symmetric subset T ⊂ A containing 1 and compact
symmetric subsets Si of Ui containing 1, such that for every i, Si is a stable
vacuum subset for some element of T . Define S = T ∪

⋃
i Si. We assume that

Si = S ∩ Ui for all i (we can always replace Si with S ∩ Ui so that it holds).

Notation 6.B.1. For r ∈ [−∞,+∞] and n ∈ N, let T n ⊂ FS be the n-ball of

FT and define S
(r)
i as the set elements of FS of the form tst−1, where s ∈ Si and

t ∈ Tmax(0,brc). Let π be the canonical projection FS → G.

Theorem 6.B.2. Fix a standard solvable group G, an admissible family of tame
subgroups and generating subset as above. There exist constants λ > 0, µ1, µ2 > 1,
a positive integer κ and a κ-tuple (q1, . . . , qκ) of elements in {1, . . . , ν} satisfying

• for every small enough norm ‖ · ‖ on u, denoting by U [r] the exponential
of the r-ball in (u, ‖ · ‖), we have, for all n, the inclusions

Sn ⊂ U [µn2 ]T n, U [µn1 ] ⊂ Sn, U [µn1 ]T n ⊂ S2n.

• the n-ball Sn of G is contained in the projection π
(
S

(λn)
q1 . . . S

(λn)
qκ T n

)
(which

is itself contained in the (κλ+ 1)n-ball).

We first need a general lemma.

Lemma 6.B.3. Fix an integer s ≥ 1. Let K =
∏

K` be a finite product of
nondiscrete locally compact fields of characteristic zero (or of characteristic p >
s). Let u be a s-nilpotent finite length Lie algebra over K (finite length just means
that under the canonical decomposition u =

⊕
u`, each u` is finite-dimensional

over K`) and fix a submultiplicative norm ‖ · ‖ on u. Let U be the corresponding
nilpotent topological group; if x ∈ U , write ‖x‖ = ‖ log(x)‖.

Let (ui)1≤i≤c be K-subalgebras of u; suppose that the ui generate u as a K-
subalgebra modulo [u, u]. Let Ui = exp(ui) ⊂ U be the corresponding subgroups.

Then there exists an integer κ and a constant K such that every element x ∈ U
can be written x1 . . . xκ with xk ∈

⋃
i ui, and supk ‖xk‖ ≤ K max(‖x‖, 1).

Proof. We argue by induction on s. If s = 1, the assumption is that u is abelian
and generated by the ui. So there exist subspaces hi ⊂ ui such that u =

⊕
hi, so

if x ∈ u and pi is the projection to hi, then x =
∑c

i=1 pi(x), and if K0 = sup ‖pi‖
(operator norm) then ‖pi(x)‖ ≤ K0‖x‖.
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Suppose now s > 1 and that the result is proved for s − 1. Denoting by (ui)
the lower central series, we choose the norm on u/ui to be the quotient norm.
We use the induction hypothesis modulo U s, so that there exist d′ and K ′ ≥ 1
such that every x ∈ U can be written as y1 . . . yd′z, with ‖yi‖ ≤ K ′max(‖x‖, 1)
and z ∈ U s. By the Baker-Campbell-Hausdorff formula, there exists a constant
C > 0 (depending on s and d′) such that for all x1, . . . xd′+1 in u, we have

‖x1 · · · xd′+1‖ ≤ C sup
i

max(‖xi‖s, ‖xi‖).

Since z = y−1
d′ . . . y

−1
1 x, we deduce

‖z‖ ≤C max
(

sup
i

max(‖yi‖s, ‖yi‖),max(‖x‖s, ‖x‖)
)

≤C max
(

max(K ′s, Ks‖x‖s),max(‖x‖s, ‖x‖)
)

= C ′K ′s max(‖x‖s, 1).

Consider the K-multilinear map (u/[u, u])s → us given by the s-fold bracket.
Since its image generates us as a K-submodule and since the ui generate u
modulo [u, u], we can find a finite sequence (ij)1≤j≤j0 and a fixed finite family
(κjk)1≤j≤j0,1≤k≤s with κjk ∈ uij such that, setting ζj = [κj1, . . . , κjs] we have
us =

⊕
j Kζj (we can normalize so that ‖ζj‖ = 1). Denote C ′ = supj,k ‖κjk‖. Let

K ′′ be the supremum of the norm of projections onto the submodules Kζj.
Then we can write z =

∑
j λjζj with λj ∈ K, satisfying supj |λj| ≤ K ′′‖z‖.

If L is a normed field, denote β(L) = inf{|x| : |x| ∈ L, |x| > 1}. Define
α0 = sup` β(K`) ≥ 1 (it only depends on K).

Hence for any element λ ∈ K, there exist µ1, . . . , µs ∈ K with supk |µk| ≤
|λ|1/sα0, such that λ =

∏s
k=1 µk. We apply this to write λj =

∏s
k=1 µjk, with

|µjk| ≤ |λj|1/sα0.
Now identify the Lie algebra and the group through the exponential map. By

Lemma 5.B.4, we have

λjζj = ((µj1κj1, . . . , µjsκjs)).

We have

|µjkκjk| ≤ α0C
′K ′′

1/s‖z‖1/s ≤ α0C
′(CK ′′)

1/s
max(K ′‖x‖, K ′1/s‖x‖1/s)

and

x = y1 . . . yd
∏
j

((µj1κj1, . . . , µjsκjs)),

which is a bounded number of terms in
⋃
Ui, each with norm

≤ max(A‖x‖, B‖x‖1/s),

where A = K ′max(α0C
′(CK ′′)1/s, 1) and B = α0C

′(CK ′′K ′)1/s. �
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Proof of Theorem 6.B.2. We can identify U with its Lie algebra u through the
exponential map. Use an embedding of U into matrices over K to define a matrix
norm ‖ · ‖′ on U , which is submutiplicative. Since both the embedding of U into
its image and its inverse are polynomial maps, there is a polynomial control of the
two norms ‖ · ‖ and ‖ · ‖′ with respect to each other, say ‖u‖ ≤ max(A‖u‖′k, B)

and ‖u‖′ ≤ max(A′‖u‖k
′
, B′), with A,A′ ≥ 1, B,B′ ≥ 0.

Let us now prove the existence of µ2 > 1 such that the inclusion Sn ⊂ U [µn2 ]T n

holds for all n. Any element x in Sn can be rewritten as a product ua, where
a ∈ T n and u is a product of at most n elements, each of which has the form
tat−1, where t ∈ T n and a ∈ U ∩ S. If C1 ≥ 1 is an upper bound for ‖a‖
when a ∈ U ∩ S and λ1 ≥ 2 is an upper bound for the Lipschitz constant of
elements of T viewed as operators on u, we obtain ‖tat−1‖ ≤ C1λ

n
1 . Hence

‖tat−1‖′ ≤ max(A′Ck′
1 λ

nk′
1 , B′). Since ‖ · ‖′ is submultiplicative, it follows that

‖u‖′ ≤ max(nA′Ck′
1 λ

nk′
1 , n). Defining λ2 = 2A′Ck′

1 λ
k′
1 , we obtain ‖u‖′ ≤ λn2 for all

n. In turn, we deduce ‖x‖ ≤ max(AnkA′kCkk′cnkk
′
, Ank, B). Thus there exists µ2

and n0 such that for all n ≥ n0 and all x = ua ∈ Sn we have ‖u‖ ≤ µn2 ; enlarging
µ2 if necessary we can ensure n0 = 0. Hence Sn ⊂ U [µn2 ]T n holds for all n.

The Ui generate U modulo [U,U ] (because u0 ⊂ [u, u] and uα is contained in
one of the ui for every nonzero weight α). Hence we can apply Lemma 6.B.3:
there exists c3 ≥ 1 and a κ-tuple (q1, . . . , qκ) ∈ {1, . . . , ν}κ such that every x ∈ U
can be written as

∏κ
`=1 x` with x` ∈ Uq` with sup` ‖x`‖ ≤ ec3 max(1, ‖x‖). Then

there exists c4 such that for every i and every y ∈ Ui, there exists t ∈ T and
m ∈ N such that m ≤ c4 max(1, log ‖y‖) and tmyt−m ∈ Si. In other words, for

every i and y ∈ Ui, we have y ∈ S(c4 max(1,log ‖y‖))
i .

In particular, setting c5 = c3c4

x` ∈ S(c4 max(1,log ‖x`‖))
q`

⊂ S(c4[c3+max(0,log ‖x‖)])
q`

⊂ S(c5 max(1,log ‖x‖))
q`

;

thus if we set c5 = c3c4 we have

x` ∈ S(c5 max(1,log ‖x‖))
q`

Hence, for every r > 0 we have

U [er] ⊂
κ∏
`=1

S(c5 max(1,r))
q`

⊂ Sκc5 max(1,r);

in particular, if C = κc5 and µ = eC
−1

,

U [µn] ⊂ Smax(n,C)

Thus U [µn] ⊂ Sn for all n ≥ C. In particular, U [µn−C ] ⊂ Sn−C ⊂ Sn for all
n ≥ 0. Multiplying the norm by µ−C redefines U [µn−C ] to be U [µn] and hence
with this new norm we have U [µn] ⊂ Sn for all n.
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For the second inclusion, let us go back to the inclusion of U [er], which yields
(for all n ≥ 0), with λ = c5 log µ2 > 0

U [µn2 ] ⊂
κ∏
`=1

S(max(c5,λn))
q`

;

as in the previous case, multiplying the norm allows to assume c5 = 0. �

6.C. Application of Gromov’s trick to standard solvable groups. As
above, let U1, . . . , Uν be an admissible family of tame subgroups in U . If c is
a positive integer and ℘ is a c-tuple of elements in {1, . . . , ν}, we can consider
the product U℘ =

∏c
`=1 U℘` .

Then we can define, for r ≤ ∞, a set of null-homotopic words

U℘(r) = {w = w1 . . . wc | π(w) = 1, ∀`, w` ∈ S(r)
℘`
} ⊂ FS.

If R is a subset of the kernel of FS → G consisting of words of bounded length,
define

δ℘,S,R(n) = sup
w∈U℘(n)

areaS,R(w) ∈ [0,∞].

(The area can a priori take infinite values, since we do not assume that R normally
generates the kernel.)

The following theorem is an essential reduction in the study of the Dehn func-
tion of standard solvable groups.

Theorem 6.C.1. Let G = UoA be a standard solvable group. Fix an admissible
family U1, . . . , Uν of tame subgroups and generating subsets as in §6.B; also fix a
subset R of the kernel of π : FS → G. Let f be a function such that r 7→ f(r)/rα

is non-decreasing for some α > 1. Suppose that for every c and every c-tuple
℘ ∈ {1, . . . , ν}c we have δ℘,S,R(n) 4 f(n). Then G is compactly presented by
〈S | R〉 and has Dehn function 4 f(n).

Remark 6.C.2. The proof actually even shows that the following holds, G, S
and R being fixed as well α > 1: There exists c and a c-tuple ℘ satisfying: if for
some f we have δ℘,S,R(n) 4 f(n), then G is compactly presented by 〈S | R〉 and
has Dehn function 4 f(n). However, we will only use the result in the slightly
weaker form given in Theorem 6.C.1.

Proof. Denote Wn = S
(λn)
q1 . . . S

(λn)
qκ T n, with λ, k as given by Theorem 6.B.2 (we

use the notation of 6.B.1). Hence π(Wn) contains the n-ball in G; note that Wn

is contained in the [(2κλ + 1)n + κ]-ball of FS, which itself is contained in the
κ′n-ball, where κ′ = 2κλ+ κ+ 1. A simple observation is that

WnWnWn ⊂ S(λn)
q1

. . . S(λn)
qκ S(λn+n)

q1
. . . S(λn+n)

qκ S(λn+2n)
q1

. . . S(λn+2n)
qκ T 3n;

in particular, setting λ′ = λ + 2, and defining ℘`+pκ = q` for 1 ≤ ` ≤ κ, p ∈
{0, 1, 2}, we have

WnWnWn ∩Ker(π) ⊂ S(λ′n)
℘1

. . . S(λ′n)
℘3κ
∩Ker(π) = U℘(λ′n).
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Thus the assumption implies that words in WnWnWn ∩ Ker(π) have an area
4 f(n). By Theorem 2.E.3, it follows that 〈S | R〉 is a presentation of G and has
a Dehn function 4 f(n). �

6.D. Dehn function of stably 2-tame groups. The following is a reformula-
tion of Theorem D from the introduction.

Theorem 6.D.1. Let G = U o A be a stably 2-tame standard solvable group
(see Definition 4.C.1). Then G has a linear or quadratic Dehn function (linear
precisely when A has rank one).

Remark 6.D.2. Theorem 6.D.1 is actually a corollary of Theorem 10.E.1, be-
cause for a stably 2-tame group, we have H2(u)0 = 0 and Kill(u)0 = 0 (because
both are subquotients of (u⊗u)0 which is itself trivial if u is stably 2-tame). The
point is that Theorem 10.E.1 is considerably more difficult, since it relies on the
work of §7.B and the algebraic work of §8 and §9.

Proof of Theorem 6.D.1. If A has rank one, then G is tame and thus hyperbolic,
see Remark 6.A.9, and thus has a linear Dehn function. Otherwise, A being a
retract of G, the Dehn function has a quadratic lower bound.

Now let us prove the quadratic upper bound.
We prove the quadratic upper bound by arguing by induction on the length `

of u as a K-module. If ` ≤ 2, then G is tame, hence has an at most quadratic
Dehn function.

Assume now that ` ≥ 2 and the result is proved for lesser `.
In order to apply Theorem 6.C.1, we first need to choose a suitable admissible

family of tame subgroups. Let P be the (finite) set of principal weights, that is,
the set of weights of u/[u, u]. Given a principal weight α; define u[α] =

⊕
t>0 utα;

this is a graded Lie algebra (beware that uα need not be a Lie subalgebra). Let
α1, . . . , αµ be representatives of the principal weights modulo positive collinearity;
write U[αi] = exp(u[αi]). Then we choose U[α1], . . . , U[αµ] as admissible family of
tame subgroups, and we let S1, . . . Sν be finite generating subsets of the U[αi]’s
satisfying the conditions of §6.B. We let β ≥ 1 be an integer such that for

all n ≥ 1, S
(n)
1 S

(n)
1 ⊂ S

(βn)
1 (the existence of β follows from the second part of

Theorem 6.B.2 applied to U[α1] o A, for the admissible family {U[α1]}).
Let v be the sum of [u, u] and all uβ when β ranges over all weights not positively

collinear to α1; then v is a graded ideal. Note that u = u[α1] + v. Define V =
exp(v).

Let V1, . . . , Vν be the standard tame subgroups of V and denote by Σi a compact
subset of Vi (with all the previous requirements we made for Si).

Fix k ≥ 1, ℘ ∈ {1, . . . , µ}k. For positive integers n1, . . . , nk, consider an

element w in FS belonging to S
(n1)
℘1 . . . S

(nk)
℘k , we do the following: if there are any

two consecutive occurrences of S1, we glue them using the inclusion S
(n)
1 S

(m)
1 ⊂

S
(βmax(m,n))
1 in G. The cost of this is at most quadratic since it lies in the tame
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subgroup U[α1] o A. If not, we consider i maximal such that ℘i = 1. If i = 1
or i does not exist, say we are done. Otherwise j = ℘i−1 6= 1. We first observe

that S
(nj)
j S

(ni)
1 is contained in S

(ni)
j S

(nj)
1 ((S

(nj)
j , S

(ni)
1 )) (inclusion in FS). Then α1

and αj belong to a single standard tame subgroup, and hence the commutator
belongs to a single standard tame subgroup of V oA. So the commutator can be
rewritten in V o A, thanks to the second part of Theorem 6.B.2, as an element

of Σ
(c(n1+n2))
q1 . . .Σ

(c(n1+n2))
qκ , where c and κ only depend on G. We note that doing

this, we make some generators in
⋃

Σi appear, but they stay at the right of any
occurrence of S1. Therefore we can reiterate some bounded number of times (say

≤ k2) until we obtain a word w1w2 with |w2| ≤ c′n (n =
∑
ni), w1 ∈ S

(c′n)
1 ,

and w2 a word in
⋃
i≥2 Si ∪

⋃
i Σi ∪ T . In particular, assuming that w represents

the trivial element in G, w1 represents an element of V . There exists a standard
tame subgroup of U containing U[α1]; then its intersection with V is a standard

tame subgroup, say V1. So w1 can be replaced with some element w′1 of Σc′′n
1 with

quadratic cost since the word w−1
1 w′1 lies in a tame subgroup of G. So from w we

passed with quadratic cost to a word in V of length ≤ C|w|. Since by induction
V has an at most quadratic Dehn function, we deduce that w has an at most
quadratic area with respect to n.

Since this works for every ℘ (with constants possibly depending on ℘), we
can apply Theorem 6.C.1 to conclude that G has an at most quadratic Dehn
function. �

6.E. Generalized tame groups.

Definition 6.E.1. A locally compact group is generalized tame if it has a semidi-
rect product decomposition U o N where some element c of N acts on U as a
compaction, and N is nilpotent and compactly generated.

Thus, the assumption that N is abelian in tame groups is relaxed to nilpotent.
If G = U o N is a tame generalized standard solvable group it is tempting

to believe that, in a way analogous to §6.A, there is a large-scale Lipschitz de-
formation retraction of G onto N . However, the proof only carries over when
the element c of N acting as a compaction of N can be chosen to be central in
N . Unfortunately, this can not always be assumed and, in order to get an upper
bound on the Dehn function, we need a more complicated approach.

Theorem 6.E.2 (The generalized tame case). Consider a generalized standard
solvable group G = U o N such that there exists c ∈ N acting on U as a com-
paction. Let δN be the Dehn function of N , and let f be a function such that
δN 4 f and r 7→ f(r)/rα is non-decreasing for some α > 1.

Then the Dehn function δG of G satisfies δN 4 δG 4 f . In particular, if f can
be chosen to be ≈-equivalent to the Dehn function of N , then δG ≈ δN .

Note that in all examples we are aware of, we can indeed choose f to be ≈-
equivalent to δN , such that r 7→ f(r)/r2 is non-decreasing (unless N admits Z as
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a lattice, in which case G is tame and has a linear Dehn function). In general, we
can always fix α > 1 and consider the function r 7→ f(r) = rα sup1≤s≤r s

−αδN(s).

Remark 6.E.3. Theorem 6.E.2 has some similarity with a theorem of Varopoulos
[Var00, Main theorem, p. 57] concerning connected Lie groups. Namely, for
a simply connected Lie group of the form U o N with U,N simply connected
nilpotent Lie groups such that N contains an element acting as a contraction on
N , he proves that there exists a “polynomially Lipschitz” homotopy from the
identity of G to its projection on N .

To prove the theorem, we need the following lemma, whose proof is much more
complicated than we could expect at first sight (see Remark 6.E.6).

Lemma 6.E.4. Relations of the form swt, where s and t belong to SU and where
w is a word of length ' n in SN have area 4 δN(n).

Proof. For the sake of readability, we first consider the (easier) case when N is
2-nilpotent.

Denote j = in, where i is an integer to be determined latter in the proof, but
that will only depend on G and S (hence is to be considered as bounded).

Up to conjugating by a power of c, it is enough to evaluate the area of the
relation swc

j
tc
j
. Since conjugation by c is a contraction (see Definition 4.B.4), it

turns out that tc
j

= u−1 ∈ SU . It is straightforward to check that the relation
tc
j
u has area � j. Hence we are left to consider the relation swc

j
u.

Denoting y = ((w, cn)) = w−1c−nwcn, we have

(6.E.5) wcj = cjw((w, cj)) = cjyi.

Moreover the area of the relation ((w, cj))y−i is controlled by the Dehn function
of N , so we are reduced to compute the area of

(sc
j

)wy
i

u.

Denote Na the Zariski closure of the range of N in Aut(U). The algebraic group
Na decomposes as a direct product AV where A (resp. V ) is semisimple (resp.
unipotent). Let us write c = cdcv and w = wdwv according to this decomposition.
Endow the Lie algebra of U with some norm. The crucial observation is that
y = ((w, cn)) = ((wv, c

n
v )). It follows that the matrix norm of y (acting on the Lie

algebra of U) is at most CnD for some C,D depending only on G and S.
Let K > 1 be a constant such that the matrix norm of every subword of wy is

at most Kn. Let z be a prefix of wyi: it is of the form ryk, where r is a subword
of wy, and k ≤ i. The matrix norm of z is therefore at most CinDKn.

Since c acts as a contraction, one can choose i be such that the matrix norm of
ci is less than K−2. Hence the matrix norm of cjz is less than CinDK−n which
is bounded by some function of i, C,D and K. It follows that for any prefix r
of cjwyi has bounded matrix norm. Let aq for q = 1, 2, . . . be the sequence of
letters of the word cjwyi, and let zq = a1 . . . aq. It follows that the elements szq
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are bounded in U . Now let t−1
q be words in SU of bounded length representing

the elements szq . We conclude by reducing successively the relations (tq−1)aqtq
whose area are bounded. This solves the case where N is 2-nilpotent.

If N is not assumed to be 2-nilpotent, then the relation ((a, bi)) = ((a, b))i does
not hold anymore. Therefore we cannot simply replace ((w, cj)) by ((w, cn))i, as
we did above. We shall use instead a more complicated formula, namely the
one given by Lemma 5.B.2. According to that lemma, one can write ((w, cj)) as
a product of m iterated commutators (or their inverses) in the letters w±1 and
c±n. The rest of the proof is then identical to the 2-nilpotent case, replacing in
the previous proof, the power of commutators yi = ((w, cn))i by this product of
(iterated) commutators. �

Remark 6.E.6. Lemma 6.E.4 is not as trite as it may look at first sight, and
fails when N is not nilpotent. For instance, consider the free group F2 = 〈s, t〉,
and the semidirect product U o F2, where U ' R is written as N = {(ux)x∈R}
is written multiplicatively, sxs−1 = x2 for all x ∈ N and [t, N ] = 1. Write
mn = s−ntsn. Then mnv1m

−1
n v−1

1 can be shown to have an exponential area.

Lemma 6.E.7. Consider a semidirect product of groups G = U o N ; let c be
an element of N and Ω a symmetric subset of U such that ΩΩ ⊂ c−1Ωc and⋃
n≥0 c

−nΩcn = U . Let T be a symmetric generating subset of N containing

{1, c}, such that
⋃
t∈T tΩt

−1 ⊂ c−1Ωc. Then S = Ω ∪ T generates G and Sn ⊂
(c−2nΩc2n)T n ⊂ S5n+1.

Proof. It is immediate that S generates G. By an immediate induction, we have
Ω2k ⊂ c−kΩck. In particular, Ωn ⊂ c−dlog2 neΩcdlog2 ne.

Consider a word w of length n in S. Then it can be rewritten as
(∏n

i=1 tiωit
−1
i

)
t,

where each ti and t belong to T n and each ωi belong to Ω. Thus, in G, we have

Sn ⊂ (c−nΩcn)nT n = c−nΩncnT n

⊂ c−n−dlog2 neΩcn+dlog2 neT n ⊂ c−2nΩc2nT n ⊂ S5n+1 �

Proof of Theorem 6.E.2. Since N is a Lipschitz retract of G, we have δN 4 δG;
let us prove that δG 4 f .

We pick the 1-element family (U1), where U1, as an admissible family of sub-
groups; we let S1 be a stable vacuum subset for some element c ∈ T acting as a
compaction on U .

We first bound (assuming c ∈ T ) the area of relations of length ≤ n, of the
form w =

(∏3
i=1 c

−niωic
ni
)
w′ with ωi ∈ Ω and w′ a word in T (necessarily

ni ≤ n). Since w′ is a relation in N , with cost ≤ f(n), we can replace w′ with
the trivial word. Then after conjugation by cn, we are reduced to the word∏3

i=1 c
n−niωic

ni−n. The element cn−niωic
ni−n represents an element si ∈ Ω, and

by Lemma 6.E.4, the cost to pass from cn−niωic
ni−n to si is 4 f(n). Hence the

area of w is 4 f(n).
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We can apply Lemma 6.E.7 (if necessary, replace c with a large power ck of it
and replace T with T ∪ {c±k} for its hypotheses to be fulfilled. Thanks to the
length estimates of Lemma 6.E.7, we can use Gromov’s trick (Theorem 2.E.3) to
conclude that the Dehn function of G is � f . �

We also need a generalization of Theorem 6.B.2. We define an admissible
family of subgroups as in 6.B (A being replaced with N), and let T be a compact
symmetric generating subset of N . Since the proof of the following theorem is an
immediate adaptation of that of Theorem 6.B.2, we omit the proof.

Theorem 6.E.8. Fix a generalized standard solvable group G, an admissible
family of tame subgroups and generating subset as above. There exists a constant
λ > 0, a positive integer κ and a κ-tuple (q1, . . . , qκ) of elements in {1, . . . , ν} such

that for every n, the n-ball of G is contained in the projection π
(
S

(λn)
q1 . . . S

(λn)
qκ T n

)
.
�

7. Estimates of areas using algebraic presentations

In this section, we provide a new method allowing to obtain upper bounds on
the Dehn function of groups with “enough algebraic structure”.

The basic idea is to consider a group G given by an “algebraic presentation”,
that is, it is isomorphic to the quotient of a free product∗νi=1 Ui(K) of algebraic
groups Ui over some locally compact field K (or, more generally, a finite product
of such fields), by the subgroup generated by finitely many “algebraic families
of relators”. An algebraic family of relators is an algebraic subvariety of some
Ui1 × · · · ×Ui` , where (i1, ..., i`) is a fixed sequence of integers from 1, .., ν, which
is interpreted as a set of words of length ` of the free product.

In order to get estimates, we need to suppose that G itself is of the form G(K),
and assume that the above presentation holds in a very strong sense. Namely,
we need to assume that for every commutative K-algebra A, the group G(A) is
the quotient of ∗νi=1 Ui(A) by the relators (evaluated in A).

Our main result consists in controlling the size and word length of a set of
relations that belong to a same algebraic family. More precisely, consider some
algebraic family M of relations: namely a subvariety of some Uj1 × · · · × Ujk

such that for every K-algebra A, the A-points of this variety are mapped to the
neutral element of GA. Then there exists an integer N such that every element
x = (x1, . . . , xk) of M can be written as a word of length at most N in∗νi=1 Ui(A)
consisting of a product of conjugates of relators. Moreover the norms of the letters
of this word are polynomially controlled by the norms of the xi’s.

7.A. Affine norm on varieties over normed fields.

7.A.1. Norms. In this paragraph, let (K, | · |) be a normed field. The affine space
Ad(K) = Kd is endowed with the sup norm ‖ · ‖.
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Let X be an affine K-variety with basepoint x0 (a fixed element of X(K)).
For every d and every pointed closed K-embedding φ : X → Ad (pointed means
mapping x0 to 0), we can define a “length function” on X(K) by

`φ(x) = ‖φ(x)‖.

The following proposition asserts that up to polynomial distortion, this length is
unique.

Proposition 7.A.1. Let φ, ψ be two choices of pointed embeddings. Then for
some positive constants C, c > 0,

`ψ(x) ≤ C max(`φ(x)c, 1), ∀x ∈ X(K)

Proof. If the embeddings are into Ad and Ad′ , with say d′ ≤ d, using that the
trivial embedding Ad′(K) ⊂ Ad is isometric, we can enlarge d′ to assume that
d = d′. Now consider the isomorphism η = ψ ◦ φ−1 : φ(X) → ψ(X). Then η
extends to a regular map η1 : Ad → Ad: indeed, first view η as a regular map
φ(X) → Ad, which is the same as the data of d regular maps φ(X) → A1 and
remind that regular maps on φ(X) are by definition restrictions of regular maps of
the affine space. Then, viewing Ad embedded into A2d as the left factor Ad×{0},
we can extend η to a K-automorphism

η̃ : A2d → A2d

(x, y) 7→ (η1(x) + y, x)

Now if c is the total degree of η̃, there exist a positive constant C such that for
all u ∈ A2d(K) we have

‖η̃(u)‖ ≤ C max(‖u‖c, 1);

therefore for all x ∈ X(K) we have

`ψ(x) = ‖ψ(x)‖ = ‖η ◦ φ(x)‖ ≤ C max(‖φ(x)‖, 1) = C max(`ψ(x)c, 1). �

Note that the analogue for distances is not true: for instance if we take the
disjoint union of two lines K× {0, 1}, setting φ(x, t) = (x, t) (two parallel lines)
and ψ(x, t) = (x, tx2) (a line and a parabola), then considering the sequence of
pairs of points (n, 0) and (n, 1) we see that ‖ψ(x)− ψ(y)‖ cannot be bounded in
terms of ‖φ(x)− φ(y)‖.

Example 7.A.2. Assume that K has characteristic zero. Let U be a unipotent
group over K. Given an embedding ψ of U as a Zariski-closed subgroup of SLd,
and fixing a norm on the algebra of matrices, we obtain two norms on U : the
one given by this embedding, and the one given by the embedding ψ̄ of the Lie
algebra u into sld, pulled back to U through the exponential. Each of these two
norms on U is polynomially bounded by the other, by Proposition 7.A.1.
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Remark 7.A.3. We can define the logarithmic length on X(K) associated to φ
as

Lφ(x) = log(1 + `φ(x)).

As a consequence of Proposition 7.A.1, for any two choices ψ and φ, we have
Lψ ' Lφ, i.e. there exist positive constants c ≥ 1 and C ≥ 0 such that

c−1Lφ(x)− C ≤ Lψ(x) ≤ cLφ(x) + C, ∀x ∈ X(K).

7.A.2. Ring of polynomial growth functions. Let K be a normed field. Endow
K with the supremum norm and consider the algebra PY = PY (K) of functions
from Y ×R≥0 to K that have most polynomial growth with respect to the real
variable, uniformly in Y , that is, satisfying

∃c, α > 0, c′ ∈ R, ∀t ≥ 0, ∀y ∈ Y, ‖f(y, t)‖ ≤ ctα + c′.

Lemma 7.A.4. Let Y be a set. Then for any K-affine variety X, there are
canonical bijections

X(KY )
∼→ X(K)Y , X(PY (K))

∼→ PY (X(K))

Proof. The first equality is formal: if A = K[X], then, Hom being in the category
of K-algebras, we have

X(KY ) = Hom(K[X],KY ) = Hom(K[X],K)Y = X(K)Y .

Given a K-closed embedding of X into the d-dimensional affine space, it is just
given by the function Ad(KY )→ Ad(K)Y

(f1, . . . , fd)
Φ7→
(
y 7→ (f1(y), . . . , fd(y))

)
.

Then Φ(X(KY )) = X(K)Y and Φ(Ad(PY (K))) = PY (Ad(K)), and hence

PY (X(K)) = X(K)Y ∩ PY (Ad(K))

= Φ(X(KY ) ∩ Ad(PY (K))) = Φ(X(PY (K))). �

7.A.3. Remark. All the results from this §7.A immediately to the case of X(K)
when K is a finite product of normed fields (endowed with the sup norm). The
only difference lies in the language: K-affine variety should be replaced with:
affine scheme of finite type over K; if K =

∏k
j=1 Kj, this is just the data of one

Kj-affine variety over Kj for each j.

7.B. Area of words of bounded combinatorial length.



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 67

7.B.1. The setting: generators (*). By K we mean a finite product of normed
fields (in a first reading, we can assume it is a single normed field). We recall
the reader familiar with varieties but not schemes that it is not much here: over
a single field, “scheme of finite type” can be thought of as “variety” and “affine
group scheme of finite type” as “linear algebraic group”. Over a finite product∏

Kj of fields, the datum of a scheme is just the datum of one scheme over each
of the fields Kj. Nevertheless, we stick to the word “scheme” because it is the
only rigorous setting in which the assertions we state are precise.

Let U1, . . . ,Uν be affine K-group schemes of finite type. Write Ui = Ui(K).
We need to introduce some “norm function” on each Ui. For this, as explained

in §7.A, we fix a closed K-embedding of Ui into SLq, so that the norm, written
‖u‖, of any element u of Ui makes sense (using the operator norm on q × q
matrices, where Kq is endowed with the sup norm).

7.B.2. The setting: relators (**). We are going to introduce some functors X from
the category of commutative (associative unital) K-algebras to the category of
sets, denoted by A 7→ X[A], we use brackets rather than parentheses to emphasize
that these objects are possibly not representable by a scheme.

We need to consider words of some given length whose letters belong to the
disjoint union of the Ui. To do so, we fix integers 1 ≤ ω1, . . . , ω|ω| ≤ ν. Hence we

can consider the product Uω =
∏|ω|

`=1 Uω` . Thus

Uω(A) =

|ω|∏
`=1

Uω`(A)

is an obvious way to parameterize the set of words uω1 . . . uω|ω| with uω` ∈ Uω`(A)
for all `.

We are going to consider closed subschemes of Uω, which can then be used to
parameterize sets of words. Formally, this is done as follows. Let H[A] be the
free product ∗νi=1 Ui(A). There is an obvious product map

πωA : Uω(A)→ H[A], (u1, . . . , u|ω|) 7→ u1 . . . u|ω|.

Now fix finitely many closed subschemes R1, . . . ,Rξ ⊂ Uω (they will play the
role of algebraically parameterized relators). For convenience, write R[A] =
R1(A) ∪ · · · ∪ Rξ(A) for any K-algebra A (if K were a field, it would be rep-
resentable by a closed subscheme and we could then assume ξ = 1; anyway this
is not an issue); clearly the πωA together define a map πA : R[A]→ H[A].

Define Q[A] as the quotient of H[A] by the normal subgroup generated by
πA(R[A]). Informally, Q is a group generated by algebraic generators and alge-
braic sets of relators. A priori, Q is not representable by a group scheme over K
(for instance, if R is empty, Q[A] is the free product H[A]).
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7.B.3. A family of relations (***). Now given an integer c ≥ 0 and a c-tuple
℘ = (℘1, . . . , ℘c) of integers in {1, . . . , ν}, so we have the product

U℘(A) =
c∏
i=1

U℘i(A)

and we define

L℘[A] = {(f1, . . . , fc) ∈ U℘(A) : f1 . . . fc ≡ 1 in Q[A]} .

(It should rather be denoted LR,℘[A]) but since R is fixed we omit it in the nota-
tion.) In other words, denoting by N[A] the normal subgroup of H[A] generated
by R[A], we have L℘[A] = (π℘A)−1(N[A]).

We cannot a priori represent L℘ as a K-closed subscheme of U℘. We obtain
results in case it turns out to be a closed subscheme, or more generally when it
contains a K-closed subscheme. Namely, let M ⊂ U℘ be a K-closed subscheme
and assume that it is contained in L℘, in the sense that for every (reduced) com-
mutative K-algebra A we have M(A) ⊂ L℘[A] (equality as subsets of U℘(A)). Also
assume that the unit element of U℘(K) belongs to M(K) (this is no restriction
since it belongs to L℘[K]).

Define V[A] as the union of all Uj(A) in H[A].
The following lemma roughly says that any element x = (x1, . . . , xc) ∈ M(K)

can be written as a product of boundedly many conjugates of relators whose
coefficients are controlled by polynomials in the size of x.

Lemma 7.B.1. Fix U1, . . . ,Uν as in (*), ω and R as in (**). Given any ℘
and any family M of relations as in (***), there exist positive integers m,µ, α
satisfying the following: for all x = (x1, . . . , xc) ∈M(K), there exist

• elements ρk`(x) ∈ Uω`(K), 1 ≤ k ≤ m, 1 ≤ ` ≤ |ω|, such that setting

ρ̃k(x) = (ρk1(x), . . . , ρk|ω|(x)) ∈

 |ω|∏
`=1

Uω`

 (K),

we have ρ̃k(x) ∈ R[K] for every k;
• elements hk`(x) in V[K], 1 ≤ k ≤ m, 1 ≤ ` ≤ µ,

satisfying the inequalities

‖hk`(x)‖, ‖ρk`(x)‖ ≤ (2 + ‖x‖)α − 2, ∀k, `;

and such that, setting

ρk(x) = πK(ρ̃k(x)) =

|ω|∏
`=1

ρk`(x), hk(x) =

µ∏
`=1

hk`(x),
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we have the equality in H[K]:

(7.B.2) x1 . . . xc =
m∏
k=1

hk(x)ρk(x)hk(x)−1.

Remark 7.B.3. That for every x we can write an equality as in (7.B.2) follows
directly from the fact that M(K) ⊂ L℘[K], but this gives such an equality with
m,µ depending on x, and with an efficient upper bound on the norm of relators
and conjugating elements. Lemma 7.B.1 is a uniform version of this fact, and
relies on the stronger inclusion M(A) ⊂ L℘[A] for some well-chosen K-algebra A.
While a suitable choice of A would be the algebra Kexp (as in the sketch of proof
of §1.7), we find more convenient to work with the algebra PY (K) introduced in
§7.A.2. The difference is unessential, and especially allows us to avoid to argue
by contradiction as we did in §1.7.

Proof of Lemma 7.B.1. Let us fix an abstract set Y ; we will assume that its
cardinal is at least equal to that of K. The ring PY (K) (§7.A.2) can be described
as the set of functions Y ×R≥0 → K satisfying

∃α > 0, ∀t ≥ 0, ∀y ∈ Y, ‖f(y, t)‖ ≤ (2 + t)α − 2.

For any affine K-scheme X of finite type (with a given embedding in an affine
space), X(K) inherits of a norm and the set PY (X(K)) is well-defined. There is
an obvious inclusion L℘[PY (K)] ⊂ PY [L℘(K)]. It is not necessarily an equality
(see Example 7.B.8); however the equality M(PY (K)) = PY (M(K)) holds (see
Lemma 7.A.4).

For x ∈ U℘(K), recall that ‖x‖ = max1≤i≤c ‖xi‖. Now assume that Y is infinite
of cardinal at least equal to that of K. We claim that there exists a function

f = (f1, . . . , fc) : (Y ×R≥0)→M(K)

satisfying

(a) ‖f(y, t)‖ ≤ t for all (y, t) ∈ Y ×R≥0;
(b) for every x = (x1, . . . , xc) ∈ M(K), there exists y ∈ Y such that f(y, ‖x‖) =

x.

To construct such an f , consider an arbitrary injective map x 7→ y(x) from U℘(K)
to Y (it exists because of the cardinality assumption on Y ); for each x ∈M(K),
define f(y(x), ‖x‖) = x and define f(y, t) = 1 for every (y, t) not of the form
(y(x), ‖x‖), where 1 here denotes the unit element (1, . . . , 1) of U℘(K), which
belongs to M(K) by assumption. By construction, f takes values in M(K). By
(a), f ∈ PY (M(K)).

Hence f ∈M(PY (K)) = M(P), where write P = PY (K) as a shorthand. So, by
the inclusion M(P) ⊂ L℘(P), we have f ∈ L℘(P). Hence π℘P(f) = f1 . . . fc ∈ H[P]
belongs to the normal subgroup generated by πωP(R[P]). This means that there
exist

• integers m,µ;
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• ρk` ∈ Ui`(P), 1 ≤ k ≤ m, 1 ≤ ` ≤ |ω|, such that setting ρ̃k = (ρk1, . . . , ρk|ω|) ∈
Uω(P), we have ρ̃k ∈ R[P] for every k;
• elements hk` in V[P], 1 ≤ k ≤ m, 1 ≤ ` ≤ µ,

such that, setting

ρk = πP(ρ̃k) =

|ω|∏
`=1

ρk`, hk =

µ∏
`=1

hk`,

we have, in H[P], the equality

(7.B.4) f1 . . . fc =
m∏
k=1

hkρkh
−1
k .

Hence for all y ∈ Y and t ∈ R≥0, we have the equality in H[K]

f1(y, t) . . . fc(y, t) =
m∏
k=1

hk(y, t)ρk(y, t)hk(y, t)
−1,

where ρk(y, t) =
∏µ

`=1 ρk`(y, t) and hk(y, t) =
∏µ

`=1 hk`(y, t). Since each of the
elements ρk`, hk` belongs to some Ui(P), there exists α > 0 such that for all k, `
and all y, t, we have

‖ρk`(y, t)‖ ≤ (2 + t)α − 2, ‖hk`(y, t)‖ ≤ (2 + t)α − 2.

Hence for all x = (x1, . . . , xc) ∈ M(K), choosing one y = y(x) satisfying (b)
and t = ‖x‖, and using the shorthands

ρk`(x) = ρk`(y(x), ‖x‖), hk`(x) = hk`(y(x), ‖x‖),

ρk(x) = ρk(y(x), ‖x‖) =

µ∏
`=1

ρk`(x), hk(x) = hk(y(x), ‖x‖) =

µ∏
`=1

hk`(x),

we precisely obtain that the norms of both ρk`(x) and hk`(x) is bounded above
by (2 + ‖x‖)α − 2 and that the equality (7.B.2) holds in H[K]. �

7.B.4. Generating subsets and presentations (****). Keep the previous setting
(with Ui,R given). Assume that we have, in addition, a group H, subgroups
H1, . . . , Hν generating H, and homomorphisms ψi : Ui → Hi (in the examples
we have in mind, all ψi are given as inclusions). We assume that the resulting
homomorphism H[K] → H is trivial on R[K], or equivalently factors through
Q[K].

Let 〈Si | Πi〉 be a presentation of Hi. We suppose that for each i and for every
x ∈ Ui, the word length of ψi(x) with respect to the generating subset Si of Hi

is ' log(1 + ‖x‖). For x ∈ Ui, fix a representing word x in Si of ψi(x), of size
' log(1 + ‖x‖).

Assume in addition the following:

• all presentations 〈Si | Πi〉 have Dehn function bounded above by some
superadditive function δ1;
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• there is a subset R ⊂ R[K] and a function δ2 such that for every r =
(r1, . . . , r|ω|) ∈ R[K], the area of r1 . . . r|ω| with respect to 〈

⊔
i Si |

⊔
i Πi ∪

R〉 is finite and ≤ δ2(max
|ω|
`=1 |r`|Si).

7.B.5. The fundamental theorem.

Theorem 7.B.5. In the above setting (*),(**), (****), and given a family of
relations as in (***), there exist constants s, s′,m > 0 such that for every x =
(x1, . . . , xc) ∈ M(K), denoting n = maxi |xi|Si, the area of x1 . . . xc with respect
to 〈
⊔
i Si |

⊔
i Πi ∪R〉 is ≤ δ1(sn) +mδ2(s′n).

Proof. Fix x as above. As in Lemma 7.B.1, write the equality in H[K]

(7.B.6) x1 . . . xc =
m∏
k=1

hk(x)ρk(x)hk(x)−1

(with all the additional features of the statement of the lemma).
Defining [x] = log(2 + ‖x‖) and similarly [u] = log(2 + ‖u‖) for any i and

u ∈ Ui(K), the upper bounds on ‖hk`(x)‖ and ‖ρk`(x)‖ provided by the lemma
can be rewritten as

[hk`(x)], [ρk`(x)] ≤ α[x].

Define S =
⊔
Si. Write ρ̂k(x) =

∏|ω|
`=1 ρk`(x) and ĥk(x) =

∏µ
`=1 hk`(x). Define

the word in the free group over S

w = (x1 . . . xc)
−1

m∏
k=1

ĥk(x)ρ̂k(x)ĥk(x)−1

Hence, by (7.B.6), the image of w in H[K] is trivial.
Denoting by | · | the word length in H[K] with respect to S. By assumption,

there exist γ, ζ ≥ 1 such that for every i and u ∈ Ui(K), we have ζ−1[u] ≤ |u|Si ≤
γ[u]; in particular |u| ≤ γ[u]. Also define n = maxci=1 |xi|S℘i . Hence

n ≥ ζ−1 max
i

[xi] ≥ ζ−1[x]

and

|w| ≤
c∑
i=1

|xi|+
m∑
k=1

 |ω|∑
`=1

|ρk`(x)|+ 2

µ∑
`=1

|hk`(x)|


≤γ

 c∑
i=1

[xi] +
m∑
k=1

 |ω|∑
`=1

[ρk`(x)] + 2

µ∑
`=1

[hk`(x)]


≤γ(c+mα(|ω|+ 2µ))[x] ≤ sn,

where s = ζγ(c+mα(|ω|+ 2µ)).
By Lemma 2.D.1 (Dehn function of free products of presentations), the area

of w with respect to 〈
⊔
Si |

⊔
Πi〉 is ≤ δ1(sn).
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We have, by definition of w:

x1 . . . xc =

(
m∏
k=1

ĥk(x)ρ̂k(x)ĥk(x)−1

)
w−1;

the area of ρ̂k(x) with respect to the presentation P = 〈
⋃
Si |

⋃
Πi ∪R〉 is

≤ δ2

(
|ω|

max
`=1
|ρk`(x)|Si

)
≤ δ2

(
|ω|

max
`=1

γ[ρk`(x)]

)
≤ δ2(γα[x]) ≤ δ2(γαζn)

so the area of
∏m

k=1 ĥ(x)ρ̂k(x)ĥk(x)−1 with respect to the presentation P is

≤ mδ2(γαζn).

Therefore the area of x1 . . . xc with respect to P is

≤ δ1(sn) +mδ2(γαζn). �

7.B.6. Restatement of the theorem involving a group word. Let Fc be the free
group on the generators t1, . . . , tc. We say that w ∈ Fc is essential if all ti appear
in the reduced form of w (possibly with a negative exponent). We call the word
t1 . . . tc, which is essential, the tautological word; denote it by τ .

Let w be an essential word in Fc′ , of length c (necessarily c ≥ c′ if w is essential).
Let ℘′ be a c′-tuple of elements of {1, . . . , ν}.
Write w as a reduced word, namely w = w1 . . . wc with wi ∈ {tj, t−1

j , 1 ≤ j ≤
c′}; if wi = t±1

j , we write W (i) = j and w[i] = ±1.
Let us define a c-tuple ℘ = w•℘′ of elements in {1, . . . , ν}: for 1 ≤ i ≤ c, write

℘i = j if wi ∈ {tj, t−1
j }. For instance τ • ℘′ = ℘′; another less trivial example is

w(t1, t2, t3) = t2t
−2
1 t3t

−1
2 , ℘′ = (5, 6, 3) ⇒ w • ℘′ = (6, 5, 5, 3, 6).

Define (w • U℘′)(A) as

{(u1, . . . , uc) ∈ U℘(A) : ∀j ∈ {1, . . . , c′},∀k, ` ∈ W−1({j}), uw[k]
k = u

w[`]
` }.

Thus w • U℘′ is a closed subscheme of U℘. In the above example, we have

(w • U℘′)(A) = {(u6, u5, u5, u3, u
−1
6 ) | (u3, u5, u6) ∈ (U3 × U5 × U6)(A)}.

When w is essential, we have an isomorphism φw of schemes U℘′ → w • U℘′ ,
defined on U℘′(A) by

φw(u1, . . . , uc′) = (u
w[1]
W (1), . . . , u

w[c]
W (c))

Note that φτ is the identity. If M′ is a closed subscheme of U℘′ , we define
w •M′ = φw(M); this is a closed subscheme of w • U℘′ .

The following theorem seems to be a generalization of Theorem 7.B.5 (namely
when w = t1 . . . tc), but is actually a simple consequence. It will be useful to refer
to it.

Let ℘ be a c-tuple of elements in {1, . . . , ν}. If w ∈ Fc, denote by Lw℘ [A] the
set of (x1, . . . , xc) ∈ U℘(A) such that w(x1, . . . , xc) equals 1 in Q[A].
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Theorem 7.B.7. In the above setting (*),(**), (****), let c′ be a positive integer
and ℘′ a c′-tuple of elements of {1, . . . , ν}. Let M′ be a closed subscheme of U℘′

and let w be an essential word in Fc′, such that M′(A) ⊂ Lw℘′ [A] for all A.
Then there exist constants s, s′,m > 0 such that for every x = (x1, . . . , xc′) ∈

M′(K), denoting n = maxi |xi|Si, the area of w(x1, . . . , xc′) with respect to 〈
⋃
Si |⋃

Πi ∪R〉 is ≤ δ1(sn) +mδ2(s′n).

Proof. Define ℘ = w • ℘′ and M = w •M′ as above.
Thus π℘A(M(A)) is precisely the set elements of the form w(x1, . . . , xc′) ∈ H[A]

with (x1, . . . , xc′) ∈ M′(A). In particular, M(A) ⊂ Lw℘ [A]. Hence M satisfies the
assumption of (***) and Theorem 7.B.5 can be applied. �

Example 7.B.8. Here is an example in which the inclusion L℘[KY ] ⊂ L℘[K]Y

is strict. We choose K = R, ν = 1, and U1(A) = A for every A (so U1 is
the 1-dimensional unipotent group. We choose R = R1 to be the singleton {1}
(formally, R(A) = {1} ⊂ A). Hence Q(A) is equal to A/Z1A, and for ℘ = {1},
we have L℘[A] = Z1A. In particular, the inclusion L℘[KY ] ⊂ L℘[K]Y is proper
as soon as Y contains two distinct elements. Anyway this example is not really
serious because assuming that R is a subscheme containing 0 (which could easily
be arranged), we would have L℘[KY ] = L℘[K]Y for every finite Y , and the serious
issue is when Y is infinite. Indeed, now defining R = R1 as equal to {0, 1}
(namely R = Spec(R[t]/(t2 − t))), we have R(A) equal to the set of idempotents
in A, and hence L℘[A] is the additive subgroup of A generated by idempotents.
In particular, L℘[RY ] is equal to the set of bounded functions Y → Z, while
L℘[R]Y is equal to the set of all functions Y → Z, which differs from the former
if Y is infinite. The inclusion L℘[PY (R)] ⊂ PY (L℘(R)) is also proper, since then
L℘[PY (R)] is equal to the set of bounded functions Y → Z, while PY (L℘(R)) is
equal to the set of all functions Y → Z of at most polynomial growth, uniformly
in Y .

8. Central extensions of graded Lie algebras

This section contains results on central extensions of graded Lie algebras, which
will be needed in Section 9. Let Q ⊂ K be fields of characteristic zero (for
instance, Q = Q and K is a nondiscrete locally compact field). To any graded
Lie algebra, we associate a central extension in degree zero, which we call its
“blow-up”, whose study will be needed in Section 9. We are then led to following
problem: given a Lie algebra g over K, we need to compare the homologies HK

2 (g)

and HQ
2 (g) of g viewed as a Lie algebra over K and as a Lie algebra over Q by

restriction of scalars. When g is defined over Q, i.e. g = K⊗Q l, this problem has
been tackled in several papers [KL82, NW08]. Here most of the work is carried
out over an arbitrary commutative ring; this generality will be needed as we need
to apply the results over suitable rings of functions.
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8.A. Basic conventions. The following conventions will be used throughout
this chapter. The letter R denotes an arbitrary commutative ring (associative
with unit). Unless explicitly stated, modules, Lie algebras are over the ring R
and are not assumed to be finitely generated. The reader is advised not to read
this part linearly but rather refer to it when necessary.

Gradings. We fix an abelian group W , called the weight space. By graded mod-
ule, we mean an R-module V endowed with a grading, namely an R-module
decomposition as a direct sum

V =
⊕
α∈W

Vα.

Elements of Vα are called homogeneous elements of weight α. An R-module
homomorphism f : V → W between graded R-modules is graded if f(Vα) ⊂ Wα

for all α. If V is a graded module and V ′ is a subspace, it is a graded submodule
if it is generated by homogeneous elements, in which case it is naturally graded
and so is the quotient V/V ′. By the weights of V we generally mean the subset
WV ⊂ W consisting of α ∈ W such that Vα 6= {0}. We use the notation

VO =
⊕
α 6=0

Vα.

By graded Lie algebra we mean a Lie algebra g endowed with an R-module
grading g =

⊕
gα such that [gα, gβ] ⊂ gα+β for all α, β ∈ W .

Tensor products. If V,W are modules, the tensor product V ⊗W = V ⊗R W is
defined in the usual way. The symmetric product V }V is obtained by modding
out by the R-linear span of all v ⊗ w − w ⊗ v and the exterior product V ∧ V is
obtained by modding out by the R-linear span of all v⊗w+w⊗v (or equivalently
all v⊗v if 2 is invertible in R). More generally the nth exterior product V ∧· · ·∧V
is obtained by modding out the nth tensor product V ⊗ . . . ⊗ V by all tensors
v1⊗ · · · ⊗ vn +w1⊗ · · · ⊗wn, whenever for some 1 ≤ i 6= j ≤ n, we have wi = vj,
wj = vi and wk = vk for all k 6= i, j.

IfW1,W2 are submodules of V , we will sometimes denote byW1∧W2 (resp.W1}
W2) the image of W1 ⊗W2 in V ∧ V (resp. V } V ). In case W1 = W2 = W ,
the latter map factors through a module homomorphism W ∧ W → V ∧ V
(resp. W }W → V } V ), and this convention is consistent when this homomor-
phism is injective, for instance when W is a direct factor of V .

If V,W are graded then V ⊗W is also graded by

(V ⊗W )α =
⊕

{(β,γ):β+γ=α}

Vβ ⊗Wγ.
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When V = W , we see that V ∧ V and V } V are quotients of V ⊗ V by graded
submodules and are therefore naturally graded; for instance ifW has no 2-torsion

(V ∧ V )0 = (V0 ∧ V0)⊕

 ⊕
α∈(W−{0})/±

Vα ⊗ V−α

 .

Homology of Lie algebras. Let g be a Lie algebra (always over the commutative
ring R). We consider the complex of R-modules

· · · g ∧ g ∧ g ∧ g
d4−→ g ∧ g ∧ g

d3−→ g ∧ g
d2−→ g

d1−→ 0

given by

d2(x1, x2) = −[x1, x2]

d3(x1, x2, x3) = x1 ∧ [x2, x3] + x2 ∧ [x3, x1] + x3 ∧ [x1, x2]

and more generally the boundary map

dn(x1, . . . , xn) =
∑

1≤i≤j≤n

(−1)i+j[xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn;

and define the second homology group H2(g) = Z2(g)/B2(g), where Z2(g) =
Ker(d2) is the set of 2-cycles and B2(g) = Im(d3) is the set of 2-boundaries.
(We will focus on di for i ≤ 3 although the map d4 will play a minor computational
role in the sequel. This is of course part of the more general definition of the nth
homology module Hn(g) = Ker(dn)/Im(dn+1), which we will not consider.) If
A → R is a homomorphism of commutative rings, then g is a Lie A-algebra by
restriction of scalars, and its 2-homology as a Lie A-algebra is denoted by HA

2 (g).
If g is a graded Lie algebra, then the maps di are graded as well, so H2(g) is
naturally a graded R-module.

Iterated brackets. In a Lie algebra, we define the n-fold bracket as the usual
bracket for n = 2 and by induction for n ≥ 3 as

[x1, . . . , xn] = [x1, [x2, . . . , xn]].

Central series and nilpotency. Define the lower central series of the Lie algebra
g by g1 = g and gi+1 = [g, gi] for i ≥ 1. We say that g is s-nilpotent if
gs+1 = {0}.

8.A.1. The Hopf bracket. Consider a central extension of Lie algebras

0→ z→ g
p→ h→ 0.

Since z is central, the bracket g ∧ g→ g factors through an R-module homomor-
phism B : h ∧ h → g, called the Hopf bracket. It is unique for the property
that B(p(x)∧ p(y)) = [x, y] for all x, y ∈ g (uniqueness immediately follows from
surjectivity of g ∧ g→ h ∧ h).

Lemma 8.A.1. For all x, y, z, t ∈ h we have B([x, y]∧[z, t]) = [B(x∧y), B(z∧t)].
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Proof. Observe that if x̄, ȳ are lifts of x and y then B(x ∧ y) = [x̄, ȳ], and that
[x̄, ȳ] is a lift of [x, y]. In view of this, observe that both terms are equal to
[[x̄, ȳ], [z̄, t̄]]. �

8.A.2. 1-tameness.

Definition 8.A.2. We say that a Lie algebra g is 1-tame if it is generated by
gO =

⊕
α 6=0 gα.

Lemma 8.A.3. Let g be a graded Lie algebra. Then g is 1-tame if and only if
we have g0 =

∑
β[gβ, g−β], where β ranges over nonzero weights.

Proof. One direction is trivial. Conversely, if g is 1-tame, then g0 is generated
as an abelian group by elements of the form x = [x1, . . . , xk] with k ≥ 2 and xi
homogeneous of nonzero weight. So x = [x1, y] with y = [x2, . . . , xk] ∈ gO and
x1 ∈ gO. �

Lemma 8.A.4. Let g be a graded Lie algebra. Then the ideal generated by gO
coincides with the Lie subalgebra generated by gO and in particular is 1-tame.

Proof. Let h be the subalgebra generated by gO; it is enough to check that h is
an ideal, and it is thus enough to check that [g0, h] ⊂ h. Set h1 = gO and hd =
[gO, hd−1], so that h =

∑
d≥1 hd. It is therefore enough to check that [g0, hd] ⊂ hd

for all d ≥ 1. This is done by induction. The case d = 1 is clear. If d ≥ 2, x ∈ g0,
y ∈ gO, z ∈ hd−1, then using the induction hypothesis

[x, [y, z]] = [y, [x, z]]− [[y, x], z] ∈ [gO, hd−1] ⊂ hd

and we are done. �

We use this to obtain the following result, which will be used in Section 11.

Lemma 8.A.5. Let g be a graded Lie algebra with lower central series (gi), and
assume that g0 is s-nilpotent. Then gs+1 is contained in the subalgebra generated
by gO. In particular, if g0 is nilpotent and g∞ =

⋂
gi, then g∞ is contained in

the subalgebra generated by gO.

Proof. By Lemma 8.A.4, it is enough to check that gs+1 is contained in the ideal
j generated by gO. It is sufficient to show that gs+1 ∩ g0 ⊂ j. Each element x of
gs+1∩g0 can be written as a sum of nonzero (s+1)-fold brackets of homogeneous
elements. Each of those brackets involves at least one element of nonzero degree,
since otherwise all its entries would be contained in g0 and it would vanish. So x
belongs to the ideal generated by gO. �

8.B. The blow-up.

Definition 8.B.1. Let g be an arbitrary graded Lie R-algebra (the grading being
in the abelian group W). Define the blow-up graded algebra g̃ as follows. As a
graded R-module, g̃α = gα for all α 6= 0, and g̃0 = (g ∧ g)0/d3(g ∧ g ∧ g)0.
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Define a graded R-module homomorphism τ : g̃→ g by τ(x) = x if x ∈ g̃O and
τ(x ∧ y) = [x, y] if x ∧ y ∈ g̃0 (which of course factors through 2-boundaries).

Let us define the Lie algebra structure [·, ·]′ on g̃. Suppose that x ∈ g̃α, y ∈ g̃β.

• if α + β 6= 0, define [x, y]′ = [τ(x), τ(y)];
• if α + β = 0, define [x, y]′ = τ(x) ∧ τ(y).

Lemma 8.B.2. With the above bracket, g̃ is a Lie algebra and τ is a Lie algebra
homomorphism, whose kernel is central and naturally isomorphic to H2(g)0. Its
image is the ideal gO + [g, g] of g.

Proof. Let us first check that τ is a homomorphism (of non-associative algebras).
Let x, y ∈ g̃ have weight α and β. In each case, we apply the definition of [·, ·]′
and then of τ . If α + β 6= 0

τ([x, y]′) = τ([τ(x), τ(y)]) = [τ(x), τ(y)];

if α + β = 0 then

τ([x, y]′) = τ(τ(x) ∧ τ(y)) = [τ(x), τ(y)].

By linearity, we deduce that τ is a homomorphism. Since τα is an isomorphism
for α 6= 0 and τ0 = −d2, the kernel of τ is equal by definition to H2(g)0. Moreover,
by definition the bracket [x, y]′ only depends on τ(x)⊗ τ(y), and it immediately
follows that Ker(τ) is central in g̃.

Let us check that the bracket is a Lie algebra bracket; the antisymmetry being
clear, we have to check the Jacobi identity. Take x ∈ g̃α, y ∈ g̃β, z ∈ g̃γ. From
the definition above, we obtain

• if α + β + γ 6= 0, [x, [y, z]′]′ = [τ(x), [τ(y), τ(z)]];
• if α + β + γ = 0, [x, [y, z]′]′ = τ(x) ∧ [τ(y), τ(z)]

(the careful verification involves discussing on whether or not β + γ is zero).
Therefore, the Jacobi identity for (x, y, z) immediately follows from that of g in
the first case, and from the fact we killed 2-boundaries in the second case.

We have τ(g̃O) = gO and τ(g̃0) = [g, g]0. Therefore the image of τ is equal to
gO + [g, g]. The latter is an ideal, since it contains [g, g]. �

Definition 8.B.3. We say that a graded Lie algebra g is relatively perfect in
degree zero if it satisfies one of the following (obviously) equivalent definitions

(a) 0 is not a weight of g/[g, g];
(b) g0 ⊂ [g, g];
(c) g = gO + [g, g];
(d) g̃→ g is surjective (in view of Lemma 8.B.2).
(e) g is generated by gO + [g0, g0];

Note that if g is 1-tame, then it is relatively perfect in degree zero, but the
converse is not true, as shows the example of a nontrivial perfect Lie algebra
with grading concentrated in degree zero. The interest of this notion is that it is
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satisfied by a wealth of graded Lie algebras that are very far from perfect (e.g.,
nilpotent).

Theorem 8.B.4. Let g be a graded Lie algebra. If g is relatively perfect in degree
zero (e.g., g is 1-tame), then the blow-up g̃

τ→ g is a graded central extension with
kernel in degree zero, and is universal among such central extensions. That is,

for every surjective graded Lie algebra homomorphism h
p→ g with central kernel

z = z0, there exists a unique graded Lie algebra homomorphism φ : g̃→ h so that
the composite map g̃→ h→ g coincides with the natural projection.

Proof. By Lemma 8.B.2, g̃→ g is a central extension with kernel in degree zero.
Denote by Bh : g ∧ g→ h the Hopf bracket associated to h→ g (see §8.A).

Let us show uniqueness in the universal property. Clearly, φ is determined on
g̃O. So we have to check that φ is also determined on [g̃, g̃]. Observe that the map
g̃ ∧ g̃→ h, x ∧ y 7→ φ([x, y]) = [φ(x), φ(y)] factors through a map w : g ∧ g→ h,
so w(τ(x) ∧ τ(y)) = [φ(x), φ(y)] for all x, y ∈ g̃. Since p ◦ φ = τ and since h is
generated by the image of φ and by its central ideal Ker(p), we deduce that for
all x, y ∈ h, we have w(p(x) ∧ p(y)) = [x, y]. By the uniqueness property of the
Hopf bracket (see §8.A), we deduce that w = Bh. So for all x, y ∈ g̃, φ([x, y]) is
uniquely determined as Bh(τ(x) ∧ τ(y)).

Now to prove the existence, define φ : g̃→ h to be p−1 on g̃O, and φ(x ∧ y) =
Bh(x∧ y) if x∧ y ∈ g̃0. It is clear that φ is a graded module homomorphism and
that p ◦ φ = τ . Let us show that φ is a Lie algebra homomorphism, i.e. that the
graded module homomorphism σ : g̃ ∧ g̃ → h, (x ∧ y) 7→ φ([x, y]′) − [φ(x), φ(y)]
vanishes. Since p◦φ is a homomorphism and pO is bijective, we have (p◦σ)O = 0,
so it is enough to check that σ vanishes in degree 0. If x and y have nonzero
opposite weights, noting that p ◦ φ is the identity on gO,

φ([x, y]′) = φ(x ∧ y) = Bh(x ∧ y) = [p−1(x), p−1(y)] = [φ(x), φ(y)].

If x ∧ y and z ∧ t belong to g̃0 = (g ∧ g)0, then, using Lemma 8.A.1, we have

φ([x ∧ y, z ∧ t]′) =φ([x, y] ∧ [z, t]) = Bh([x, y] ∧ [z, t])

=[Bh(x ∧ y), Bh(z ∧ t)] = [φ(x ∧ y), φ(z ∧ t)].
By linearity, we deduce that σ0 = 0 and therefore φ is a Lie algebra homomor-
phism. �

Corollary 8.B.5. If g is relatively perfect in degree zero then ˜̃g = g̃.

Proof. Observe that ˜̃g→ g has kernel z concentrated in degree zero, so it imme-
diately follows that [z, gO] = 0. We need to show that z is central in ˜̃g. Since

g = [g, g] + gO, it is enough to show that [z, [˜̃g, ˜̃g]] = {0}. By the Jacobi identity,

[z, [˜̃g, ˜̃g]] ⊂ [˜̃g, [z, ˜̃g]]. Now since g̃ → g has a central kernel, [z, ˜̃g] is contained in

the kernel of ˜̃g→ g̃, which is central in ˜̃g. So [˜̃g, [z, ˜̃g]] = {0}. Thus z is central in
˜̃g. The universal property of g̃ then implies that ˜̃g→ g̃ is an isomorphism. �
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Remark 8.B.6. There is an immediate generalization of this blow-up construc-
tion, where we replace {0} by an arbitrary subset X ⊂ W , defining g̃α to be equal
to gα if α /∈ X and to (Λ2g/d3(Λ3g))α if α ∈ X . Then immediate adaptations of
Lemma 8.B.2, Theorem 8.B.4 and its corollary hold, with essentially no change
in the proofs. (Definition 8.B.3 is valid replacing g0 with gX =

∑
α∈X gα and gO

with gWrX , except that we have to remove (the analogue of) Condition (e) of
Definition 8.B.3. Nevertheless, under the assumption that that no weight in X is
the sum of a weight X and of a weight inWrX , Condition (e) is still equivalent;
in particular this works if X is a subgroup of W and in particular for X = {0}.
Otherwise, the reader can find examples with gradings in {0, 1} and X = {1},
where the first four conditions hold but not (e).)

Lemma 8.B.7. Let g be a graded Lie algebra and g̃ its blow-up. If g is 1-tame,
then so is g̃.

Proof. Suppose that g is 1-tame. Then by linearity, it is enough to check that for
every x ∈ g0 and u, v of nonzero opposite weights, the element x ∧ [u, v] belongs
to [g̃O, g̃O]. This is the case since modulo 2-boundaries, this element is equal to
u ∧ [x, v] + v ∧ [u, x] ∈ (gO ∧ gO)0. �

Lemma 8.B.8. Let gi be finitely many graded Lie algebras (all graded in the same
abelian group) and g̃i their blow-up. If g =

∏
gi satisfies the assumption that

g/[g, g] has no opposite weights, then the natural homomorphism
∏̃

gi →
∏

g̃i is
an isomorphism. Equivalently, H2(

∏
i gi)0 →

⊕
H2(gi)0 is an isomorphism.

Proof. For each i, there are homomorphisms gi →
∏

gj → gi, whose composition
is the identity, and hence H2(gi)0 → H2(

∏
gj)0 → H2(gi)0, whose composition is

the identity again. So we obtain homomorphisms⊕
H2(gi)0 → H2

(∏
gi

)
0
→
⊕

H2(gi)0,

whose composition is the identity. To finish the proof, we have to check that⊕
H2(gi)0 → H2(

∏
gi)0 is surjective, or equivalently that in Z2(

∏
gi)0, every

element x is the sum of an element in
⊕

i Z2(gi)0 and a boundary. Now observe
that

Z2

(∏
gi

)
0

=
⊕

Z2(gi)0 ⊕
⊕
i<j

(gi ∧ gj)0.

So we have to prove that for i 6= j, gi ∧ gj consists of boundaries. Given an
element x ∧ y (x ∈ gi, y ∈ gj homogeneous), the assumption on g/[g, g] implies
that, for instance, y is a sum

∑
k[zk, wk] of commutators. Projecting if necessary

into gj, we can suppose that all zk and wk belong to gj. So

x ∧ y = x ∧
∑
k

[zk, wk] =
∑
k

d3(x ∧ zk ∧ wk). �
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8.C. Homology and restriction of scalars. We now deal with two commuta-
tive rings A,B coming with a ring homomorphism A → B (we avoid using R as
the previous results will be used both with R = A and R = B). If g is a graded Lie
algebra over B, it can then be viewed as a graded Lie algebra over A by restriction
of scalars. This affects the definition of the blow-up. There is an obvious surjec-
tive graded Lie algebra homomorphism g̃A → g̃B. The purpose of this part is to
describe the kernel of this homomorphism (or equivalently of the homomorphism
HA

2 (g)0 → HB
2 (g)0), and to characterize, under suitable assumptions, when it is

an isomorphism.
Our main object of study is the following kernel.

Definition 8.C.1. If g is a Lie algebra over B, we define the welding module
WA,B

2 (g) as the kernel of the natural homomorphism HA
2 (g)→ HB

2 (g), or equiva-
lently of the homomorphism (g∧A g)/BA

2 (g)→ (g∧B g)/BB
2 (g). If g is graded, it

is a graded module as well, and WA,B
2 (g)0 then also coincides with the kernel of

g̃A → g̃B.

The following module will also play an important role.

Definition 8.C.2. If g is a Lie algebra over B, define its Killing module Kill(g) (or
KillB(g) if the base ring need be specified) as the cokernel of the homomorphism

T : g⊗ g⊗ g → g} g

u⊗ v ⊗ w 7→ u} [v, w] + v } [u,w].

If g is graded, it is graded as well.

Note that we can also write T (u⊗w⊗ v) = [u, v]}w−u} [v, w], and thus we
see that the set of B-linear homomorphisms from Kill(g) to any B-module M is
naturally identified to the set of the so-called invariant bilinear maps g×g→M .

Lemma 8.C.3. Let v be a B-module. Then the kernel of the natural surjective
A-module homomorphism v⊗A v→ v⊗B v is generated, as an abelian group, by
elements

(8.C.4) λx⊗A y − x⊗A λy

with λ ∈ B, x, y ∈ v. The same holds with ⊗ replaced by } or ∧.

Proof. Endow v ⊗A v with a structure of a B-module, using the structure of B-
module of the left-hand v, namely λ(x⊗ y) = (λx⊗ y) if λ ∈ B, x, y ∈ v.

Let W be the subgroup generated by elements of the form (8.C.4); it is clearly
an A-submodule, and is actually a B-submodule as well. The natural A-module
surjective homomorphism φ : (v ⊗A v)/W → v ⊗B v is B-linear. To show it is a
bijection, we observe that by the universal property of v⊗Bv, we have a B-module
homomorphism ψ : v⊗B v→ (v⊗A v)/W mapping x⊗B y to x⊗A y modulo W .
Clearly, ψ and φ are inverse to each other.
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Let us deal with ∧, the case of } being similar. The group v∧A v is defined as
the quotient of v ⊗A v by symmetric tensors (i.e. by the subgroup generated by
elements of the form x⊗ y+ y⊗ x), and the group v∧B v is defined the quotient
of v⊗B v by symmetric tensors. By the case of ⊗, this means that v ∧B v is the
quotient of v⊗A v by the subgroup generated by symmetric tensors and elements
(8.C.4). This implies that that v ∧B v is the quotient of v ∧A v by the subgroup
generated by elements (8.C.4) (with ⊗ replaced by ∧) �

Proposition 8.C.5. For any Lie algebra g over B, the A-module homomorphism

Φ : B⊗A g⊗A g → WA,B
2 (g)

λ⊗ x⊗ y 7→ λx ∧ y − x ∧ λy

is surjective. If g is graded and is 1-tame, then Φ0 : B⊗A (g⊗A g)0 → WA,B
2 (g)0

is surjective in restriction to B⊗ (gO ⊗ gO)0.

Proof. The group (g ∧A g)/BA
2 (g) is defined as the quotient of g ∧A g by 2-

boundaries, and (g ∧B g)/BB
2 (g) is the quotient of g ∧B g by 2-boundaries, or

equivalently, by Lemma 8.C.3, is the quotient of g ∧A g by 2-boundaries and
elements of the form

(8.C.6) λx ∧A y − x ∧A λy.

It follows that the kernel of (g ∧A g)/BA
2 (g) → (g ∧B g)/BB

2 (g) is generated by
elements of the form (8.C.6), proving the surjectivity of Φ.

For the additional statement, define W ′ = Φ(B⊗ (gO⊗gO))0. We have to show
that any element λx∧A y− x∧A λy as in (8.C.6) with x, y of zero weight belongs
to W ′. By linearity and Lemma 8.A.3, we can suppose that y = [z, w] with z, w
of nonzero opposite weight. So, modulo boundaries,

λx ∧ [w, z]− x ∧ λ[w, z] =− w ∧ [z, λx]− z ∧ [λx,w]− x ∧ λ[w, z]

=− w ∧ λ[z, x] + λw ∧ [z, x],

which belongs to W ′. �

Proposition 8.C.7. Let g be a Lie algebra over B. Then the map

Φ : B⊗A g⊗A g→ WA,B
2 (g)

of Proposition 8.C.5 factors through the natural projection

B⊗A g⊗A g→ B⊗A KillA(g);

moreover in restriction to B ⊗A g ⊗A [g, g], it factors through B ⊗A KillB(g). In
particular, if g is graded and relatively perfect in degree 0 (e.g., 1-tame), then Φ0

factors through B⊗A KillB(g).

Proof. All ⊗, ∧, } are meant over A.
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Write Φλ(x⊗ y) = Φ(λ⊗ x⊗ y). It is immediate that Φλ(y ⊗ x) = Φλ(x⊗ y)
(even before modding out by 2-boundaries), and thus Φλ factors through g } g.
Let us now check that Φλ factors through KillA(g). Modulo 2-boundaries:

Φλ(x} [y, z]− y } [z, x]) =λx ∧ [y, z]− x ∧ λ[y, z]

− λy ∧ [z, x] + y ∧ λ[z, x]

=− z ∧ [λx, y] + z ∧ [x, λy] = 0.

For the last statement, by Lemma 8.C.3, we have to show that Φλ(µx} [y, z]) =
Φλ(x } µ[y, z]) for all x, y, z ∈ g and µ ∈ B. Indeed, using the latter vanishing
we get

Φλ(µx} [y, z]) = Φλ(y } [z, µx]) = Φλ(y } [µz, x]) = Φλ(x} [y, µz]). �

In turn, we obtain, as an immediate consequence:

Corollary 8.C.8. Let g be a graded Lie algebra over B; assume that g is relatively
perfect in degree 0. If KillB(g)0 = {0} then WA,B

2 (g)0 = {0}.

Proof. By Propositions 8.C.5 and 8.C.7, Φ0 induces a surjection B⊗A Kill(g)B0 →
WA,B

2 (g)0. �

Under the additional assumptions that A = Q is a field of characteristic 6= 2
and g is defined over Q, i.e. has the form l ⊗Q B for some Lie algebra l over
Q, Corollary 8.C.8 easy follows from [NW08, Theorem 3.4]. We are essentially
concerned with finite-dimensional Lie algebras g over a field K of characteristic
zero (K playing the role of B) and A = Q, but nevertheless in general we cannot
assume that g be defined over Q.

We will also use the more specific application.

Corollary 8.C.9. Assume that A = Q and B = K =
∏τ

j=1 Kj is a finite product
of locally compact fields Kj, each isomorphic to R or some Qp. Let BKj

be the
closed unit ball in Kj. Assume that g is finite-dimensional over K, that is, g =∏

j gj with gj finite-dimensional over Kj. Suppose that g is 1-tame and g/[g, g]
has no opposite weights. For every j and weight α, let Vj,α be a neighbourhood of

0 in gj,α = (gj)α. Then the welding module W2(g)Q,K = Ker
(
H2(g)Q0 → H2(g)K0

)
is generated by elements of the form Φ(λ ⊗ x ⊗ y) with λ ∈ BKj

and x ∈ Vj,α,
y ∈ Vj,−α, where α ranges over nonzero weights and j = 1, . . . , τ .

Proof. By Proposition 8.C.5, WA,B
2 (g) is generated by elements of the form Φ(λ′⊗

x′ ⊗ y′), with λ′ ∈ K and x′, y′ ∈ g are homogeneous of nonzero opposite weight.
By linearity and Lemma 8.B.8, these elements for which

(λ′, x′, y′) ∈
⋃
j

⋃
α 6=0

Kj × gj,α × gj,−α

are enough. Given such an element (λ′, x′, y′) ∈ Kj × gj,α × gj,−α, using that
Kj = Q + BKj

, write λ′ = ε + λ with ε ∈ Q and λ ∈ BK. Also, since gj,±α =
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QVj,±α, write x′ = µx and y′ = γy with µ, γ ∈ Q, x ∈ Vj,α, y ∈ Vj,−α. Clearly,
by the definition of Φ, we have Φ(ε⊗ x′ ⊗ y′) = 0, so

Φ(λ′ ⊗ x′ ⊗ y′) = Φ(λ⊗ µx⊗ γy) = µγΦ(λ⊗ x⊗ y),

and Φ(λ⊗ x⊗ y) is of the required form. �

8.C.1. Construction of 2-cycles. We now turn to a partial converse to Corollary
8.C.8.

Define HCA
1 (B) (or HC1(B) if A is implicit) as the quotient of B ∧A B by the

A-submodule generated by elements of the form uv ∧w + vw ∧ u+wu ∧ v. This
is the first cyclic homology group of B (which is usually defined in another
manner; we refer to [NW08] for the canonical isomorphism between the two).

Lemma 8.C.10. Assume that K is a field of characteristic zero and Q a subfield.
Suppose that K contains an element t that is transcendental over Q. Assume that
either K has characteristic zero, or K ⊂ Q((t)). Then HCQ

1 (K) 6= {0}. More

precisely, the image of t ∧ t−1 in HCQ
1 (K) is nonzero.

Proof. We denote W by the Q-linear subspace of K ∧QK generated by elements
of the form uv ∧ w + vw ∧ u+ wu ∧ v.

Let us begin with the case of Q((t)). Define a Q-bilinear map F : Q((t))2 → Q
by

(8.C.11) F
(∑

xit
i,
∑

yjt
j
)

=
∑
k∈Z

kxky−k.

Observe that the latter sum is finitely supported. (In Q[t, t−1], the above map
appears in the definition of the defining 2-cocycle of affine Lie algebras, see
[Fu].) We see that F is alternating by a straightforward computation, and that
F (t, t−1) = 1. Setting f(x ∧ y) = F (x, y), if x =

∑
xit

i, etc., we have

f(xy ∧ z) =
∑
k∈Z

k(xy)kz−k

=
∑
k∈Z

k
∑
i+j=k

xiyjz−k

=−
∑

i+j+k=0

kxiyjzk;

thus
f(xy ∧ z + yz ∧ x+ zx ∧ y) = −

∑
i+j+k=0

(k + i+ j)xiyjzk = 0.

Hence f factors through a Q-linear map from HCQ
1 (Q((t)))→ Q mapping t ∧ t−1

to 1. The proof is thus complete if K ⊂ Q((t)).
Now assume that K has characteristic zero; let us show that t ∧ t−1 has a

nontrivial image in HC1(K). Since K has characteristic zero, the above definition
(8.C.11) immediately extends to the field Q((t−∞)) =

⋃
n>0Q((t1/n)) of Puiseux
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series and hence t ∧ t−1 has a nontrivial image in HCQ
1 (Q((t−∞))) for every field

Q of characteristic zero.
To prove the general result, let (uj)j∈J be a transcendence basis of K over

Q(t). Replacing Q by Q(tj : j ∈ J) if necessary, we can suppose that K is

algebraic over Q(t). Let Q̂ be an algebraic closure of Q. By the Newton-Puiseux

Theorem, Q̂((t−∞)) is algebraically closed. By the Steinitz Theorem, there exists a

Q(t)-embedding of K into L = Q̂((t−∞)). This induces a Q-linear homomorphism

HCQ
1 (K)→ HCQ

1 (L) mapping the class of t∧t−1 in HCQ
1 (K) to the class of t∧t−1

in HCQ
1 (L); the latter is mapped in turn to the class t ∧ t−1 in HCQ̂

1 (L), which is

nonzero. So the class of t ∧ t−1 in HCQ
1 (K) is nonzero. �

Theorem 8.C.12. Let g be a Lie algebra over B, which is defined over A, i.e.
g ' B⊗A gA for some Lie algebra gA over A. Consider the homomorphism

ϕ : (g ∧A g)/BA
2 (g) → M = HCA

1 (B)⊗KillA(gA)

(λ⊗ x) ∧ (µ⊗ y) 7→ (λ ∧ µ)⊗ (x} y).

Then ϕ is well-defined and surjective, and ϕ(WA,B
2 (g)) = 2M . In particular, if 2

is invertible in A, gA is a graded Lie algebra and M0 = HC1(B)⊗Kill(gA)0 6= {0},
then WA,B

2 (g)0 6= {0}.

The above map ϕ was considered in [NW08], for similar motivations. Assuming
that A is a field of characteristic zero, the methods in [NW08] can provide a more
precise description (as the cokernel of an explicit homomorphism) of the kernel

WA,B
2 (g) = Ker(HA

2 (g) → HB
2 (g)). Since we do not need this description and in

order not to introduce further notation, we do not include it.

Proof of Theorem 8.C.12. Let us first view ϕ as defined on g∧Ag. The surjectivity
is trivial. By Proposition 8.C.5 (with grading concentrated in degree 0), we see

that WA,B
2 (g) is generated by elements of the form λx∧µy−µx∧λy with x, y ∈ gA

(we omit the ⊗ signs, which can here be thought of as scalar multiplication); the
image by ϕ of such an element is 2(λ∧µ)(x}y), which belongs to 2M . Conversely,
since 2M is generated by elements of the form 2(λ ∧ µ)(x } y), we deduce that

ϕ(WA,B
2 (g)) = 2M .

Let us check that ϕ vanishes on 2-boundaries (so that it is well-defined on
g ∧A g modulo 2-boundaries):

ϕ(tx ∧ [uy, vz]) = (t ∧ uv)⊗ (x} [y, z]);

ϕ(uy ∧ [vz, tx]) = (u ∧ vt)⊗ (y } [z, x]) = (u ∧ vt)⊗ (x} [y, z]);

ϕ(vz ∧ [tx, uy]) = (v ∧ tu)⊗ (z } [x, y]) = (v ∧ tu)⊗ (x} [y, z])

and since t∧ uv + u∧ vt+ v ∧ tu = 0 in HC1(A), the sum of these three terms is
zero.

The last statement clearly follows. �
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8.C.2. The characterization. Using all results established in the preceding para-
graphs, we obtain

Theorem 8.C.13. Let g be a finite-dimensional graded Lie algebra over a field
K of characteristic zero, assume that g/[g, g] has no opposite weights. Let Q be
a subfield of K, so that K has infinite transcendence degree over Q. We have
equivalences

• WQ,K
2 (g)0 = {0} (i.e., HQ

2 (g)0 → HK
2 (g)0 is an isomorphism);

• KillK(g)0 = {0}.
Corollary 8.C.14. Under the same assumptions, we have equivalences

• HQ
2 (g)0 = {0} (i.e. the blow-up g̃→ g is an isomorphism);

• HK
2 (g)0 = KillK(g)0 = {0}. �

The interest is that in both the theorem and the corollary, the first condition is
a problem of linear algebra in infinite dimension, while the second is linear algebra
in finite dimension (not involving Q) and is therefore directly computable in terms
of the structure constants of g.

Proof of Theorem 8.C.13. Suppose that KillK(g)0 = 0. By Corollary 8.C.8, the

induced homomorphism HQ
2 (g)0 → H2(g)0 is bijective.

Conversely, suppose that KillK(g)0 6= 0. Since g is finite-dimensional over K,
there exists a subfield L ⊂ K, finitely generated over Q, such that g is defined
over L, i.e. we can write g = gL ⊗L K. Obviously, KillK(g) = KillL(gL) ⊗L K,
so KillL(gL) 6= 0. Let (x }L y) be the representative of a nonzero element in
KillL(gL). Let λ be an element of K, transcendental over L. By Lemma 8.C.10,
the element λ ∧ λ−1 has a nontrivial image in HCL

1 (K). By Theorem 8.C.12
(applied with (A,B) = (L,K)), we deduce that

cL = λx ∧L λ−1y − λ−1x ∧L λy
is not a 2-boundary, i.e. is nonzero in HL

2 (g)0. In particular the element cQ
(written as cL with ∧Q instead of ∧L) is nonzero in HK

2 (g)0 since its image in
HL

2 (g) is cL, while its image cK in g ∧K g and hence in HK
2 (g)0 is obviously

zero. �

8.D. Auxiliary descriptions of H2(g)0 and Kill(g)0. We now prove the result
including Theorem J as a particular case. In this subsection, all Lie algebras are
over a fixed commutative ring R.

Definition 8.D.1. Let g be a graded Lie algebra. We say that g is doubly
1-tame if for every α we have g0 =

∑
β/∈{0,α,−α}[gβ, g−β].

In view of Lemma 8.A.3, doubly 1-tame implies 1-tame, and the reader can
easily find counterexamples to the converse. This definition will be motivated in
Section 9, because it is a consequence of 2-tameness (Lemma 9.B.1(1)), which
will be introduced therein.

The purpose of this subsection is to provide descriptions of H2(g)0 and Kill(g)0.
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8.D.1. The tame 2-homology module. Let us begin with the trivial observation
that if α+β+ γ = 0 and α, β, γ 6= 0, then α+β, β+ γ, γ+α 6= 0. It follows that
d3 maps (gO ∧ gO ∧ gO) into gO ∧ gO. Define the tame 2-homology module

HO2 (g)0 = (Ker(d2) ∩ (gO ∧ gO)0)/d3(gO ∧ gO ∧ gO)0.

We are going to prove the following result.

Theorem 8.D.2. Let g be a graded Lie algebra. The natural homomorphism
HO2 (g)0 → H2(g)0 induced by the inclusion (gO ∧ gO)0 → (g ∧ g)0 is surjective if
g is 1-tame, and is an isomorphism if g is doubly 1-tame.

Remark 8.D.3. In Abels’ second group (§1.5.4), (g ∧ g)0 and (g ∧ g ∧ g)0 have
dimension 4 and 5, while (gO ∧ gO)0 and (gO ∧ gO ∧ gO)0 have dimension 3 and
2. Thus, we see that the computation of HO2 (g)0 is in practice easier than the
computation of H2(g)0.

Lemma 8.D.4. Let g be any graded Lie algebra. If g is 1-tame, then

(1) g0 ∧ g0 ⊂ Im(d3) + (gO ∧ gO)0;

(2) g0 ∧ g0 ∧ g0 ⊂ Im(d4) + g0 ∧ (gO ∧ gO)0;

Proof. Observe that (1) is a restatement of Lemma 8.B.7.
The second assertion is similar: if u, v have nonzero opposite weights and

x, y ∈ g0, then, modulo Im(d4), the element x ∧ y ∧ [u, v] is equal to

y ∧ u ∧ [v, x]− [x, y] ∧ u ∧ v + x ∧ v ∧ [u, y]− y ∧ v ∧ [u, x]− x ∧ u ∧ [v, y],

which belongs to g0 ∧ (gO ∧ gO)0. �

Proposition 8.D.5. Consider the following R-module homomorphism

Φ : gO ⊗ gO ⊗ gO ⊗ gO → (gO ∧ gO)/d3(gO ∧ gO ∧ gO)

u⊗ v ⊗ x⊗ y 7→ x ∧ [y, [u, v]]− y ∧ [x, [u, v]].

If g is doubly 1-tame, then there exists an R-module homomorphism

Ψ : g0 ⊗ g0 → (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0

such that whenever α, β are non-collinear weights, we have

Ψ([x, y]⊗ [u, v]) = Φ(u⊗ v ⊗ x⊗ y), ∀x ∈ gα, y ∈ g−α, u ∈ gβ, v ∈ g−β.

Moreover, Ψ is antisymmetric, i.e. factors through g0 ∧ g0.

Proof. Suppose that α, β are non-collinear weights and that x ∈ gα, y ∈ g−α,
u ∈ gβ, v ∈ g−β. We have d3 ◦ d4(x ∧ y ∧ u ∧ v) = 0. If we write this down in
(gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0, four out of six terms vanish and we get

d3([x, y] ∧ u ∧ v) + d3([u, v] ∧ x ∧ y) = 0,

which expands as

(8.D.6) Φ(u⊗ v ⊗ x⊗ y) + Φ(x⊗ y ⊗ u⊗ v) = 0.
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Define, for w ∈ g0, Ψx,y(w) = x ∧ [y, w]− y ∧ [x,w]. The mapping

(x, y) 7→ Ψx,y ∈ Hom(g0, (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0 )

is bilinear and in particular extends to a homomorphism

σ : (gO ⊗ gO)0 → Hom(g0, (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0 ).

Since g is doubly 1-tame, any w ∈ g0 can be written as
∑

[ui, vi] with ui ∈ gβi ,
vi ∈ g−βi , βi /∈ {0,±α}, so, using (8.D.6)

Ψx,y(w) =
∑
i

Φ(ui ⊗ vi ⊗ x⊗ y)

=−
∑
i

Φ(x⊗ y ⊗ ui ⊗ vi) =
∑
i

Ψui,vi([x, y]).

This shows that σ(x ⊗ y) only depends on [x, y], i.e. we can write σ(x ⊗ y) =
σ′([x, y]). Define, for z, w ∈ g0

Ψ(z ⊗ w) = σ′(z)(w).

By construction, whenever z = [x, y] and w = [u, v], with x ∈ gα, y ∈ g−α,
u ∈ gβ, v ∈ g−β and α, β are not collinear, we have

Ψ([x, y]⊗ [u, v]) = Φ(u⊗ v ⊗ x⊗ y);

from (8.D.6) we see in particular that Ψ is antisymmetric. �

Proof of Theorem 8.D.2. If g is 1-tame, the surjectivity immediately follows from
Lemma 8.D.4(1).

Now to show the injectivity of the map of the theorem, suppose that c ∈
(gO ∧ gO)0 is a 2-boundary and let us show that c belongs to d3(gO ∧ gO ∧ gO)0.
In view of Lemma 8.D.4(2), we already know that c belongs to d3(g ∧ gO ∧ gO)0,
and let us work again modulo d3(gO ∧ gO ∧ gO)0, so that we can suppose that c
belongs to d3(g0∧ (gO∧gO)0), and we wish to check that c = 0. Since g is doubly
1-tame, we can write

c =
∑

d3([ui, vi] ∧ xi ∧ yi)

with xi ∈ gαi , yi ∈ g−αi , ui ∈ gβi , vi ∈ g−βi , αi, βi nonzero and αi 6= ±βi. Write
wi = [ui, vi]. Then

c =

(∑
i

wi ∧ [xi, yi]

)
+

(∑
i

(xi ∧ [yi, wi] + yi ∧ [wi, xi])

)
,

the first term belongs to g0 ∧ g0 and the second to (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0;
since c is assumed to lie in (gO ∧ gO)0 we deduce that

(8.D.7)
∑
i

wi ∧ [xi, yi] = 0
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in g0 ∧ g0. Therefore

c =
∑
i

xi ∧ [yi, wi] + yi ∧ [wi, xi] =
∑
i

Φ(ui ⊗ vi ⊗ xi ⊗ yi).

Now using Proposition 8.D.5 we get

c =
∑
i

Ψ(wi ∧ [xi, yi]) = Ψ

(∑
i

wi ∧ [xi, yi]

)
= 0

again by (8.D.7). �

8.D.2. The tame Killing module.

Definition 8.D.8. Let g be a graded Lie algebra over R. Consider the R-module
homomorphism

T : (g}R g)⊗R g → g}R g

u} v ⊗ w 7→ u} [v, w] + v } [u,w].

By definition, Kill(g) is the cokernel of T . We define KillO(g)0 as the cokernel of
the restriction of T to

((gO } gO)⊗ gO)0 → (gO } gO)0.

Note that T satisfies the identities, for all x, y, z

T (x} y ⊗ z) + T (y } z ⊗ x) + T (z } x⊗ y) = 0.

There is an canonical homomorphism KillO(g)0 → Kill(g)0.

Theorem 8.D.9. Let g be a graded Lie algebra. If g is 1-tame then the homo-
morphism KillO(g)0 → Kill(g)0 is surjective; if g is doubly 1-tame then it is an
isomorphism.

Lemma 8.D.10. Let g be an arbitrary Lie algebra. Then we have the identity

T (w, x, [y, z]) = T ([x, z], w, y)− T ([x, y], w, z)

− T ([w, y], x, z) + T ([w, z], x, y);

Proof. Use the four equalities

T ([x, z], w, y) =w } [[x, z], y] + [x, z]} [w, y],

T ([y, x], w, z) =w } [[y, x], z] + [y, x]} [w, z],

T ([w, z], x, y) =x} [[w, z], y] + [w, z]} [x, y],

T ([y, w], x, z) =x} [[y, w], z] + [y, w]} [x, z];

the sum of the four right-hand terms is, by the Jacobi identity and cancelation
of ([·, ·]} [·, ·])-terms, equal to

−w } [[z, y], x]− x} [[z, y], w] = T (w, x, [z, y]). �

Lemma 8.D.11. Let g be an arbitrary graded Lie algebra.
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• Let α, α′, β, β′ be nonzero weights, with α + β, α + β′, α′ + β, α′ + β′ 6= 0,
and (x, x′, y, y′) ∈ gα× gα′ × gβ × gβ′. Then, modulo T (gO} gO⊗ gO), we
have

T (x, x′, [y, y′]) = 0. (1)

and

T ([x, x′], y, y′) = T ([y, y′], x, x′). (2)

• Let α0, β, γ, γ
′ be weights with β, γ, γ′ 6= 0, α0 /∈ {−γ,−γ′}. For all

w0 ∈ gα0 , x ∈ gβ, y ∈ gγ, y
′ ∈ gγ′ we have

T (w0, x, [y, y
′]) = T ([x, y′], w0, y)− T ([x, y], w0, y

′). (3)

• Let α, α′, β, β′ be nonzero weights with α + α′, β + β′ 6= 0. For all x ∈
gα, x

′ ∈ gα′ , y ∈ gβ, y
′ ∈ gβ′ we have

T (x, y, [x′, y′]) = T ([x, y′], y, x′)− T ([y, x′], x, y′). (4)

Proof. These are immediate from the formula given by Lemma 8.D.10 applied to
(x, x′, y, y′), resp. (x, y, x′, y′), resp. (w0, x, y, y

′), resp. (x, y, x′, y′). �

Lemma 8.D.12. Let g be a doubly 1-tame graded Lie algebra.

• Let α, β, γ be weights with α, β 6= 0 and α + β + γ = 0, and (x, y, z) ∈
gα × gβ × gγ. Then, modulo T (gO } gO ⊗ gO), we have

T (x, y, z) = 0. (1)

• Let α, α′, β, β′ be weights, with α, β 6= 0 and α + α′ + β + β′ = 0, and
(x, x′, y, y′) ∈ gα×gα′×gβ×gβ′. Then, modulo T (gO}gO⊗gO), we have

T ([x, y′], y, x′) = T ([y, x′], x, y′). (2)

Proof. Let us check the first assertion. If γ 6= 0 this is trivial, so assume γ = 0
(so α = −β). Since g is doubly 1-tame, we can write z =

∑
[ui, vi] with ui, vi of

opposite weights, not equal to ±α. Then Lemma 8.D.11(1) applies.
Let us check the second assertion. We begin with two particular cases

• α + β′ 6= 0. Then α′ + β 6= 0 and by (1), modulo T (gO } gO ⊗ gO), both
T ([x, y′], y, x′) and T ([y, x′], x, y′) are zero.
• α+β′ = 0, α+α′ 6= 0. Then α′, β′ are nonzero, so we obtain the assertion

by applying Lemma 8.D.11(4) and then (1) of the current lemma.

Finally, the only remaining case is when (α, β, α′, β′) 6= (α, α,−α,−α), as we
assume now.

To tackle this last case, let us use this to prove first the following: if γ is a
nonzero weight, w0 ∈ g0, z ∈ gγ ,z′ ∈ g−γ, then T (w0, z, z

′) + T (w0, z
′, z) = 0.

Indeed, since g is doubly 1-tame, this reduces by linearity to w0 = [u, u′] with
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u ∈ gδ, u
′ ∈ g−δ and δ /∈ {0,±γ}. So, using twice (2) in one of the cases already

proved, we obtain

T (w0, z, z
′) =T ([u, u′], z, z′)

=T ([z, z′], u, u′)

=− T ([z′, z], u, u′)

=− T ([u, u′], z′, z)

=− T (w0, z
′, z)

Now suppose that (α, β, α′, β′) = (α, α,−α,−α). Then, using the antisymme-
try property above and again using one last time one already known case of (2),
we obtain

T ([x, y′], y, x′) =− T ([x, y′], x′, y)

=− T ([x′, y], x, y′)

= T ([y, x′], x, y′). �

Lemma 8.D.13. Let g be a 1-tame graded Lie algebra. Then

(1) (g} g)0 = T (g} g⊗ g)0 + (gO } gO)0;
(2) T (g} gO ⊗ gO)0 = T (g} g⊗ g)0.

Proof. Suppose that x, y ∈ g0. To show that x } y belongs to the right-hand
term in (1), it suffices by linearity to deal with the case when y = [u, v] with u, v
homogeneous of nonzero opposite weight. Then

x} [u, v] = T (x, u, v)− u} [x, v],

which is the sum of an element in ((g } g) ⊗ g)0 and an element in (gO } gO)0.
So (1) is proved.

Let us prove (2). By linearity, it is enough to prove that any element T (x, y, [u, v]),
where x, y have weight zero and u, v have nonzero opposite weight, belongs to
T (g⊗ gO ⊗ gO)0: the formula in Lemma 8.D.10 expresses T (x, y, [u, v]) as a sum
of four terms in T (g⊗ gO ⊗ gO)0. �

Proposition 8.D.14. Let g be a doubly 1-tame graded Lie algebra. Then

T (g} g⊗ g) ∩ (gO } gO)0 ⊂ T ((gO } gO ⊗ gO)0).

Proof. Fix u, v ∈ nβ, n−β (β 6= 0) and consider the R-module homomorphism

Φu,v : g0 → M = (g} g)0/T ((gO } gO ⊗ gO)0)

w 7→ u} [v, w].

The mapping (u, v) 7→ Φu,v ∈ HomR(g0,M) is bilinear. Therefore it extends to a

mapping s 7→ Φ̂s defined for all s ∈ (gO ⊗ gO)0.
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If s =
∑
xi ⊗ yi ∈ g ∧ g, we write 〈s〉 =

∑
[xi, yi]. Now, for s, s′ ∈ (gO ⊗ gO)0,

define Ψ̂(s⊗ s′) = Φ̂s(〈s′〉) ∈M . In other words,

Ψ̂((u⊗ v)⊗ (x⊗ y)) = u} [v, [x, y]].

We have1

Ψ̂((u⊗ v)⊗ (x⊗ y)) =u} [v, [x, y]]

=− T ([x, y], u, v) + [x, y]} [u, v]

and similarly

Ψ̂((x⊗ y)⊗ (u⊗ v)) = −T ([u, v], x, y) + [u, v]} [x, y],

so

Ψ̂((u⊗ v)⊗ (x⊗ y))− Ψ̂((x⊗ y)⊗ (u⊗ v))

=T ([u, v], x, y)− T ([x, y], u, v) = 0

by Lemma 8.D.12(2). Thus, Ψ̂ is symmetric and we can write Ψ̂(s⊗s′) = Ψ̂(s}s′).
Note that (trivially) Ψ̂(s } s′) = 0 whenever s′ is a 2-cycle (i.e. 〈s′〉 = 0), so by

the symmetry Ψ̂ factors through a map Ψ : g0 } g0 →M such that

Ψ̂(s} s′) = Ψ(〈s〉} 〈s′〉)

for all s, s′ ∈ (gO ∧ gO)0. In other words, we can write

u} [v, [x, y]] = Ψ([u, v]} [x, y]).

Now consider some element in T (g} g⊗ g) ∩ (gO } gO)0. By Lemma 8.D.13,
it can be taken in T (g} gO ⊗ gO). We write it as

τ =
∑
T (xi, yi, zi),

with xi, yi, zi homogenous and yi, zi of nonzero weight. Since we work modulo
T (gO } gO ⊗ gO)0, we can suppose xi is of weight zero for all i, and we have to
prove that τ = 0. So

τ =

(∑
i

xi } [yi, zi]

)
+

(∑
i

yi } [xi, zi]

)
,

the first term belongs to g0 ∧ g0 and the second to the quotient KillO(g)0 of
(gO ∧ gO)0 by T (gO } gO ⊗ gO)0, so

(8.D.15)
∑
i

xi } [yi, zi] = 0.

1Given a map defined on a tensor product such as Ψ, we freely view it as a multilinear map
when it is convenient.
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Now, writing xi =
∑

j[uij, vij] with uij, vij of nonzero opposite weight

τ =
∑
i

yi } [xi, zi]

=
∑
i,j

yi } [zi, [uij, vij]]

=
∑
i,j

Ψ([yi, zi]} [uij, vij])

=
∑
i

Ψ([yi, zi]} xi) = Ψ

(∑
i

[yi, zi]} xi

)
= 0 by (8.D.15). �

Proof of Theorem 8.D.9. The first statement follows from Lemma 8.D.13(1) and
the second from Proposition 8.D.14. �

9. Abels’ multiamalgam

9.A. 2-tameness. In this section, we deal with real-graded Lie algebras, that is,
Lie algebras graded in a real vector space W . As in Section 8, Lie algebras are,
unless explicitly specified, over the ground commutative ring R.

Let g be a real-graded Lie algebra. We say that P ⊂ W is g-principal if g is
generated, as a Lie algebra, by gP =

∑
α∈P gα (note that this only depends on

the structure of Lie ring, not on the ground ring R). We say that P (or (g,P))
is k-tame if whenever α1, . . . , αk ∈ P , there exists an R-linear form ` on W such
that `(αi) > 0 for all i = 1, . . . , k. Note that P is 1-tame if and only if 0 /∈ P and
is 2-tame2 if and only if for all α, β ∈ P we have 0 /∈ [α, β]. Note that k-tame
trivially implies (k − 1)-tame.

We say that the graded Lie algebra g is k-tame if there exists a g-principal
k-tame subset. Note that for k = 1 this is compatible with the definition in
§8.A.2.

Example 9.A.1. As usual, we write Wg = {α : gα 6= {0}}.
• g = sl3 with its standard Cartan grading, Wg = {αij : 1 ≤ i 6= j ≤

3}∪{0} (with αij = ei−ej, (ei) denoting the canonical basis of R3); then
{α12, α23, α31} and {α21, α13, α32} are g-principal and 2-tame.
• If P1 is the set of weights of the graded Lie algebra g/[g, g], then any
g-principal set contains P1; conversely if g is nilpotent then P1 itself is
g-principal. Thus if g is nilpotent, then g is k-tame if and only if 0 is not
in the convex hull of k weights of g/[g, g].

2This paper will not deal with k-tameness for k ≥ 3 but this notion is relevant to the study
of higher-dimensional isoperimetry problems.
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9.B. Lemmas related to 2-tameness. This subsection gathers a few technical
lemmas needed in the study of the multiamalgam in §9.C and §9.D. The reader
can skip it in a first reading.

The following lemma was proved by Abels under more specific hypotheses (g
nilpotent and finite-dimensional over a p-adic field). As usual, by [gβ, gγ] we mean
the module generated by such brackets. In a real vector space, we write [[α, β]] for
the segment joining α and β (so as to avoid any confusion with Lie brackets).

Lemma 9.B.1. Let g be a real-graded Lie algebra and P ⊂ W a g-principal
subset. Suppose that (g,P) is 2-tame. Then

(1) for any ω ∈ W, we have g0 =
∑

β[gβ, g−β], with β ranging over W−Rω;

(2) if R+α ∩ P = ∅, then gα =
∑

[gβ, gγ], with (β, γ) ranging over pairs in
W −Rα such that β + γ = α.

Lemma 9.B.1 is a consequence of the more technical Lemma 9.B.2 below (with
i = 1). Actually, the proof of Lemma 9.B.1 is based on an induction which makes
use of the full statement of Lemma 9.B.2. Besides, while Lemma 9.B.1 is enough
for our purposes in the study of the multiamalgam of Lie algebras in §9.C, the
statements in Lemma 9.B.2 involving the lower central series are needed when
studying multiamalgams of nilpotent groups in §9.D.

Lemma 9.B.2. Under the assumptions of Lemma 9.B.1, let (gi) be the lower
central series of g and giα = gi ∩ gα (note that gi0 thus means (gi)0 and can be
distinct from (g0)i). Then

(1) for any ω ∈ W, we have gi0 =
∑

j+k=i

∑
β[gjβ, g

k
−β], with β ranging over

W r Rω;
(2) if R+α ∩ P = ∅, then giα =

∑
j+k=i

∑
[gjβ, g

k
γ], with (β, γ) ranging over

pairs in W r Rα such that β + γ = α;
(3) if α /∈ P, then giα =

∑
j+k=i

∑
[gjβ, g

k
γ], with (β, γ) ranging over pairs in

W such that β + γ = α and 0 does not belong to the segment [[β, γ]].

Proof. Define g[1] =
∑

α∈P gα, and by induction the submodule g[i] = [g[1], g[i−1]]

for i ≥ 2; note that this depends on the choice of P . Define g
[i]
α = gα ∩ g[i]. Note

that each g[i] is a graded submodule of g.
Let us prove by induction on i ≥ 1 the following statement: in the three cases,

(9.B.3) g[i]
α ⊂

∑
j,k≥1, j+k=i

∑
β+γ=α...

[
g

[j]
β , g

[k]
γ

]
where in each case (β, γ) satisfies the additional requirements of (1), (2), or (3)
(we encode this in the notation

∑
β+γ=α...).

Since in all cases, α /∈ P , the case i = 1 is an empty (tautological) statement.
Suppose that i ≥ 2 and the inclusions (9.B.3) are proved up to i − 1. Consider

x ∈ g
[i]
α . By definition, x is a sum of elements of the form [y, z] with y ∈ g

[1]
β ,

z ∈ g
[i−1]
γ with β + γ = α. If β and γ are linearly independent over R, the
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additional conditions are satisfied and we are done. Otherwise, since β ∈ P , we
have β 6= 0 and we can write γ = rβ for some r ∈ R. There are three cases to
consider:

• r > 0. Then we are in Case (3), and 0 /∈ [[β, γ]], so the additional condition
in (3) holds.
• r = 0. Then β = α 6= 0 is a principal weight, which is consistent with

none of Cases (1), (2) or (3).
• r < 0. Then since β ∈ P , we have R+γ ∩ P = ∅, so we can apply

the induction hypothesis of Case (2) to z; by linearity, this reduces to

z = [u, v] with u ∈ g
[j]
δ , v ∈ g

[k]
ε , j + k = i − 1, δ + ε = rβ, and δ, ε not

collinear to β. Note that α = β + δ + ε. By the Jacobi identity,

(9.B.4) x = [y, [u, v]] ∈
[
g

[j]
δ , g

[k+1]
α−δ

]
+
[
g[k]
ε , g

[j+1]
α−ε

]
.

Note that none of δ, α− δ, ε, α− ε belongs to Rα. Hence we are done
in both Cases (2) or (3). In case (1), if ω ∈ Rβ, then since δ and ε are
not collinear to ω, we see that (9.B.4) satisfies the additional conditions of
(1). However, the case ω /∈ Rβ is trivial since then the writing x = [y, z]
itself already satisfies the additional condition of (1).

At this point, (9.B.3) is proved. By Lemma 5.B.8, for all i ≥ 1, we have

gi =
∑

`≥i g
[`]. In particular giα =

∑
`≥i g

[`]
α and we have

g[`]
α ⊂

∑
j+k=`

∑
β+γ=α...

[
gjβ, g

k
γ

]
⊂
∑
j+k=i

∑
β+γ=α...

[
gjβ, g

k
γ

]
,

so

giα ⊂
∑
j+k=i

∑
β+γ=α...

[
gjβ, g

k
γ

]
,

and since the inclusion
[
gjβ, g

k
γ

]
⊂ giα is clear, we get the desired equality

giα =
∑
j+k=i

∑
β+γ=α...

[
gjβ, g

k
γ

]
. �

9.C. Multiamalgams of Lie algebras.

9.C.1. The definition. By convex cone in a real vector space, we mean any subset
stable under addition and positive scalar multiplication (such a subset is neces-
sarily convex). Let C be the set of convex cones of W not containing 0. Let g be
a real-graded Lie algebra over the ring R. If C ∈ C, define

gC =
⊕
α∈C

gα;

this is a graded Lie subalgebra of g (if Wg is finite, gC is nilpotent). Denote by
x 7→ x̄ the inclusion of gC into g.
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Definition 9.C.1. Define ĝ = ĝR as the multiamalgam (or colimit) of all gC ,
where C ranges over C.

This is by definition an initial object in the category of Lie algebras h endowed
with compatible homomorphisms gC → h.

It can be realized as the quotient of the Lie R-algebra free product of all gC , by
the ideal generated by elements x − y, where x, y range over elements in gC , gD
such that x̄ = ȳ and C,D range over C. Note that among those relators, we can
restrict to homogeneous x, y as the other ones immediately follow. Since the free
product as well as the ideal are graded, ĝ is a graded Lie algebra; in particular, ĝ
is also the multiamalgam of the gC in the category of Lie algebras graded in W .
The inclusions gC → g induce a natural homomorphism ĝ→ g.

9.C.2. Link with the blow-up. Let g̃ be the blow-up introduced in §8.B. For every
C ∈ C, the structural homomorphism g̃C → gC is an isomorphism, and therefore
we obtain compatible homomorphisms gC → g̃C ⊂ g, inducing, by the universal
property, a natural graded homomorphism ĝ→ g̃.

Theorem 9.C.2. If g is 1-tame, then the natural Lie algebra homomorphism
κ : ĝR → g̃R is surjective, and if g is 2-tame, κ is an isomorphism. In particular, if
g is 2-tame then the kernel of ĝR → g is central in ĝ and is canonically isomorphic
(as an R-module) to HR

2 (g)0.

To prove the second statement, we need the following lemma.

Lemma 9.C.3 (Abels). If g is 2-tame, then ĝ → g has central kernel, concen-
trated in degree zero.

Proof of Theorem 9.C.2 from Lemma 9.C.3. If g is 1-tame, then so is g̃ by Lemma
8.B.7, and the surjectivity of κ follows, proving the first assertion.

If g is 2-tame, then by Lemma 9.C.3, ĝ→ g has central kernel concentrated in
degree zero, so by the universal property of the blow-up (Theorem 8.B.4), there
is a section s of the natural map κ. By uniqueness in the universal properties,
s ◦ κ and κ ◦ s are both identity and we are done.

The last statement is then an immediate consequence of Lemma 8.B.2. �

Proof of Lemma 9.C.3. If α is a nonzero weight of g, then there exists C ∈ Cg
such that α ∈ C. By the amalgamation relations, the composite graded homo-
morphism gα → gC → ĝ does not depend on the choice of C. We thus call it iα
and call its image mα.

Let us first check that whenever α, β are non-zero non-opposite weights, then
we have the following inclusion in ĝ

(9.C.4) [mα,mβ] ⊂ mα+β.

We begin with the observation that if γ, δ are nonzero weights with δ /∈ R−γ,
then

(9.C.5) iγ+δ([gγ, gδ]) = [mγ,mδ].
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Indeed, in the above definition of i, we can choose C to contain both γ and δ.
In particular if α /∈ R−β, then (9.C.4) is clear. Let us prove (9.C.4) assuming
that α ∈ R−β. By 2-tameness, we can suppose that R+β ∩P = ∅, so by Lemma
9.B.1(2), gβ ⊂

∑
[gγ, gδ], where (γ, δ) ranges over the set Q(β) of pairs of weights

such that γ + δ = β and γ, δ are not in Rβ(= Rα). So, applying (9.C.5), we
obtain mβ ⊂

∑
(γ,δ)∈Q(β)[mγ,mδ]. Therefore

[mα,mβ] ⊂
∑

(γ,δ)∈Q(β)

[mα, [mγ,mδ]].

Note that γ and α + δ are not collinear, since otherwise we would infer that
α = −β. If we fix such (γ, δ) ∈ Q(β), we get, by the Jacobi identity and using
that α, γ, δ are pairwise non-collinear

[mα, [mγ,mδ]] ⊂[mγ, [mδ,mα]] + [mδ, [mα,mγ]]

⊂[mγ,mδ+α] + [mδ,mα+γ]

⊂mγ+δ+α = mα+β,

and finally [mα,mβ] ⊂ mα+β. So (9.C.4) is proved.
Now define v0 as the submodule of ĝ

(9.C.6) v0 =
∑
γ 6=0

[mγ,m−γ].

We are going to check that for every α 6= 0

(9.C.7) [mα, v0] ⊂ mα

and

(9.C.8) [v0, v0] ⊂ v0.

Before proving (9.C.7), let us first check that for every nonzero α, if X (α) is
the set of nonzero weights not collinear to α then

(9.C.9) [mα,m−α] ⊂
∑

β∈X (α)

[mβ,m−β].

Indeed, by 2-tameness, we can suppose that R+(−α)∩P = ∅, and apply Lemma
9.B.1(2), so

g−α ⊂
∑

(γ,δ)∈Q(−α)

[gγ, gδ];

by (9.C.5) we deduce

m−α ⊂
∑

(γ,δ)∈Q(−α)

[mγ,mδ];

so

[mα,m−α] ⊂
∑

(γ,δ)∈Q(−α)

[mα, [mγ,mδ]].
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If (γ, δ) ∈ Q(−α), we have, by the Jacobi identity and then (9.C.4)

[mα, [mγ,mδ]] ⊂[mγ, [mδ,mα]] + [mδ, [mα,mγ]]

⊂[mγ,mδ+α] + [mδ,mα+γ]

=[mγ,m−γ] + [mδ,m−δ];

we thus deduce (9.C.9).
We can now prove (9.C.7), namely if α, γ 6= 0, then [mα, [mγ,m−γ]] ⊂ mα.

By (9.C.9) we can assume that α and γ are not collinear, in which case (9.C.7)
follows from (9.C.4) by an immediate application of Jacobi’s identity.

To prove (9.C.8), we need to prove that v0 is a subalgebra, or equivalently that
for every α 6= 0, we have

[v0, [mα,m−α]] ⊂ v0.

Indeed, using the Jacobi identity and then (9.C.7)

[v0, [mα,m−α]] ⊂[mα, [m−α, v0]] + [m−α, [v0,mα]]

⊂[mα,m−α] + [m−α,mα] ⊂ v0.

so (9.C.8) is proved.
We can now conclude the proof of the lemma. By the previous claims (9.C.4),

(9.C.7), and (9.C.8), if v0 is defined as in (9.C.6) the submodule
(⊕

α 6=0 mα

)
⊕v0

is a Lie subalgebra of ĝ. Since the mα for α 6= 0 generate ĝ by definition, this
proves that this Lie subalgebra is all of ĝ.

Therefore, if φ : ĝ → g is the natural map, we see that φα is the natural
isomorphism mα → gα. Thus Ker(φ) is contained in ĝ0. If z ∈ Ker(φ) and
x ∈ mα for some α 6= 0, then

φ([z, x]) = [φ(z), φ(x)] = [0, φ(x)] = 0,

so [z, x] = φ−1
α (φ([z, x])) = 0. Thus z centralizes mα for all α; since these generate

ĝ, we deduce that z is central. �

9.C.3. On the non-2-tame case. There is a partial converse to Theorem 9.C.2: if
R is a field and g/[g, g] is not 2-tame, then ĝ has a surjective homomorphism onto
a free Lie algebra on two generators. In particular, if g is nilpotent (as in all our
applications), g̃ is nilpotent as well but ĝ is not. The argument is straightforward:
the assumption implies that there is a graded surjective homomorphism g → h,
where h is the abelian 2-dimensional algebras with weights α, β with β ∈ R−α,

inducing a surjective homomorphism ĝ → ĥ. Now it follows from the definition
that h is the free product of the 1-dimensional Lie algebras hα and hβ and hence
is not nilpotent.
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9.D. Multiamalgams of groups. In this part, g is a nilpotent real-graded Lie
algebra over a commutative Q-algebra R of characteristic zero (although the
results would work in characteristic p > s + 1, where s is the nilpotency length
of the Lie algebra involved).

For C ∈ Cg, let G and GC be the groups associated to g and gC by Malcev’s
equivalence of categories between nilpotent Lie algebras over Q and uniquely
divisible nilpotent groups, described in Theorem 5.A.2. Let the embedding GC →
G corresponding to gC → g be written as g 7→ ḡ. Let Ĝ be the corresponding
amalgam, namely the group generated by the free product of GC for C ∈ Cg,
modded out by the relators xy−1 whenever x̄ = ȳ.

The following result was proved by Abels [Ab87, Cor. 4.4.14] assuming that
R = Qp and that g is finite-dimensional. This is one of the most delicate points in
[Ab87]. We provide a sketch of the (highly technical) proof, in order to indicate
how his proof works over our general hypotheses.

Theorem 9.D.1 (Abels). Suppose that g is 2-tame and s-nilpotent. Then Ĝ is
(s+ 1)-nilpotent.

For the purpose of Section 6, we need a stronger result. Abels asked [Ab87,

4.7.3] whether Ĝ → G is always a central extension. This is answered in the
positive by the following theorem.

Theorem 9.D.2. Under the same hypotheses, the nilpotent group Ĝ is uniquely
divisible, and its Lie algebra is ĝQ in the natural way. In particular, the ho-
momorphism Ĝ → G has a central kernel, naturally isomorphic to HQ

2 (g)0 as a
Q-linear space.

Proof. Our proof is based on Theorem 9.D.1 and some generalities about nilpotent
groups, which are gathered in §5.

Since by Theorem 9.D.1, Ĝ is nilpotent, and since it is generated by divisible
subgroups, it is divisible (see Lemma 5.A.3). Therefore by the (standard) Lemma

5.A.1, to check that Ĝ is uniquely divisible, it is enough to check that it is
torsion-free. Since Ĝ is known to be (s + 1)-nilpotent, we see that Ĝ is the
multiamalgam (=colimit) of the GC within the category K of (s + 1)-nilpotent

groups. Therefore, Ĝ is the quotient of the free product W in K of the GC by
amalgamations relations. By Lemma 5.A.5, W is a uniquely divisible torsion-free
nilpotent group. Since, for x, y ∈ W , whenever xy−1 is an amalgamation relation,
xry−r is an amalgamation relation as well for all r ∈ Q, Proposition 5.B.5 applies
to show that the normal subgroup N generated by amalgamation relations is
divisible. Therefore Ĝ/N is torsion-free, hence uniquely divisible.

It follows that Ĝ is also the multiamalgam of the GC in the category K0 of
uniquely divisible (s + 1)-nilpotent groups. By Malcev’s Theorem 5.A.2, this
category is equivalent to the category of (s + 1)-nilpotent Lie algebras over Q.
Therefore, if H is the group associated to ĝ and H → GC are the homomorphisms
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associated to gC → ĝ, then H and the family of homomorphisms GC → H satisfy
the universal property of multiamalgam in the category K0, and this gives rise
to a canonical isomorphism Ĝ→ H. In particular, by Theorem 9.C.2, the kernel
W of Ĝ→ G is central in Ĝ, and isomorphic to HQ

2 (g)0. �

Corollary 9.D.3. Under the same hypotheses, if moreover HR
2 (g)0 = {0} then

the central kernel of Ĝ→ G is generated, as an abelian group, by elements of the
form

exp([λx, y]) exp([x, λy])−1, λ ∈ R, x, y ∈
⋃
C

gC .

If R =
∏τ

j=1 Rj is a finite product of Q-algebras (so that g =
∏

j gj canonically),

then those elements exp([λx, y]) exp([x, λy])−1 with λ ∈ Rj and x, y ∈ gj are
enough.

Proof. The additional assumption and Theorem 9.D.2 imply that the kernel of
Ĝ→ G is naturally isomorphic, as a Q-linear space, to the kernel WQ,R

2 (g) of the

natural map HQ
2 (g)0 → HR

2 (g)0.
Let N be the normal subgroup of G generated by elements of the form

exp([λx, y]) exp([x, λy])−1, x, y ∈
⋃

gC , λ ∈ R;

clearly N is contained in the kernel W of Ĝ → G. By Proposition 5.B.5, N is
divisible, i.e., N is a Q-linear subspace of W . Therefore Ĝ/N is uniquely divisible

and its Lie algebra can be identified with ĝ/N . By definition of N , in Ĝ/N we

have exp([λx, y]) = exp([x, λy]) for all x, y ∈
⋃
gC . So in the Lie algebra of Ĝ/N ,

which is equal to ĝ/N we have [λx, y] = [x, λy]. Since by Proposition 8.C.5, the
subgroup W is generated by elements of the form exp([λx, y]− [x, λy]) when x, y
range over

⋃
GC and λ ranges over R, it follows that N = W .

It remains to prove the last statement. By Lemma 8.B.8, H2(g)0 can be iden-
tified with the product

∏
j H2(gj)0. In particular, by Proposition 8.C.5, it is

generated by elements of the form [λx, y] − [x, λy] when x, y ∈
⋃
gj,C , λ ∈ Rj,

and j = 1, . . . , τ . Then, we can conclude by a straightforward adaptation of the
above proof. �

Corollary 9.D.4. Under the same hypotheses, if moreover HR
2 (g)0 = KillR(g)0 =

{0}, then Ĝ→ G is an isomorphism.

Proof. As observed in the proof of Corollary 9.D.3, since HR
2 (g)0 = 0, the kernel

of Ĝ→ G is isomorphic to WQ,R
2 (g)0. Since KillR(g)0 = 0, Corollary 8.C.8 implies

that WQ,R
2 (g)0 = 0. �

Proof of Theorem 9.D.1 (sketched). We only sketch the proof; the proof in [Ab87]
(with more restricted hypotheses) is 8 pages long. Here the hypotheses are more
general since Abels works with p-adic groups. The theorem is stated here assum-
ing that R is a Q-algebra, but more generally, it works under the assumption that
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R is a Z[1/s!]-module, and in particular when it is a vector space over a field of
characteristic p > s.

Fix a 2-tame g-principal subset P . Let S denote the set of all half-lines R>0w
(w 6= 0) in W . Consider the lower central series (Gi). Let M i

C be the image of

Gi ∩GC in Ĝ and MC = M1
C . Let Ai be the normal subgroup of Ĝ generated by

all M i
C , where C ranges over S.

Abels also introduces more complicated subgroups. Let L denote the set of
lines of W (i.e. its projective space). Each line L ∈ L contains exactly two half
lines:

L = S1 ∪ {0} ∪ S2.

Define the following subgroups of Ĝ

M[L] = M1
[L] = 〈MS1 ∪MS2〉

and, by induction

M i
[L] =

〈
M i

S1
∪M i

S2
∪
⋃

j+k=i

((
M j

[L],M
k
[L]

))〉
,

where ((·, ·)) denote the subgroup generated by group commutators.
Abels proves the following lemma [Ab87, 4.4.11]: if L ∈ L and C is a open

cone in W such that L+ C ⊂ C, then

(9.D.5)
((
M j

C ,M
k
[L]

))
⊂M j+k

C .

The interest is that Mk
[L] is a complicated object, while the right-hand term M j+k

C

is a reasonable one.
Abels obtains [Ab87, Prop. 4.4.13] the following result, which can appear as a

group version of Lemma 9.B.2(1): for any L0 ∈ L and any i, the ith term of the

lower central series Ĝi is generated, as a subgroup and modulo Ai, by the M i
[L]

where L ranges over L − {L0}, or, in symbols,

(9.D.6) Ĝi =

〈 ⋃
L6=L0

M i
[L]

〉
Ai.

It is important to mention here that all three items of Lemma 9.B.2 are needed
in the proof of (9.D.6) (encapsulated in the proof of [Ab87, Prop. 4.4.7]). This
is also the step where the Baker-Campbell-Hausdorff formula is used to convey
properties from the Lie algebra g to G.

To conclude the proof, suppose that G is s-nilpotent. We wish to prove that
((Ĝ, Ĝs+1)) = {1}. Since Ĝ is easily checked to be generated by MS for S ranging
over S, it is enough to check, for each S ∈ S

(9.D.7)
((
MS, Ĝ

s+1
))

= {1}.
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Now since G is s-nilpotent, As+1 = {1}, so we can forget “modulo As+1” in
(9.D.6) (with i = s+ 1), so (9.D.7) follows if we can prove

((MS,M
s+1
[L] )) = {1}

for all L ∈ L with maybe one exception L0; namely, we choose L0 to be the line
generated by S. Then S + L is an open cone, (9.D.5) applies and we have

((MS,M
s+1
[L] )) ⊂ ((MS+L,M

s+1
[L] )) ⊂M s+2

S+L = {1}. �

Remark 9.D.8. As we observed, Theorem 9.D.1 works when R is only assumed
to be a Z[1/s!]-module. It follows that Theorem 9.D.2 works when R is assumed
to be a Z[1/(s + 1)!]-module, and in particular when it is a vector space over a
field of characteristic p > s+ 1.

10. Presentations of standard solvable groups and their Dehn
function

10.A. Outline of the section. This section, which is the most important of the
paper, contains the conclusions of the proofs of Theorems E.4 and F and relies
on essentially all the preceding sections.

Let G = U o A be a standard solvable group. In §10.B we consider the
multiamalgam Ĝ of (standard) tame subgroups (which are finitely many) along
their intersections (regardless of any topology), as originally introduced by Abels.
This group admits a canonical homomorphism onto G. Under the assumption
that G is “2-tame” (which means that G does not satisfy the SOL obstruction,
which is one of the hypotheses of Theorem E), we use the algebraic results of
Section 9 to check in §10.D that the kernel of the canonical homomorphism
Ĝ → G is central in G. Moreover, assuming that G does not satisfy the 2-
homological obstruction, the work of §10.B provides an explicit generating family
of the central kernel, called welding relations.

This provides us with a first “algebraic” presentation of G, defined as follows.
Let U1 o A, . . . , Uν o A be the standard tame subgroups. We consider the pre-
sentation P whose set of generators is the disjoint union

A t
ν⊔
i=1

Ui,

and whose set of relators are the following

• all tame relations, namely relations of length 3 defining the group law in
each of the Ui o A;
• all amalgamation relations of length 2, namely if some u ∈ Ui∩Uj, then in

this disjoint union it corresponds to two generators ui ∈ Ui and uj ∈ Uj,
and the relator is then u−1

i uj;
• all “algebraic” welding relations, introduced in §10.B (where “algebraic”

means that these are words with letters in the alphabet
⊔
Ui).
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Next we obtain a compact presentation P1 of G, informally by replacing elements
of the various Ui with efficient representative words, and restricting to generators
and relators in a large enough compact subset. It is given by a set of generators

S = T t
ν⊔
i=1

Si,

where T is in bijection with some compact generating subset of A and Si is in
bijection with some compact subset of Ui so that Si ∪ T generates Ui oA. From
§6.C, we have a way to associate to each i and each u ∈ Ui, a word u in the
generators Si t T . Replacing each u with u is a way to pass from any word
in the previous generators to a word in these new generators, which we call its
geometric realization. The reader should keep in mind that even when we
consider algebraic words of bounded length, their geometric realization can be
unbounded since the length of u with respect to S is unbounded when u varies.
The relators of P1 are:

• defining relators of each Ui o A of bounded length;
• amalgamation relations of length 2, of the form s−1

i sj for si ∈ Si and
sj ∈ Sj representing the same element in Ui ∩ Uj;
• geometric realizations of algebraic welding relators whose length is bounded

by some suitable number.

To obtain an upper bound of the Dehn function of P1, we proceed in 3 steps

(1) we first bound the area of a special class of relations, namely those geo-
metric realizations of those algebraic relators; namely for the geometric
realization of tame and amalgamation relations we obtain a quadratic up-
per bound (with respect to the word length with respect to S), and for
the geometric realization of welding relations we obtain in §10.F a cubic
upper bound.

(2) the general method developed in §7.B allows to use these estimates so
as to bound a more general class of relations, the so-called “relations of
bounded combinatorial length”, that is, when n0 is fixed, we consider
all geometric realizations of algebraic relations of length ≤ n0, and for
such relations we show an asymptotic cubic upper bound (the constant
depending on n0).

(3) We conclude thanks to Gromov’s trick, which ensures that it is enough to
consider such relations of bounded combinatorial length, using that the
efficient words u indeed have a bounded combinatorial length.

The conclusions of these steps are written down in §10.E in the absence of
welding relators, thus proving Theorem F, and in §10.G otherwise, ending the
proof of Theorem E.4.

Let us pinpoint that §10.E also provides information in the case where there
are welding relators, in order to get quadratic estimates on the area of relations
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that follow only from the other types of relators. This is crucial in §10.F, where
the cubic estimate is obtained by using ' n times a homotopy of area ' n2.

10.B. Abels’ multiamalgam. Let G be any group and consider a family (Gi)
of subgroups. We define the multiamalgam (or colimit) to be an initial object
in the category of groups H endowed with homomorphisms H → G and Gi →
H, such that all composite homomorphisms Gi → H → G are equal to the
inclusion. Such an object is defined up to unique isomorphism commuting with
all homomorphisms. It can be explicitly constructed as follows: consider the free
product H of all Gi, denote by κi : Gi → H the inclusion and mod out by the
normal subgroup generated by the κi(x)κj(x)−1 whenever x ∈ Gi ∩ Gj. If the
family (Gi) is stable under finite intersections, it is enough to mod out by the
elements of the form κi(x)κj(x)−1 whenever x ∈ Gi and Gi ⊂ Gj. Clearly, the
multiamalgam does not change if we replace the family (Gi) by a larger family
(G′j) such that each G′j is contained in some Gi; in particular it is no restriction to

assume that the family is closed under intersections. Also, the image of Ĝ → G
is obviously equal to the subgroup generated by the Gi.

Remark 10.B.1. Our (and, originally, Abels’) motivation in introducing the
multiamalgam is to obtain a presentation of G. Therefore, in this point of view,
the ideal case is when Ĝ → G is an isomorphism. In many interesting cases,
which will be studied in the sequel, Ĝ→ G is a central extension.

On the other hand, if the Gi have pairwise trivial intersection, the multiamal-
gam of the Gi is merely the free product of the Gi, and this generally means that
the kernel of Ĝ→ G is “large”.

Example 10.B.2. Consider a group presentation G = 〈S | R〉 in which every
relator involves at most two generators. If we consider the family of subgroups
generated by 2 elements of S, the homomorphism Ĝ → G is an isomorphism.
Instances of such presentations are presentations of free abelian groups, Coxeter
presentations, Artin presentations.

Lemma 10.B.3. In general, let G be any group, (Gi) any family of subgroups.
Suppose that each Gi has a presentation 〈Si | Ri〉 and that Si∩Sj generates Gi∩Gj

for all i, j. Then the multiamalgam of all Gi has a presentation with generators⊔
Si, relators

⊔
Ri and, for all (i, j) the relators of size two identifying an element

of Si and of Sj whenever they are actually equal (if (Gi) is closed under finite
intersections, those (i, j) such that Gi ⊂ Gj are enough).

Proof. This is formal. �

Following a fundamental idea of Abels, we introduce the following definition.

Definition 10.B.4. Let G be a locally compact group G with a semidirect prod-
uct decomposition G = UoA (as in §4.C). Consider the family (Gi = UioA)1≤i≤ν
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of its tame subgroups. Let Û be the multiamalgam of the Ui along their inter-
sections; it inherits a natural action of A, and we define Ĝ = Û o A.

Remark 10.B.5. By an easy verification, Ĝ is the multiamalgam of the Gi.

10.C. Algebraic and geometric presentations of the multiamalgam. Let
G = U oA be a standard solvable group and (Gi)1≤i≤ν the family of its standard
tame subgroups, Gi = Ui o A.

Consider the free product H = ∗i Ui. There is a canonical surjective homo-
morphism p : H → Û . Besides, there are canonical homomorphisms ji : Ui → H,
so that p ◦ ji is the inclusion Ui ⊂ Û .

Recall that ui is defined as equal to uC(i) for some subset C(i) of the weight
space, stable under addition and not containing 0.

Lemma 10.C.1 (Algebraic presentation of the multiamalgam). The multiamal-

gam Û is, through the canonical map p, the quotient of H by the normal sub-
group generated by pairs ji(x)ji′(x)−1 where (i, i′) ranges over pairs such that
C(i) ⊂ C(i′) and x ranges over Ui.

Our goal is to translate this presentation into a compact presentation of Ĝ. Let
S̄i be disjoint copies of the Si. Define the disjoint union S̄ =

⊔
i S̄itT and FS̄ the

free group over S̄; note that there is a canonical surjection S̄ → S =
⋃
i Si t T .

Denote by ζi the canonical bijection Si → S̄i. There is a canonical surjection
ζ : S̄ → S given as the identity on T and as ζi on Si.

There is a canonical surjective homomorphism

π̄ : FS̄ → H o A,

and by composition, p ◦ π̄ is a canonical surjection FS̄ → Û . If ιi is the inclusion
of Si into FS̄, then p ◦ π̄ ◦ ιi is the inclusion of Si into Û .

Let us introduce some important sets of elements in the kernel of the map FS̄ →
Û . We fix a presentation of A over T , including all commutation relators between
generators. (See §2.B for basic conventions about the meaning of relations and
relators.)

• R̄tame =
⋃
i R̄tame,i, where R̄tame,i consists of all elements in Ker(π)∩FTtSi .

We call these tame relations.
• R̄1

tame =
⋃
i R̄

1
tame,i, where R̄1

tame,i consists of all elements in R̄tame,i that
are relators in the presentation of Gi given in Corollary 6.A.7, as well as
the relators in R̄tame,i of length two; we call these tame relators.
• Ramalg consists of the elements of the form σi(w)−1σi′(w), where w ranges

over FSitT , and where (i, i′) ranges over pairs such that C(i) ⊂ C(i′), and
σi : FSi∪T → FS̄ is the unique homomorphism mapping every s ∈ Si to
ζi(s) and every t ∈ T to itself. We call these amalgamation relations;
• R1

amalg consists of those amalgamation relations for which w ∈ Si. These
are words of length at most two. We call these amalgamation relators.
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Note that the quotient of FS̄ by R1
amalg is just the free group FS. We define

Rtame and R1
tame as the images of R̄tame and R̄1

tame in FS̄.

Proposition 10.C.2 (Geometric presentation of the multiamalgam). The mul-

tiamalgam Û is, through the canonical map p◦π̄, the quotient of FS̄ by the normal
subgroup generated by R̄1

tame∪R1
amalg, and is also the quotient of FS by the normal

subgroup generated by R1
tame.

Proof. The quotient of FS̄ by the (normal subgroup generated by) tame relations
is obviously isomorphic to (∗i Ui) o A. Since by Corollary 6.A.7, for each i,
R̄tame,i is contained in the normal subgroup generated by R̄1

tame,i, it follows that
(∗i Ui) o A is also the quotient of FS̄ by the tame relators.

Denote by Ji′ the inclusion of Ui′ into ∗i Ui. By Lemma 10.B.3, the quotient
of ∗i Ui by the relations Ji(u)−1Ji′(u) for (i, i′) ranging over pairs such that

C(i) ⊂ C(i′), is the multiamalgam Û . It follows that the quotient of (∗i Ui)oA

by the Ramalg is Û , and since obviously Ramalg is normally generated by R1
amalg,

we deduce that the quotient of (∗i Ui) o A by the R1
amalg is also Û .

Hence Û is naturally the quotient of FS̄ by R̄1
tame∪R1

amalg. The second assertion
follows. �

Proposition 10.C.3 (Quadratic filling of tame and amalgamation relations).
For the presentation

〈S̄ | R̄1
tame ∪R1

amalg〉
of Ĝ, the tame relations have an at most quadratic area with respect to their
length, and the amalgamation relations σi(w)−1σi′(w) have an area bounded above
by the length of w. In the presentation

〈S | R1
tame〉

of Ĝ, the tame relations have an at most quadratic area with respect to their
length.

Proof. The tame relations have an at most quadratic area by Corollary 6.A.7.
Let us consider an amalgamation relation. It has the form σi(w)−1σi′(w) with

w of length n; then with cost ≤ n we can replace all letters ζi(s) for s ∈ Si with
ζi′(s); the resulting word is then equal to σi′(w)−1σi′(w) = 1.

The second assertion immediately follows. �

Proposition 10.C.2 is a first step towards a compact presentation of G.

10.D. Presentation of the group in the 2-tame case. The following two
theorems, which use the notion of 2-tameness introduced in Definition 4.C.1, are
established in Section 9 (Theorem 9.D.2 and Corollary 9.D.3), relying on Section

8. In the following statements, we identify Ui with its image in Û . Also, recall
that the decomposition K =

⊕d
j=1 Kj induces a decomposition u =

⊕
j u(j), and

ui =
⊕

j ui(j).
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Theorem 10.D.1 (Presentation of a 2-tame group, weak form). Assume that

G = U o A is a 2-tame standard solvable group. Then the homomorphism Ĝ→
G has a central kernel. If moreover the degree zero component of the second
homology group H2(u)0 vanishes, the kernel of Ĝ → G is generated by elements
of the form

exp([λx, y]) exp([x, λy])−1, 1 ≤ j ≤ d, x, y ∈
⋃
i

ui(j), λ ∈ Kj, .

We pinpoint the striking fact that H2(u)0 = {0} does not imply that Ĝ → G
is an isomorphism. This was pointed out by Abels [Ab87, 5.7.4], and relies on

the fact that the space HQ
2 (u)0 of 2-homology of u, where u is viewed as a (huge)

Lie algebra over the rationals, can be larger than H2(u)0. On the other hand, the

fact that Ĝ → G has a central kernel is a new result, even in Abels’ framework
(u finite-dimensional nilpotent Lie algebra over Qp); Abels however proved that

Û is (s+ 1)-nilpotent if U is s-nilpotent and this is a major step in the proof.
Actually, in order to use the results of §7.B, we need a (stronger) stable form of

Theorem 10.D.1, namely holding over an arbitrary commutative K-algebra. We
can view U as the group of K-points of U, where U is an affine algebraic group
over the ring K =

∏
Kj. Thus, for every commutative K-algebra A, U(A) is the

group associated to the nilpotent Lie Q-algebra u⊗K A. Similarly, Ui is defined

so that Ui(A) ⊂ U(A) is the exponential of ui ⊗K A, and we define Û[A] as the
corresponding multiamalgam of the Ui(A).

Theorem 10.D.2 (Presentation of a 2-tame group, strong (stable) form). As-
sume that G = U o A is a 2-tame standard solvable group. Then for every K-

algebra A, the homomorphism Û[A]→ U(A) has a central kernel, which remains

central in Û[A] oA. If moreover the zero degree component of the second homol-

ogy group H2(u)0 vanishes, the kernel of Û[A] → U(A) is generated by elements
of the form

exp([λx, y]) exp([x, λy])−1, x, y ∈
⋃
i

Ui(j)(A), λ ∈ Aj, j = 1 . . . , d.

Note that we could state the theorem without decomposing along the decom-
position K =

⊕
j Kj, but we really need this statement when we estimate the

area of welding relations in §10.F.
Note that Theorem 10.D.1 is equivalent to the case A = K of Theorem 10.D.2,

given the trivial observation that the kernels of Ĝ→ G and Û → U coincide.
Theorem 10.D.1 involves the Lie algebra bracket; in order to translate it into

a purely group-theoretic setting, we need to use Lazard’s formulas from §5.C.
We can now restate the second statement of Theorem 10.D.1 with no reference

to the Lie algebra in the conclusion (except taking real powers):
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Theorem 10.D.3. Let G = UoA be a 2-tame standard solvable group such that
H2(u)0 = {0}. Choose s so that U is s-nilpotent. Then the (central) kernel of

Ĝ→ G is generated by elements of the form

Bs+1(xλ, y)Bs+1(x, yλ)−1, x, y ∈
⋃
i

Ui(j), λ ∈ Kj, j = 1 . . . , d,

where xλ denotes exp(λ log(x)).

Again we need a stable form of the latter result.

Theorem 10.D.4. Let G = UoA be a 2-tame standard solvable group such that
H2(u)0 = {0}. Choose s so that U is s-nilpotent. Then for every commutative K-
algebra A, denoting Aj = A⊗K Kj (so that A =

⊕
j Aj canonically), the (central)

kernel of Û[A]→ U(A) is generated by elements of the form

Bs+1(xλ, y)Bs+1(x, yλ)−1, x, y ∈
⋃
i

Ui(j)(A), λ ∈ Aj, j = 1 . . . , d,

where xλ denotes exp(λ log(x)).

We can view the elements

Bs+1(xλ, y)Bs+1(x, yλ)−1

as elements of the free product H =∗i Ui; now x, y range over the disjoint union
x, y ∈

⊔
Ui(j). We call these welding relations in the free product H.

By substitution, Theorem 10.D.3 gives rises to the set of relations in FS
(10.D.5)

Rweld =

{
Bs+1

(
xλ, y

)
Bs+1

(
x, yλ

)−1

: x, y ∈
⊔
i

Ui(j), λ ∈ Kj, j = 1 . . . , d

}
.

in the free group FS. We call these welding relations. We define the set R1
weld of

welding relators as those welding relations for which ‖x‖′, ‖y‖′, |λ| ≤ 1, where
‖ · ‖′ is the prescribed Lie algebra norm.

It follows from Corollary 8.C.9 that G has a presentation with relators those
of Ĝ (given in Lemma 10.B.3) along with welding relators. At this point, this
already reproves Abels’ result.

Corollary 10.D.6 (Compact presentation of G). Let G be a standard solvable
group. Assume that G is 2-tame and H2(una)0 = {0}. Then:

(a) (Abels) G is compactly presented;
(b) if H2(u)0 = {0}, a compact presentation of G is given by

(10.D.7) 〈S̄ | R̄1
tame ∪R1

amalg ∪R1
weld〉.

(c) if H2(u)0 = {0} and Kill(u)0 = {0}, a compact presentation of G is given by

〈S̄ | R̄1
tame ∪R1

amalg〉.
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Proof. First assume that H2(u)0 = {0}. The above remarks show that if π′ is

the natural projection FS → Ĝ, then π′(R1
weld) generates normally the kernel of

Ĝ → G. Therefore, by Proposition 10.C.2, G admits the compact presentation
(10.D.7). This proves (b).

To obtain (a), It remains to prove that G is compactly presented only assuming
H2(una)0 = {0}, but then G/G0 is compactly presented by the previous case, and
it follows that G is compactly presented.

Finally (c) is by combining Proposition 10.C.2, which says that 〈S̄ | R1
tame ∪

R1
amalg〉 is a presentation of Ĝ (for an arbitrary standard solvable group), and

Corollary 9.D.4, which says that the natural projection Û → U is an isomorphism
(and hence Ĝ→ G as well). �

Remark 10.D.8. Let us pinpoint that this does not coincide, at this point,
with Abels’ proof. Abels did not prove that the kernel of Ĝ→ G is generated by
welding relators. Instead (assuming that G is totally disconnected), he considered
the multiamalgamated product U̇ of all Ui and a compact open subgroup Ω of
U , and Ġ = U̇ oA, assuming that Ω is generated by the intersections Ω ∩ Ui, so
that Û → U̇ and Ĝ→ Ġ are surjective.

Defining Si = Ui ∩ Ω and using S =
⋃
Si ∪ T as a generating subset of G

(recall that T is a compact generating subset of A), we see that Ω is boundedly
generated by

⋃
Si (for instance, by the Baire category theorem). It follows that

Ġ is the quotient of Ĝ by a normal subgroup normally generated by generators
of bounded length. Hence Ġ is boundedly presented by S.

There is a natural projection Ġ → G. Since welding relators are killed by
the amalgamation with Ω, we know that the natural projection Ġ → G is an
isomorphism. Not having the presentation by welding relators, Abels used instead
topological arguments [Ab87, 5.4, 5.6.1] to reach the conclusion that Ġ → G is
indeed an isomorphism; thus G is compactly presented.

This approach, with the use of a compact open subgroup is, however, “unsta-
ble”, in the sense that it does not yield a presentation of U(A) o A when A is
an arbitrary commutative K-algebra, and the presentation with welding relators
will be needed in the sequel in a crucial way when we obtain an upper bound on
the Dehn function.

10.E. Quadratic estimates and concluding step for standard solvable
groups with zero Killing module. Let us call the rank of A the unique d
such that A admits a copy of Zd as a cocompact lattice.

Theorem 10.E.1. Let G = U o A be a standard solvable group. If G is 2-tame
and H2(u)0 and Kill(u)0 both vanish, then the Dehn function of G is quadratic
(or linear in case A has rank ≤ 1).

If A has rank 0 then G is compact; if A has rank 1, then 2-tame implies tame,
and in that case, the Dehn function is linear (see Remark 6.A.9). Otherwise, if
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A has rank at least 2, the Dehn function is at least quadratic. So the issue is to
obtain a quadratic upper bound.

Fix c and a c-tuple (℘1, . . . , ℘c) of elements in {1, . . . , ν}. Recall that U℘(r) ⊂
FS̄ denotes the set of null-homotopic words of the form w1 . . . wc, with w` ∈ S(r)

℘` .
Theorem 6.C.1 reduces the proof of Theorem 10.E.1 to proving that, for each
given ℘, words in U℘(r) have an at most quadratic area with respect to r. We
now proceed to prove this. We also prove a statement holding for more specific
relations but without the vanishing assumptions, which will be used in the sequel.

Theorem 10.E.2. Let G = U o A be a 2-tame standard solvable group. Let
U1, . . . , Uν be its standard tame subgroups. Then

(1) Assume that H2(u)0 and Kill(u)0 both vanish. Fix an integer c and any
c-tuple (℘1, . . . , ℘c) of elements in {1, . . . , ν}. Then for r ≥ 0, the area of
words in U℘(r) ⊂ FS̄ is quadratically bounded in terms of r.

(2) Let s be such that U is s-nilpotent (that is, U (s+1) = {1}). Then for every

group word w(x1, . . . , xc) that belongs to the (s+ 2)-th term F
(s+2)
c of the

lower central series of the free group Fc, and for any u1, . . . , uc in
⊔
i Ui,

the relation w(u1, . . . , uc) in Ĝ has an at most quadratic area with respect
to its total length (the constant not depending on c).

Proof. Theorem 10.E.1 makes use of the results of §7.B. With the notation of
§7.B, for any K-algebra A we have H[A] =∗νi=1 Ui(A).

Let us encode the amalgamation relations. For any 1 ≤ i 6= j ≤ ν, write
Uij(A) = Ui(A)∩Uj(A), and let sij be the inclusion of Uij(A) into Ui(A). Define
a closed subscheme Rij of

∏ν
i=1 Ui by defining

Rij(A) = {(u1, . . . , uν) : uk = 1 ∀k /∈ {i, j}, ui, uj ∈ Uij(A), and uiuj = 1}.

Define R[A] =
⋃
i<j Rij(A). Thus, taking the quotient of H[A] by πA(R[A]) means

amalgamating the Ui along their intersections; we thus denote this quotient as

Û[A] (in §7.B it was denoted as Q[A]). Define R = R̄1
tame ∪R1

amalg.
Using this, we now prove (1) and (2) separately.
We begin with (1). Since u is 2-tame and H2(u)0 and Kill(u)0 vanish, for

every commutative K-algebra A, we have HA
2 (u ⊗K A)0 = HK

2 (u)0 ⊗K A = {0},
and similarly KillA(u ⊗K A)0 = {0}. Thus by Corollary 9.D.4, Û[A] → U(A) is
an isomorphism for every A. It follows that L℘ (defined in §7.B.3) is a closed
subscheme of U℘, so we can apply Theorem 7.B.5 with M = L℘. It gives an upper
bound of the areas of elements in M(K) in terms of upper bounds on the Dehn
functions of the Ui and of the areas of the relations of the form u1 . . . uν with
(u1, . . . , uν) ∈ R[K]. In this case, the Ui have at most quadratic Dehn function
by Corollary 6.A.8, and the amalgamation relations have an at most linear area
by Proposition 10.C.3. Thus by Theorem 7.B.5, elements of M(K) have an at
most quadratic area with respect to their length and R.
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To prove of (2), we argue as follows. By Theorem 9.D.1, Û[A] is (s+1)-nilpotent
for every A; thus, defining M′ = U℘, we have M′(A) ⊂ Lw℘ (A) (with the notation
of Theorem 7.B.7.

By Proposition 10.C.3, the tame and amalgamation relations have an at most
quadratic area with respect to the presentation 〈S̄ | R̄1

tame ∪R1
amalg〉. We are thus

in position to apply Theorem 7.B.7, which yields the desired result. �

10.F. Area of welding relations. We now bound the area of welding relations,
making use of the quadratic bound on the area of general nilpotency relations
from §10.E.

Theorem 10.F.1. If the standard solvable group G = U o A is 2-tame, then
welding relations in G have an at most cubic area.

More precisely, there exists a constant K such that for all j, all x, y ∈
⋃
i Ui(j),

and all λ ∈ Kj, the welding relation (10.D.5) has area at most Kn3, with n =
log(1 + ‖x‖+ ‖y‖+ |λ|).

Let us assume that the subgroup U , in Theorem 10.F.1, is s-nilpotent. In all
this subsection, we write A = As+1, B = Bs+1, q = qs+1. Theorem 10.E.2(2)
applies to the group words corresponding to equalities of Proposition 5.C.3, pro-
viding

Theorem 10.F.2. If G is 2-tame and U is s-nilpotent, for all x ∈ UC1, y ∈ UC2

and z ∈ UC3, the relations

A(x, y) = A(y, x); B(x, y) = B(y, x)−1

B(A(x, y), z) = A(B(x, z), B(y, z));

A(A(x, y), zq) = A(xq, A(y, z))

B(xk, y) = B(x, yk) = B(x, y)k

have an at most quadratic area in Ĝ for the presentation 〈S̄ | R̄1
tame∪R1

amalg〉. �

(By “the relation w = w′ has an at most quadratic area, we mean the relation
w−1w′ has an at most quadratic area.) Note that in the last case, the quadratic
upper bound is of the form ckn

2, where ck may depend on k.
Although we only use it as a lemma in the course of proving Theorem 10.F.1, we

state Theorem 10.F.2 as a theorem, because it provides a geometric information
which is not encoded in the Dehn function, namely a quadratic area for certain
types of loops.

We now proceed to prove Theorem 10.F.1. Using (with quadratic cost) the
“bilinearity” of B (or restricting scalars from the beginning), we can suppose
that Kj is equal to R or Qp (although the forthcoming argument can be adapted
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with unessential modifications to their finite extensions). If Kj = Qp, define
πj = p. If Kj = R, define πj = 2. We consider the following finite subset of Q:

Λ1
j(n) =

{
λ =

n−1∑
i=0

εiπ
i
j : εi ∈ {−πj + 1, . . . , πj − 1}

}
⊂ Q ⊂ Kj.

Lemma 10.F.3. For every κ > 0, there exists K > 0 such that for all n ∈ N, all
j, all x, y ∈

⋃
Ui(j) with log(1 + ‖x‖+ ‖y‖) ≤ n and all λ ∈ Λj

1(κn), the welding
relation

B
(
xλ, y

)
B
(
x, yλ

)−1

has area ≤ Kn3.

Proof. We can work for a given j, so we write π = πj. Write

λ =
κn−1∑
i=0

εiπ
i (εi ∈ {−π + 1, . . . , π − 1}).

If we set

λi =
κn−1∑
k=i

εkπ
k−i,

we have λ0 = λ, λκn = 0, and, for all i

λi = πλi+1 + εi

Set z = q−1y and σi =
∑i

j=1 εiπ
i (so σ−1 = 0); consider the word

Φi = A
(
B
(
λix, πiz

)
, B (x, σi−1z)

)
Here, for readability, we write λx (etc.) instead of xλ. This is natural since x

can be identified to its Lie algebra logarithm. For i = 0, σi−1 = 0 so, since 1 = 1
and, formally, B(x, 1) = 1 and A(x, 1) = xq (see Remark 5.C.2), we have

Φ0 = B
(
λx, z

)q
.

For i = κn, λn = 0 and σi−1 = λ so this is (using that formally B(1, y) = 1
and A(1, y) = yq)

Φκn = B
(
x, λz

)q
.

Let us show that we can pass from Φi to Φi+1 with quadratic cost. In the
following computation, each  means one operation with quadratic cost, i.e.,
with cost≤ K0n

2 for some constant K0 only depending on the group presentation.
The tag on the right explains why this quadratic operation is valid, namely:

• (1) means both the homotopy between loops lies in one tame subgroup.
• (2) means the operation follows from Theorem 10.F.2; to be specific:
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– (2)distr left for

B(A(x, y), z) = A(B(x, z), B(y, z))

and similarly (2)distr right on the right

– (2)Q for an equality of the type

B(x, yk) = B(xk, y) = B(x, y)k,

with k an integer satisfying |k| ≤ max(q, π).
– (2)assoc for the identity A(A(x, y), zq) = A(xq, A(y, z)).

• Or a tag referring to a previous computation, written in brackets.

λix = q(πλi+1q−1x+ εiq−1x)(10.F.4)

 
(
πλi+1q−1x+ εiq−1x

)q
(1)

 
(
πλi+1q−1x+ εiq−1x

)q
(1)

 A
(
πλi+1q−1x, εiq−1x

)
(1)

So by substitution we obtain

B
(
λix, πiz

)
 B

(
A
(
πλi+1q−1x, εiq−1x

)
, πiz

)
[10.F .4]

(10.F.5)

 A
(
B
(
πλi+1q−1x, πiz

)
, B
(
εiq−1x, πiz

) )
(2)distr left

 A
(
B
(
πλi+1q−1x, πiz

)
, B
(
q−1x, εiπiz

) )
(2)Q

Independently we have

B (x, σi−1z) B
(
q−1x

q
, σi−1z

)
(1)(10.F.6)

 B
(
q−1x, σi−1z

)q
(2)Q

Again by substitution, this yields
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Φi =A
(
B
(
λix, πiz

)
, B (x, σi−1z)

)(10.F.7)

 A
(
A
(
B
(
πλi+1q−1x, πiz

)
, B
(
q−1x, εiπiz

) )
, B
(
q−1x, σi−1z

)q)
[10.F .5, 10.F .6]

 A
(
B
(
πλi+1q−1x, πiz

)q
, A
(
B
(
q−1x, εiπiz

)
, B
(
q−1x, σi−1z

)))
(2)assoc

 A
(
B
(
πλi+1q−1x, πiz

)q
, B
(
q−1x,A

(
εiπiz, σi−1z

)))
(2)distr right

(10.F.8)

By similar arguments

B
(
πλi+1q−1x, πiz

)q (2)Q
 B

(
λi+1x, πi+1z

)
,

and

B
(
q−1x,A

(
εiπiz, σi−1z

))
 B

(
q−1x, q(εiπiz + σi−1z)

)
(1)

 B
(
x, εiπiz + σi−1z

)
(2)Q

=B (x, σiz)

so substituting from (10.F.8) we get

Φi  A
(
B
(
λi+1x, πi+1z

)
, B (x, σiz)

)
= Φi+1

in quadratic cost, say ≤ K1n
2 (noting that each Φi has length ≤ K2n for some

fixed constant K2). Note that the constant K1 only depends on the group pre-
sentation, because the above estimates use a quadratic filling only finitely many
times, each among finitely many types (note that we used (2)Q only for k in a
bounded interval, only depending on K and s).

It follows that we can pass from Φ0 to Φκn with cost ≤ K1κn
3. On the other

hand, by substitution of type (2)Q, we can pass with quadratic cost from B(λx, y)

to B(λx, q−1y)q = Φ0 and from Φκn = B(x, λq−1y)q to B(x, λy). So the proof of
the lemma is complete. �

Conclusion of the proof of Theorem 10.F.1. Let now Λ2
j(n) be the set of quo-

tients λ′/λ′′ with λ′, λ′′ ∈ Λ1
j(n), λ′′ 6= 0. Lemma 10.F.3 immediately extends

to the case when λ ∈ Λ2
j . It follows from the definition that Λ2

j(κn) contains all

elements of the form λ =
∑κn

i=−κn εiπ
i
j, with εi ∈ {−πj, . . . , πj}.

If Kj = R, πκnj Λ2
j(κn) contains all integers between −π−2κn

j and π2κn
j . Thus

Λ2
j(κn) contains a set which is |π−κn|-dense in the ball of radius |πκn|. If Kj =

Qp, π
κnΛ2

j(κn) contains a |π2κn|-dense subset of Zp. Thus Λ2
j(κn) contains a

|πκn|-dense subset of the ball of radius |π−κn|. In both cases, defining %j =
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max(|πj|, |πj|−1), we obtain that Λ2
j(κn) contains a %−κnj -dense subset of the ball

of radius %κnj in Kj.
We now fix j and write % = %j, π = πj. We pick κ = 2/ log(%), so that

%κn = e2n. We assume that n ≥ log(1/|q|), where |q| is the norm of q in Kj (if
Kj = R this is an empty condition). It follows that %−κn|q|−1en ≤ 1.

Now fix λ ∈ Kj with |λ| ≤ en. We need to prove that we can pass from

B(λx, y) to B(x, λy) with cubic cost; clearly it is enough to pass from B(λx, y)q

to B(x, λy)q with cubic cost.
Since |λ| ≤ en ≤ %κn, we can write λ = µ+qε with µ ∈ Λ2(κn) and |qε| ≤ %−κn.

So |ε| ≤ %−κn|q|−1 ≤ e−n.
Also, assume that n ≥ log(%). So we can find an integer k with n/ log(%) ≤ k ≤

2n/ log(%). Thus, if we define η = π±k, with the choice of sign so that |η| > 1;
we have en ≤ |η| ≤ e2n ≤ en|ε|−1.

Using a computation as in (10.F.4), we obtain, with quadratic cost

B(λx, y) =B
(

(µ+ qε)x, y
)

 B
(
A(µq−1x, εx), y

)
[10.F .4]

 A
(
B
(
µq−1x, y

)
, B(εx, y)

)
(2)distr left

and similarly, with quadratic cost.

B
(
x, λy

)
 A

(
B(x, µq−1y), B(x, εy)

)
By the previous case, with cubic cost we have

B
(
µq−1x, y

)
 B

(
x, µq−1y

)
So it remains to check that with cubic cost we have

(10.F.9) B(εx, y) B(x, εy).

If η is the element introduced above, observe that η ∈ Λ2
j(κn) and en ≤ |η| ≤

en|ε|−1. We have, with cubic cost

(10.F.10) B(εx, y) B(ηεx, η−1y); B(η−1x, ηεy) B(x, εy).

Since max(|ηε|, |η|−1) ≤ e−n, it follows that all four elements ηεx, η−1y, η−1x,
εy have norm at most one, and it follows that we can perform

(10.F.11) B
(
ηεx, η−1y

)
 B

(
η−1x, ηεy

)
by application of a single welding relator. So (10.F.9) follows from (10.F.10) and
(10.F.11). �
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10.G. Concluding step for standard solvable groups.

Theorem 10.G.1. Let G be a standard solvable group. If G is 2-tame and
H2(u)0 = 0 then its Dehn function is at most cubic.

Exactly as in the proof of Theorem 10.E.1, Theorem 6.C.1, along with the
cubic bound on the area of welding relators provided by Theorem 10.F.1, allows
to reduce the proof of Theorem 10.G.1 to the following:

Theorem 10.G.2. Let G = U o A be a 2-tame standard solvable group with
H2(u)0 = 0; let U1, . . . , Uν be its standard tame subgroups; fix a positive function
n 7→ g(n) such that n 7→ g(n)/n2 is eventually non-decreasing. Assume that the
welding relations in G of length n have an area � g(n).

Fix c and a c-tuple (℘1, . . . , ℘c) of elements in {1, . . . , ν}. Then words in U℘(n)
have an area, for the presentation 〈S̄ | R̄1

tame ∪ R1
amalg ∪ R1

weld〉, asymptotically
bounded above by g(n).

(We state the theorem with an arbitrary function g(n), because we do not
know if the cubic bound is optimal; this might depend on G even assuming
Kill(u)0 6= 0.)

Proof. The proof follows the same lines as Theorem 10.E.2(1); let us highlight
the differences. We need to include welding relations in the definition of R:
namely, defining Rij as in the proof of Theorem 10.E.2, we will define R[A] =
Rweld[A] ∪ Rij(A), where Rweld is defined as follows.

Let s be such that U is s-nilpotent. Define w ∈ F4 as equal to w(x, x′, y, y′) =
Bs+1(x, y)Bs+1(x′, y′)−1, where Bs+1 is a word as given by Theorem 5.C.1.

We wish to define (recall that K =
⊕d

j=1 Kj)

Rweld[A] =
⋃

1≤i,i′≤ν,1≤j≤d

Wii′(j)(A),

and we have to define Wii′(j) ⊂
∏ν

`=1 Ui.
Define, for V,V′ unipotent K-groups, the following subscheme M′ = M′V,V′ of

V× V× V′ × V′ defined by

M′(A) = {(v1, v2, v
′
1, v
′
2) ∈ (V× V× V′ × V′)(A) : ∃λ ∈ A : v1 = vλ2 , v

′
2 = v′1

λ}.
Here vλ means exp(λ log(v)). That it is a subscheme can be seen on the Lie
algebra, where it corresponds to the 4-tuples (v1, v2, v

′
1, v
′
2) such that there exists

λ such that v1 = λv2 and v′2 = λv′1. Then writing in coordinates, this is equivalent
to the condition that

• v2iv1i′ − v1iv2i′ = v′2iv
′
1i′ − v′1iv′2i′ = 0 for all i, i′,

• v2iv
′
2i = v′1iv1i for all i;

hence it is indeed a subscheme. Using the notation of §7.B.6, we have

(w •M′V,V′)(A) = {Bs+1(xλ, y)Bs+1(x, yλ)−1 | x ∈ V(A), y ∈ V′(A), λ ∈ K}.
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Hence if we define Wii′(j) = w •M′Ui(j),Ui′(j) , we have .

Wii′(j)(A) = {Bs+1(xλ, y)Bs+1(x, yλ)−1 | x ∈ Ui(j)(A), y ∈ Ui′(j)(A), λ ∈ Kj}.

Now the definition of R is complete, and by Theorem 10.D.4, the quotient of
H[A] by the normal subgroup generated by R[A] is canonically U(A), for every
commutative K-algebra A. Hence we can, as in the proof of Theorem 10.E.2(1),
define M as equal to L℘.

Fix c and a c-tuple ℘ of elements in {1, . . . , ν}. By Theorem 10.D.4, denoting
R = R̄1

tame∪R1
amalg∪R1

weld, we have R ⊂ R[K]; by Theorem 10.D.6(b), the kernel
of the quotient map from FS̄ to G is generated as a normal subgroup by R. By
assumption (and Proposition 10.C.3), the words defined by the relations in R[K]
have area � g(r) with respect to their length r. Hence by Theorem 7.B.5, the
area of words x1 . . . xc with xi ∈ U℘i is � g(r), where r = maxi |xi|.

Since this holds for every given ℘, by Theorem 6.C.1 (which encapsulates Gro-
mov’s trick), we deduce that the Dehn function of G is 4 g(n). �

10.H. Dehn function of generalized standard solvable groups. We define
a generalized standard solvable group as a locally compact group of the form
U oN , where the definition is exactly as for standard solvable groups (Definition
1.2), except that N is supposed to be nilpotent instead of abelian.

Recall from §6.E that such a group is generalized tame if some element c of N
acts on U as a compaction. Clearly split triangulable Lie groups, i.e. of the form
G = G∞ oN , are special cases of generalized standard solvable groups.

Theorem 10.H.1. Let G be a generalized standard solvable group not satisfying
any of the (SOL or 2-homological) obstructions. Suppose that the Dehn function
of N is bounded above by some function f such that r 7→ f(r)/rα is non-decreasing
for some α > 1.

Then the Dehn function of G satisfies δG(n) 4 nf(n). If moreover Kill(u)0 =
{0}, then δG(n) 4 f(n).

Note that in all examples we are aware of, the function f can be chosen to be
equivalent to the Dehn function of N .

The proof follows similar steps as in the case of standard solvable groups, so
we only sketch it. The first step is an upper bound for the Dehn function of
generalized tame groups, which was obtained in §6.E.

Sketch of proof of Theorem 10.H.1. Theorem 6.E.2 implies that the generalized
standard tame subgroups of G (i.e., the UioN , where Ui are the standard tame
subgroups of U) have their Dehn function � f(n). The remainder of the proof
follows the same steps as Theorems 10.E.1 and 10.G.1, allowing a reduction to
giving estimates on the area of amalgamation and welding relations of some given
combinatorial length. The amalgamation relations have a linearly bounded area
with respect to their length, by the same trivial argument as in Proposition



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 117

10.C.3. In case Kill(u)0 = {0}, this provides δN as an upper bound for the Dehn
function.

In the context of generalized standard groups, the analogue of Theorem 10.E.2
holds (with the same proof using Gromov’s trick and the results of §7.B), with
an estimate 4 f(n) instead of 4 n2. Accordingly, the same holds for its corollary,
Theorem 10.F.2. The remainder of the proof of the generalized tame analogue of
Theorem 10.F.1 works in the same way: we perform ' n times a homotopy of area
4 f(n) instead of 4 n2, which yields an area 4 nf(n) for welding relators. The
concluding step is exactly as in §10.G and yields a Dehn function 4 nf(n). �

11. Central and hypercentral extensions and exponential Dehn
function

In this section, unless explicitly specified, all Lie algebras are finite-dimensional
over a field K of characteristic zero.

11.A. Introduction of the section. The purpose of this section is to prove the
negative statements of the introduction in presence of 2-homological obstructions
(Theorem E.2), gathered in the following theorem.

Theorem 11.A.1. (1) If G is a standard solvable group (see Definition 1.2)
satisfying the non-Archimedean 2-homological obstruction, then G is not
compactly presented;

(2) if G is a standard solvable group satisfying the 2-homological obstruction,
then it has an least exponential Dehn function (possibly infinite);

(3) if G is a real triangulable group with the 2-homological obstruction, then
it has an at least exponential Dehn function.

(1) and (2) are proved, by an elementary argument relying on central exten-
sions, in §11.B. (3) is much more involved. The reason is that the exponential
radical g∞ is not necessarily split in g and the non-vanishing of H2(g)0 does not
necessarily yield a central extension of g in degree zero (an explicit counterexam-
ple is given in §11.E). We then need some significant amount of work to show
that it provides, anyway, a hypercentral extension.

11.B. FC-Central extensions. We use the following classical definition, which
is a slight weakening of the notion of central extension.

Definition 11.B.1. Consider an extension

(11.B.2) 1→ Z
i→ G̃→ G→ 1.

We say that it is an FC-central extension if i(Z) is FC-central in G̃, in the sense

that every compact subset of i(Z) is contained in a compact subset of G̃ that is
invariant under conjugation.
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This widely used terminology is (lamely) borrowed from the discrete case, in
which it stands for “Finite Conjugacy (class)”.

In the following, the reader can assume, in a first reading, that the FC-central
extensions (defined below) are central. The greater generality allows to consider,
for instance, the case when Z is a nondiscrete locally compact field on which the
action by conjugation is given by multiplication by elements of modulus 1.

Consider now an FC-central extension as in (11.B.2), and assume that G̃ gen-
erated by a compact subset S (symmetric with 1); Fix k, set Wk = Z ∩ Sk, and

W̌k =
⋃
g∈G̃ gWkg−1, which is a compact subset of Z by assumption. The fol-

lowing easy lemma, is partly a restatement of [BaMS93, Lemma 5] (which deals
with finitely generated groups and assumes Z is central).

Lemma 11.B.3. Keep the notation of Definition 11.B.1. Let γ̃ be any path in

the Cayley graph of G̃ with respect to S, joining 1 to an element z of Z. Let γ
be the image of γ̃ in the Cayley graph of G (with respect to the image of S). If γ̃
can be filled by m (≤ k)-gons, then z ∈ W̌k

m
.

Proof. If γ̃ can be filled by m (≤ k)-gons, then z can be written (in the free group

over S, hence in G̃) as z =
∏m

i=1 hirih
−1
i , where ri, hi ∈ G̃, ri ∈ Ker(G̃→ G) = Z

having length ≤ k with respect to S, i.e. ri ∈ Wk. Thus hirih
−1
i ∈ W̌k; hence

z ∈ W̌k
m

. �

In Definition 11.B.1, the group Z may or not be compactly generated; if it is
the case, let U a compact generating set of Z, and define the distortion of Z in
G as

dG,Z(n) = max(n, sup{|g|U : g ∈ Z, |g|S ≤ n});
if Z is not compactly generated set dG,Z(n) = +∞. Note that this function
actually depends on S and U as well, but its ∼-equivalence class only depends
on (G,Z).

Proposition 11.B.4. Given a FC-central extension as in Definition 11.B.1, if
G is compactly presented, then Z is compactly generated and its Dehn function
satisfies δG(n) � dG,Z(n).

Proof. By Lemma 11.B.3, if G is presented by S and relators of length ≤ k, then
Z is generated by W̌k, which is compact.

If U is a compact generating set for Z, then Wk ⊂ U ` for some `. Write
d(n) = dG,Z(n) (relative to S and U) and δ(n) = δG(n). Consider g ∈ Z with

|g|S ≤ n and |g|U = d(n). Taking γ̃ to be a path of length ≤ n in G̃ joining 1 and
g as in Lemma 11.B.3, we obtain that the loop γ in G has length ≤ n and area
m, and Lemma 11.B.3 implies that d(n) = |g|U ≤ m`. So δ(n) ≥ d(n)/`. �

Proof of (1) and (2) in Theorem 11.A.1. In the setting of (1), we assume that
G = U oA satisfies the non-Archimedean 2-homological obstruction, so that for
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some j, Kj is non-Archimedean and the condition Z = H2(uj)0 6= 0 means that
the action of A on Uj can be lifted to an action on a certain FC-central extension

1→ Z
i→ Ũj → Uj → 1,

so that i(Z) is contained and FC-central in [Ũj, Ũj]; here ũ is the blow-up of the
graded Lie algebra u, as defined in §8.B, and Z ' H2(uj). Thus it yields an
FC-central extension

(11.B.5) 1→ Z
i→ Ũ o A→ U o A→ 1,

where Ũ = Ũj×
∏

j′ 6=j Uj′ ; note that ŨoA is compactly generated. By Proposition
11.B.4, it follows that U o A is not compactly presented.

In the setting of (2), the proof is similar, with Kj being Archimedean; there

is a difference however: in (11.B.5), Z need not be FC-central in Ũ oA, because
of the possible real unipotent part of the A-action. Note that i(Z) is central in
Ũ . We then consider an A-irreducible quotient Z ′′ = Z/Z ′ of Z and consider the
FC-central extension

1→ Z ′′
i→ Ũ o A→ U o A→ 1.

Since the real group Uj is globally exponentially distorted (in the sense that all
elements of exponential size in Uj have linear size in UjoA), it follows that i(Z ′′)
is exponentially distorted as well and by Proposition 11.B.4, it follows that UoA
has an at least exponential Dehn function. �

11.C. Hypercentral extensions. To prove Theorem 11.A.1(3), the natural ap-
proach seems to start with a real triangulable group G with H2(g∞)0 6= 0 and find
a central extension of G with exponentially distorted center. If the exponential
radical of G is split, i.e. if G = G∞oA for some nilpotent group A, the existence
of such a central extension follows by a simple argument similar to that in the
proof of Theorem 11.A.1(2). Unfortunately, in general such a central extension
does not exist; although there are no simple counterexamples, we construct one
in §11.E.

Nevertheless, in order to prove Theorem 11.A.1(3), the geometric part of the
argument is the following variant of Proposition 11.B.4.

Proposition 11.C.1. Let G be a connected triangulable Lie group and G∞ its
exponential radical (see Definition 4.D.2). Suppose that there exists an extension
of connected triangulable Lie groups

1 −→ N −→ H −→ G −→ 1

with N hypercentral in H (i.e. the ascending central series of H covers N) and
with N ∩H∞ 6= {1}. Then G has an (at least) exponential Dehn function.

Proof. We fix a compact generating set S in H, and its image S ′ in G. Let hn ∈ N
be an element of linear size n in H and exponential size ' en in N . Pick a path
of size n joining 1 to h in H, i.e. represent h by a word γn = x1 . . . xn in H with
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xi ∈ S. Push this path forward to G to get a loop of size n in G; let an be its
area. So in the free group over S, we have

γn =
an∏
j=1

gnjrnjg
−1
nj

where rj is a relation of G (i.e. represents the identity in G) of bounded size. By
a standard argument using van Kampen diagrams (see Lemma 2.D.2), we can
choose the size of gnj to be at most ≤ C(an + n), where C is a positive constant
only depending on (G,S ′). Push this forward to H to get

hn =
an∏
j=1

gnjrnjg
−1
nj ,

where rnj here is a bounded element of N , and gnj has length ≤ C(an + n) in H.
Since the action of H on N by conjugation is unipotent, we deduce that the size
in N of gnjrnjg

−1
nj is polynomially bounded with respect to an+n, say � (an+n)d

(uniformly in j). Therefore hn has size � (an+n)d+1. Since (hn) has exponential
growth in N , we deduce that (an) also grows exponentially. �

Let us emphasize that at this point, the proof of Theorem 11.A.1(3) is not
yet complete. Indeed, given a real triangulable group G with H2(g∞)0 6= 0, we
need to check that we can apply Proposition 11.C.1. This is the contents of the
following theorem. If V is a G-module, V G denotes the set of G-fixed points.
Also, see Definition 4.D.1 for the definition of g∞.

Theorem 11.C.2. Let G be a triangulable Lie group. Suppose that H2(g∞)G 6=
{0}. Then there exists an extension of connected triangulable Lie groups

1 −→ N −→ H −→ G −→ 1

with N hypercentral in H and with N ∩H∞ 6= {1}.

The theorem will easily follow from the analogous (more general) result about
solvable Lie algebras.

By epimorphism of Lie algebras we mean a surjective homomorphism, and we
denote it by a two-headed arrow h� g. Such an epimorphism is k-hypercentral
if its kernel z is contained in the kth term hk of the ascending central series of
h; when k = 1, that is, when z is central in h, it is simply called a central
epimorphism. Also, if m is a g-module, we write mg = {m ∈ m : ∀g ∈ g, gm =
0}.

Definition 11.C.3. We say that a hypercentral epimorphism h � g between
Lie algebras has polynomial distortion if the induced epimorphism h∞ � g∞

is bijective; otherwise we say it has non-polynomial distortion.
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The terminology is motivated by the fact that if G,H are triangulable Lie
groups and H � G is a hypercentral epimorphism, then its kernel is polyno-
mially distorted in H if and only if the corresponding Lie algebra hypercentral
epimorphism has polynomial distortion (in the above sense), and otherwise the
kernel is exponentially distorted in H.

Theorem 11.C.4. Let g be a K-triangulable Lie algebra. Assume that H2(g∞)g 6=
{0}. Then there exists a hypercentral epimorphism h � g with non-polynomial
distortion.

The condition H2(g∞)g 6= {0} can be interpreted as H2(g∞)0 6= {0}, where g
is endowed with a Cartan grading (see §4.D, especially Lemma 4.D.8). Theorem
11.C.4 will be proved in §11.D.

Proof of Theorem 11.C.2 from Theorem 11.C.4. Theorem 11.C.4 provides a hy-
percentral epimorphism h� g, with kernel denoted by z, and with non-polynomial
distortion, i.e. h∞∩ z 6= {0}. Since z is hypercentral, the action of g on z is nilpo-
tent, hence triangulable, and since moreover g and z are triangulable, we deduce
that h is triangulable. Let H → G be the corresponding surjective homomor-
phism of triangulable Lie groups and Z its kernel, which is hypercentral. Then
H∞ ∩ Z 6= {1}, because the Lie algebra counterpart holds. So the theorem is
proved. �

11.D. Proof of Theorem 11.C.4.

Lemma 11.D.1. Let g � h � l be epimorphisms of Lie algebras such that the
composite homomorphism is a hypercentral epimorphism. If g� l has polynomial
distortion then so does h� l.

Proof. This is trivial. �

Lemma 11.D.2. Let g be a Lie algebra and (T t)t∈K be a one-parameter group of
unipotent automorphisms of g. Let h� g be a central epimorphism. Then there
exists a Lie algebra k with an epimorphism ρ : k � h such that the composite
homomorphism k� g is a central epimorphism, and such that the action of (T t)
lifts to a unipotent action on k.

Remark 11.D.3. The conclusion of Lemma 11.D.2 cannot be simplified by the
requirement that k = h, as we can see, for instance, by taking h to be the direct
product of the 3-dimensional Heisenberg algebra and a 1-dimensional algebra and
a suitable 1-parameter subgroup of unipotent automorphisms of g = h/[h, h].

Proof of Lemma 11.D.2. Set z = Ker(h � g) and denote the Hopf bracket (see
§8.A.1) by

[·, ·]′ : g ∧ g→ h.

Pick a linear projection π : h→ z and define b(x ∧ y) = π([x, y]′). This gives a
linear identification of h with g⊕ z, for which the law is given as

[ 〈x1, z1〉 , 〈x2, z2〉 ] = 〈 [x1, x2] , b(x1 ∧ x2) 〉
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(in this proof, we write pairs 〈x, z〉 rather than (x, z) for the sake of readability).
Observe that T t naturally acts on g∧ g, preserving Z2(g) and B2(g). If c ∈ g∧ g,
define the function

αc : K → z

u 7→ b(T uc).

If d is the dimension of g, let W denote the space of K-polynomial mappings
of degree < 2d from K to z; the dimension of W is 2d dim(z). Now t 7→ T t is a
polynomial of degree < d valued in the space of endomorphisms of g, so is also
polynomial of degree < 2d valued in the space of endomorphisms of g ∧ g. So αc
is a polynomial of degree < 2d, from K to z.

If c ∈ g ∧ g is a boundary then αc = 0. So α defines a central extension
k = g⊕W (as a vector space) of g with kernel W , with law

[〈x1, ζ1〉, 〈x2, ζ2〉] = 〈[x1, x2], αx1∧x2〉, 〈x1, ζ1〉, 〈x2, ζ2〉 ∈ g⊕W.

From now on, since elements of W are functions, it will be convenient to write
elements of k as 〈x, ζ(u)〉, where u is thought of as an indeterminate. For t ∈ K,
the automorphism T t lifts to an automorphism of k given by

T t(〈x, ζ(u)〉) = 〈T tx, ζ(u+ t)〉.

This is obviously a one-parameter subgroup of linear automorphisms; let us check
that these are Lie algebra automorphisms (in the computation, for readability we
write the brackets as [·; ·], with semicolons instead of commas).

[T t(〈x1, ζ1(u)〉) ; T t(〈x2, ζ2(u)〉) ] = [ 〈T tx1, ζ1(u+ t)〉 ; 〈T tx2, ζ2(u+ t)〉 ]
= 〈 [T tx1;T tx2] , αT tx1∧T tx2(u) 〉
= 〈 [T tx1;T tx2] , b(T u(T tx1 ∧ T tx2)) 〉
= 〈T t[x1;x2] , b(T t+ux1 ∧ T t+ux2) 〉
= 〈T t[x1;x2] , αx1∧x2(t+ u) 〉
= T t(〈 [x1;x2] , αx1∧x2(u)〉 )
= T t( [ 〈x1, ζ1(u)〉 ; 〈x2, ζ2(u)〉 ] ),

so these are Lie algebra automorphisms. Now the mapping

k → h

ρ : 〈x, ζ(u)〉 7→ 〈x, ζ(0)〉
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is clearly a surjective linear map; it is also a Lie algebra homomorphism: indeed

[ ρ(〈x1, ζ1(u)〉) ; ρ(〈x2, ζ2(u)〉) ] = [ 〈x1, ζ1(0)〉 ; 〈x2, ζ2(0)〉 ]
= 〈 [x1;x2] , b(x1 ∧ x2) 〉
= 〈 [x1;x2] , αx1∧x2(0) 〉
= ρ(〈 [x1;x2] , αx1∧x2(u)〉 )
= ρ([ 〈x1, ζ1(u)〉 ; 〈x2, ζ2(u)〉 ]) �

Lemma 11.D.4. The statement of Lemma 11.D.2 holds true if we replace, in
both the hypotheses and the conclusion, central by k-hypercentral.

Proof. The case k = 1 was done in Lemma 11.D.2. Decompose h � g as h �
h1 � g, with h � h1 central (with kernel z) and h1 � g (k − 1)-hypercentral.
By induction hypothesis, there exists k with k � h1 such that the composite
epimorphism k� g is (k−1)-hypercentral and such that (T t) lifts to k. Consider
the fibered product h ×h1 k of the two epimorphisms h � h1 and k � h1, so
that the two lines in the diagram below are central extensions and both squares
commute.

g

0 // z // h // // h1
//

?? ??

0

0 z h×h1 k

OOOO

// k

OOOO

// 0

m

OOOO
;; ;;

Applying Lemma 11.D.2 again to h ×h1 k � k, we obtain m � h ×h1 l so that
the composite epimorphism m � k is central and so that (T t) lifts to m. So the
composite map m� h is the desired homomorphism. �

We say that a Lie algebra g is spread if it can be written as g = no s where
n is nilpotent, s is reductive and acts reductively on n. It is spreadable if there
exists such a decomposition.

When g is solvable, s is abelian and a Cartan subalgebra of g is given by the
centralizer h = Cg(s) = Cn(s) × s. In particular, the s-characteristic decompo-
sition of g coincides with the h-characteristic decomposition, and the associated
Cartan gradings are the same.

This remark is useful when we have to deal with a homomorphism n1 o s →
n2 o s which is the identity on s: indeed such a homomorphism is graded for the
Cartan gradings.

Proof of Theorem 11.C.4. We first prove the result when g is spread, so g = uod.
Let k be the dimension of u/g∞. We argue by induction on k.
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Suppose that k = 0. We have a grading of g∞, valued in d∨. Consider the
blow-up construction (Lemma 8.B.2): it gives a graded Lie algebra g̃∞ and a
graded surjective map g̃∞ � g∞ with central kernel concentrated in degree zero
and isomorphic to H2(g∞)0. This grading, valued in d∨, defines a natural action
of d on g̃∞ and the epimorphism g̃∞ o d � g∞ o d is central. By construction,
the kernel H2(g∞)0 is contained in (g̃∞od)∞ so this (hyper)central epimorphism
has non-polynomial distortion.

Now suppose that k ≥ 1. Let n be a codimension 1 ideal of g containing g∞od.
Since n contains gO ⊕ d, the intersection of n with u0 is a hyperplane in u0. So
there exists a one-dimensional subspace l ⊂ u0, such that g = n o l. Note that
the grading of g, valued in d∨, extends that of n and n∞ = g∞ and in particular,
H2(n∞)0 6= {0}.

By induction hypothesis, there exists a hypercentral epimorphism h� n, with
non-polynomial distortion. By Lemma 11.D.4, there exists a hypercentral epi-
morphism m� h (with kernel z) so that the action of ead(l) on n lifts to a unipotent
action on m. This corresponds to a nilpotent action of l on m. Let zi be the in-
tersection of the ith term of the ascending central series of m with z, so z` = z for
some `. On each zi+1/zi, the action of l is nilpotent and the adjoint action of m is
trivial. So the action of mo l on each zi+1/zi, hence on z, is nilpotent. That is, z is
hypercentral in mo l (this is where the argument would fail with “hypercentral”
replaced by “central”). So m o l � g is the desired hypercentral epimorphism:
by Lemma 11.D.1, m � n has non-polynomial distortion and therefore so does
mo l� g.

Now the result is proved when g is spread. In general, fix a faithful linear
representation g→ gln, and let h = uo d be the splittable hull of g in gln (that
is, the subalgebra generated by semisimple and nilpotent parts of elements of g for
the additive Jordan decomposition, see [Bou, Chap. VII, §5]). If n is any Cartan
subalgebra of h, then n′ = n∩ g is a Cartan subalgebra of g [Bou, Chap. VII, §5,
Ex. 8]. Now n = (u ∩ n) + n′, but every n-weight of h vanishes on u ∩ n. So the
n-grading of h extends the n′-grading of g (in other words, the embedding g ⊂ h is
a graded map). In particular, since g∞ = h∞, this equality is an isomorphism of
graded algebras and we deduce that H2(h∞)0 6= {0}. So we obtain a hypercentral
extension m � h, with non-polynomial distortion because g∞ = h∞. By taking
the inverse image of g in m, we obtain the desired hypercentral extension of g. �

11.E. An example without central extensions. We prove here that in the
conclusion of Theorem 11.C.2, it is not always possible to replace, in the con-
clusion, hypercentral by central. We begin with the following useful general
criterion.

Proposition 11.E.1. Let g be a finite-dimensional solvable Lie algebra with its
Cartan grading. Then g has no central extension with non-polynomial distortion
if and only if the image of (Ker(d2) ∩ (gO ∧ gO))0 in H2(g)0 is zero (i.e. it is
contained in Im(d3)).
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Proof. Suppose that the image of the above map is nonzero. By the blow-up
construction (Lemma 8.B.2), we obtain a central extension ğ � g with kernel
H2(g)0 concentrated in degree zero. By the assumption, there exist xi, yi in g, of
nonzero opposite weights ±αi, such that

∑
xi ∧ yi is a 2-cycle and is nonzero in

H2(g)0. This means that in ğ, the element z =
∑

[xi, yi] is a nonzero element of
the central kernel H2(g)0. So z ∈ ğ∞ and the central epimorphism ğ � g does
not have polynomial distortion.

Conversely, suppose that there exists a central epimorphism ğ � g with non-
polynomial distortion, with kernel z. Note that the Cartan grading lifts to ğ, so
that the kernel z is concentrated in degree zero. By assumption, z∩ ğ∞ contains a
nonzero element z. By Lemmas 8.A.3 and 8.A.4, we can write, in ğ, z =

∑
[xi, yi]

with xi, yi of nonzero opposite weights. Thus in g,
∑
xi∧ yi is a nonzero element

of H2(g)0. �

Let G̃ be the 15-dimensional R-group of 6× 6 upper triangular matrices of the
form

(11.E.2)


1 x12 u13 u14 u15 u16

0 1 0 0 x25 x26

0 0 t3 u34 u35 u36

0 0 0 t4 u45 u46

0 0 0 0 1 x56

0 0 0 0 0 1

 ,

where t3, t4 are nonzero. Its unipotent radical Ũ consists of elements of the form
(11.E.2) with t3 = t4 = 1 and its exponential radical Ẽ consists of elements in
Ũ for which x12 = x25 = x26 = x56 = 0. If D denotes the (two-dimensional)
diagonal subgroup in G̃, the quotient G̃/Ẽ is isomorphic to the direct product of
D with a 4-dimensional unipotent group (corresponding to coefficients x12, x25,
x26, x56). Note that the extension 1→ Ẽ → Ũ → Ũ/Ẽ → 1 is not split.

Let Z the 2-dimensional subgroup of Ũ consisting of matrices with all entries
zero except u16 and x26. Note that Z is hypercentral and has non-trivial inter-
section with the exponential radical of G̃.

Define G = G̃/Z; it is 13-dimensional. The weights of E = Ẽ/Z are arranged
as follows (the principal weights are in boldface)

(11.E.3) 14 34

13 15 35 36

45 46
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and the other basis elements of weight zero in g are 33, 44, 12, 25, 56.
We see that e is 2-tame. Besides, H2(e)0 6= 0, as 13 ∧ 36 is a 2-cycle in degree

0 that is not a 2-boundary, as follows from the observation that e has an obvious
nontrivial central extension in degree zero, given by at the level of groups by

1→ Z/Z ′ → Ẽ/Z ′ → E → 1,

where Z ′ is the one-dimensional subgroup at position 26 (that is, the subgroup
of Z consisting of matrices with u16 = 0), which is normalized by Ẽ but not by
Ũ .

Since H2(g∞)0 6= {0}, by Theorem 11.C.4 there exists a hypercentral epi-
morphism h → g with non-polynomial distortion. By contrast, every central
epimorphism h → g has polynomial distortion. This follows from Proposition
11.E.1 and the following proposition.

Proposition 11.E.4. Let g be the above 13-dimensional triangulable Lie algebra.
Then in H2(g)0, the image of (Ker(d2) ∩ (gO ∧ gO))0 is zero.

Proof. To streamline the notation, we denote by ij the elementary matrix usually
denoted by Eij, with 1 at position (i, j) and zero everywhere else (including the
diagonal). By considering each pair of nonzero opposite weights in (11.E.3), we
can describe the map d2 on a basis of the 4-dimensional space (uO ∧ uO)0.

13 ∧ 35
d27−→ −15 13 ∧ 36 7−→ 0,

14 ∧ 45 7−→ −15, 14 ∧ 46 7−→ 0;

accordingly a basis of (Ker(d2) ∩ (gO ∧ gO))0 is given by

13 ∧ 35− 14 ∧ 45, 13 ∧ 36, 14 ∧ 46;

we have to check that these are all boundaries; let us snatch them one by one:

12 ∧ 25 ∧ 56
d37−→ 56 ∧ 15.

13 ∧ 34 ∧ 45 7−→ 13 ∧ 45− 14 ∧ 45

13 ∧ 35 ∧ 56 7−→ 56 ∧ 15 + 13 ∧ 36

14 ∧ 45 ∧ 56 7−→ 56 ∧ 15 + 14 ∧ 46. �

Combining with Proposition 11.E.1, we get:

Corollary 11.E.5. We have H2(g∞)0 6= {0}, but there is no central extension
of Lie groups

1 −→ R
j−→ Ğ −→ G −→ 1

with j(R) exponentially distorted in Ğ. �
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12. G not 2-tame

Here we prove that any group satisfying the SOL obstruction has an at least
exponential Dehn function. The method also provides the result that any group
satisfying the non-Archimedean SOL obstruction is not compactly presented.

12.A. Combinatorial Stokes formula.

Definition 12.A.1. Let X be a set and let R be any commutative ring. We call
a closed path a sequence c = (c0, . . . , cn) of points in X with c0 = cn (so we can
view it as indexed by Z/nZ). If α, β are functions X → R, we define∫

c

βdα =
∑

i∈Z/nZ

β(ci)(α(ci+1)− α(ci−1))

=
∑

i∈Z/nZ

β(ci)α(ci+1)− β(ci+1)α(ci).

Clearly, this is invariant if we shift indices. The following properties are im-
mediate consequences of the definition.

• (Antisymmetry) We have∫
c

βdα = −
∫
c

αdβ.

• (Concatenation) If c0 = ci = cn and we write c′ = (c0, . . . , ci) and c′′ =
(ci, . . . , cn), ∫

c

βdα =

∫
c′
βdα +

∫
c′′
βdα.

• (Filiform vanishing) If n = 2 then the integral vanishes. More generally,
the integral vanishes when c is filiform, i.e., n is even and ci = cn−i for
all i.

Indeed, the difference
∫
c
βdα−

∫
c′
βdα−

∫
c′′
βdα is equal to

β(c0)[(α(ci+1)− α(ci−1)) + (α(c1)− α(cn−1))

−(α(c1)− α(ci−1))− (α(ci+1)− α(cn−1))] = 0.

The filiform vanishing is immediate for n = 2 and follows in general by an induc-
tion based on the concatenation formula.

Now let us deal with a Cayley graph of a group G with a generating set S,
and we consider paths in the graph, that is sequences of vertices linked by edges.
Thus any closed path based at 1 can be encoded by a unique element of the
free group FS, which is a relation (i.e. an element of the kernel of FS → G), and
conversely, if r is a relation, we denote by [r] the corresponding closed path based
at 1. Note that G acts by left translations on the set of closed paths. The above
properties imply the following
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• (Product of relations) If r, r′ are relations, we have∫
[rr′]

βdα =

∫
[r]

βdα +

∫
[r′]

βdα.

• (Conjugate of relations) If r is a relation and γ ∈ FS,∫
[γrγ−1]

βdα =

∫
γ·[r]

βdα.

• (Combinatorial Stokes formula) Suppose that a relation r is written as a
product r =

∏
i=1 γiriγ

−1
i of conjugates of relations. Then∫

[r]

βdα =
k∑
i=1

∫
γi·[ri]

βdα.

The formula for products follows from concatenation if there is no simplification
in the product rr′, and follows by also using the filiform vanishing otherwise.
The formula for conjugates also follows using the filiform vanishing. The Stokes
formula follows from the two previous by an immediate induction.

Remark 12.A.2. The above combinatorial Stokes formula is indeed analogous
to the classical Stokes formula on a disc: here the left-hand term is thought of as
an integral along the boundary, while the right-hand term is a discretized integral
over the surface.

12.B. Loops in groups of SOL type. Let K1 and K2 be two nondiscrete
locally compact normed fields. Consider the group

G = (K1 ×K2) o(`1,`
−1
2 ) Z,

where |`2|K2 ≥ |`1|K1 > 1, with group law written so that the product depends
affinely on the right term:

(x, y, n)(x′, y′, n′) = (x+ `n1x
′, y + `−n2 y′, n+ n′).

Write |`1|K1 = |`2|µK2
with 0 < µ ≤ 1.

Now we can also view x and y as the projections to the coordinates in the above
description. In the next lemmas, we consider a normed ring K (whose norm is
submultiplicative, not necessarily multiplicative), and functions A : K1 → K,
and B : K2 → K, yielding functions α, β : G → K defined by α = A ◦ x and
β = B ◦ y.

Lemma 12.B.1. Suppose that A is 1-Lipschitz and that B satisfies the Hölder-
like condition

|B(s)−B(s′)| ≤ |s− s′|µ, ∀s, s′ ∈ K2.

Then
∫
c
βdα is bounded on triangles of bounded diameter, that is, when c ranges

over triples (ci)i∈Z/3Z with ci ∈ G such all c−1
i cj belong to some given compact

subset of G.
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Proof. Let us consider a triangle T of bounded diameter (viewed as a closed path
of length three), i.e. three points (g0, g0h, g0h

′), where h and h′ are bounded (but
not g0!). Note that as a consequence of the antisymmetry relation,

∫
T
βdα does

not change if we add constants to both α and β. We can therefore assume that
α(g0) = β(g0) = 0. Hence∫

T

βdα = β(g0h)α(g0h
′)− β(g0h

′)α(g0h).

In coordinates, suppose that g0 = (x0, y0, n0), h = (x, y, n) and h′ = (x′, y′, n′).
Then g0h = (x0+`n0

1 x, y0+`−n0
2 y, n0+n), and g0h

′ = (x0+`n0
1 x
′, y0+`−n0

2 y′, n0+n′).
Since A(x0) = B(x0) = 0, we have∫

T

βdα = B(y0 + `−n0
2 y)A(x0 + `n0

1 x
′)−B(y0 + `−n0

2 y′)A(x0 + `n0
1 x).

By our assumptions on A and B, we have∣∣∣∣∫
T

βdα

∣∣∣∣ ≤ |`−n0
2 y|µ|`n0

1 x
′|+ |`−n0

2 y′|µ|`n0
1 x|

= |y|µ|x′|+ |y′|µ|x|,

which is duly bounded when h, h′ are bounded. �

Fix n ≥ 1. We consider the relation

γ1,n = tnxt−nytnx−1t−ny−1;

this defines a closed path of length 4n+ 4, where x, y and t denote (by abuse of
notation) the elements (1, 0, 0) , (0, 1, 0) and (0, 0, 1) of G = K1 ×K2 o Z.

Lemma 12.B.2. Consider A,B, α, β as introduced before Lemma 12.B.1. Sup-
pose that A(0) = B(1) = 0. Then we have∫

γ1,n

βdα = 2B(0)A(`n1 ).

Proof of Lemma 12.B.2. To simplify the notation, let us denote by c the closed
path of length 4n + 4 defined by γ1,n. In the integral

∫
c
βdα, only those points

ci for which “βdα” is nonzero, i.e. both α(ci+1) 6= α(ci−1) and β(ci) 6= 0, do
contribute. In this example as well as the forthcoming ones, this will make most
terms be equal to zero. The closed path c can be decomposed as

c0 = (0, 0, 0), (0, 0, 1), . . . , (0, 0, n− 1), (0, 0, n) = cn,

cn+1 = (`n1 , 0, n), (`n1 , 0, n− 1), . . . , (`n1 , 0, 1), (`n1 , 0, 0) = c2n+1,

c2n+2 = (`n1 , 1, 0), (`n1 , 1, 1), . . . , (`n1 , 1, n− 1), (`n1 , 1, n) = c3n+2,

c3n+3 = (0, 1, n), (0, 1, n− 1), . . . , (0, 1, 1), (0, 1, 0) = c4n+3.
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We see that x(ci+1) 6= x(ci−1) only for i = n, n + 1, 3n + 2, 3n + 3. Moreover,
for i = 3n+ 2, 3n+ 3, y(ci) = 1, so B(y(ci)) = 0. Thus∫

βdα =
n+1∑
i=n

B(y(ci))(A(x(ci+1))− A(x(ci−1))) = 2B(0)(A(`n1 )− A(0));

whence the result. �

To illustrate the interest of the notions developed here, note that this is enough
to obtain the following result.

Proposition 12.B.3. Under the assumptions above, if 2 6= 0 in K1, the group

G = (K1 ×K2) o(`1,`
−1
2 ) Z

has at least exponential Dehn function, and if both K1 and K2 are ultrametric
then G is not compactly presented.

Remark 12.B.4. Actually the lower bound in Proposition 12.B.3 is optimal:
if either K1 or K2 is Archimedean, then G has an exponential Dehn function.
Indeed, the upper bound follows from Corollary 3.B.6.

We use the following convenient language: in a locally compact group G with a
compact system of generators S, we say that a sequence of null-homotopic words
(wn) in FS has asymptotically infinite area if for every R, there exists N(R) such
that no wn for n ≥ N(R) is contained in the normal subgroup of FS generated
by null-homotopic words of length ≤ R. By definition, the non-existence of such
a sequence is equivalent to G being compactly presented.

Proof of Proposition 12.B.3. Set I =
∫
γ1,n

βdα.

Define K = K1 × K2. We need to use suitable functions A : K1 → K and
B : K2 → K satisfying the hypotheses of Lemmas 12.B.1 and 12.B.2. For
x ∈ K2, define o(x) ∈ K1 to be equal to 1 if |x| < 1 and to 0 if |x| ≥ 1; also
define Λ(x) = max(1 − |x|, 0) ∈ R; also keep in mind that any Archimedean
locally compact field naturally contains R as a closed subfield. We define A and
B according to whether K1 and K2 are Archimedean:

• K2 non-Archimedean (K1 arbitrary): A(x1) = (x1, 0) andB(x2) = (o(x2), 0);
• K1 and K2 both Archimedean: A(x1) = (x1, 0) and B(x2) = (Λ(x2), 0);
• K2 Archimedean, K1 non-Archimedean: A(x1) = (0, |x1|) and B(x2) =

(0,Λ(x2)).

(Note that the cases K1 Archimedean and not K2, and vice versa, cannot be
treated simultaneously because of the dissymmetry resulting from the condition
µ ≤ 1.)

Since A(0) = B(1) = (0, 0), Lemma 12.B.2 implies that I = 2B(0)A(`n1 ), and
thus I = (2`n1 , 0) in the first two cases, and I = (0, 2|`1|n) in the last case.

It is clear that in each case, A is 1-Lipschitz. We have to check the Hölder-
like condition for B, which is clear when K2 is non-Archimedean. If K2 is
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Archimedean, we need to check the Hölder-like condition for f(x2) = max(0, 1−
|x2|) ∈ R. Indeed, if s, s′ ∈ K2, if both |s|, |s′| ≥ 1, then f(s) = f(s′); if |s| ≤
1 ≤ |s′|, then |f(s)−f(s′)| = 1−|s|; then since 1 ≤ |s′| ≤ |s′−s|+ |s|, we deduce
1−|s| ≤ |s−s′|. If |s−s′| ≤ 1, we deduce that |f(s)−f(s′)| ≤ |s−s′| ≤ |s−s′|µ If
|s− s′| ≥ 1, we directly see |f(s)− f(s′)| = 1−|s| ≤ 1 ≤ |s− s′|µ. Finally if both
|s|, |s′| ≤ 1, we have |f(s) − f(s′)| = |s| − |s′| ≤ 1. Thus the inequality is again
clear if |s− s′| ≥ 1, and otherwise |f(s)− f(s′)| = |s| − |s′| ≤ |s− s′| ≤ |s− s′|µ.
Therefore by Lemma 12.B.1, for each R there is a bound C(R) on the norm of∫
βdα over any triangle of diameter ≤ R. We now again discuss:

• K1 and K2 both non-Archimedean, I = (2`n1 , 0): by ultrametricity of K1,
and the combinatorial Stokes theorem, C(R) is a bound for the norm of∫
βdα over an arbitrary loop that can be decomposed into triangles of

diameter ≤ R. Since (|2|K1 |`1|nK1
) goes to infinity, this shows that for

every R there exists n0 such that for every n ≥ n0, the loop γ1,n cannot
be decomposed into triangles of diameter ≤ R. Thus the sequence (γ1,n)
has asymptotically infinite area. This shows that G is not compactly
presented.
• K1 Archimedean, K2 arbitrary, I = (2`n1 , 0). Fix R so that every com-

binatorial loop in G can be decomposed into triangles of diameter ≤ R.
Suppose that γ1,n can be decomposed into jn triangles of diameter ≤ R.
By the combinatorial Stokes formula (see §12.A) and Lemma 12.B.1,
|I| ≤ C(R)jn. It follows that jn ≥ 2|`1|nK1

/C(R). Hence the area of
γ1,n grows at least exponentially, so the Dehn function of G grows at least
exponentially.
• K2 Archimedean, K1 non-Archimedean: I = (0, 2|`1|n). The argument is

exactly as in the previous case.

�

Remark 12.B.5. The assumption that K1 does not have characteristic two can
be removed, but in that case we need to redefine

∫
βdα as

∑
i β(ci)(α(ci+1) −

α(ci)). The drawback of this definition is that the integral is not invariant under
conjugation. However, with the help of Lemma 2.D.2, it is possible to conclude.
Since we are not concerned with characteristic two here, we leave the details to
the reader.

However Proposition 12.B.3 is not enough for our purposes, because we do not
only wish to bound below the Dehn function of the group G, but also of various
groups H mapping onto G. In general, the loop γ1,n does not lift to a loop in
those groups, so we consider more complicated loops γk,n in G, which eventually
lift to the groups we have in mind. However, to estimate the area, we will go on
working in G, because we know how to compute therein, and because obviously
the area of a loop in H is bounded below by the area of its image in G.
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Define by induction
γk,n = γk−1,ngkγ

−1
k−1,ng

−1
k .

Here, gk denotes the element (0, yk, 0) in the group G, where the sequence (yi) in
K2 satisfies the following property: y1 = 1 and for any non-empty finite subset I
of integers, ∣∣∣∣∣∑

i∈I

yi

∣∣∣∣∣ ≥ 1.

For instance, if K2 is ultrametric, this is satisfied by yi = `i2; if K2 = R, the
constant sequence yi = 1 works. The sequence (yi) will be fixed once and for all.

Fix n. We wish to compute, more generally,
∫
γk,n

βdα. Write the path γk,n as

(ci). Note that for given n, ci does not depend on k (because γk,n is an initial
segment of γk+1,n). Write the combinatorial length of γk,n as λk,n (λ1,n = 4n+ 4,
λk+1,n = 2λk,n + 2).

Lemma 12.B.6. The number n being fixed, we have

(1) There exists a sequence finite subsets Fi of the set of positive integers, such
that for all i, we have y(ci) =

∑
j∈Fi yj, and satisfying in addition: for all

i < λk,n and all k ≥ 1, we have Fi ⊂ {1, . . . , k}. Moreover y(ci) 6= 0 (and
thus Fi 6= ∅), unless either

– i ≤ 2n+ 2, or
– i = λj,n for some j.

(2) Assume that 1 ≤ i ≤ n − 1, or n + 2 ≤ i ≤ 2n + 2, or i = λj,n for some
j. Then x(ci−1) = x(ci+1).

Proof.

(1) The sequence (Fi) is constructed for i < λk,n, by induction on k. For
k = 1, we set Fi = ∅ if i ≤ 2n− 1 and Fi = {1} if 2n+ 2 ≤ i ≤ 4n+ 3 =
λ1,n − 1, and it satisfies the equality for y(ci) (see the proof of Lemma
12.B.2, where ci is made explicit for all i ≤ λ1,n = 4n+ 4).

Now assume that k ≥ 2 and that Fi is constructed for i < λ = λk−1,n

with the required properties. We set Fλ = ∅; since cλ = (0, 0, 0), the
condition holds for i = λ. It remains to deal with i when λ < i < λk,n; in
this case ci = gkc2λ−i, so y(ci) = yk+y(ci). Thus if we set Fi = {k}∪F2λ−i,
remembering by induction that F2λ−i ⊂ {1, . . . , k − 1}, we deduce that
y(ci) =

∑
j∈Fi yj; clearly Fi ⊂ {1, . . . , k}.

(2) This was already checked for i ≤ 2n+ 2 (see the proof of Lemma 12.B.2).
In the case i = λj,n, we have ci−1 = gj and ci+1 = gj+1, so x(ci−1) =
x(ci+1). �

Lemma 12.B.7. Under the assumptions of Lemma 12.B.2, we have∫
γk,n

βdα = |2`1|nK1
.
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Proof. By Lemma 12.B.6, if both |y(ci)| < 1 and x(ci−1) 6= x(ci+1), then i = n or
i = n + 1. It follows that the desired integral on γk,n is the same as the integral
on γ1,n computed in Lemma 12.B.2. �

12.C. Groups with the SOL obstruction.

Theorem 12.C.1. Let G1 be a locally compact, compactly generated group, and
suppose there is a continuous surjective homomorphism

G1 → G = (K1 ×K2) o(`1,`
−1
2 ) Z,

where 0 6= 2 in K1. Suppose that G1 has a nilpotent normal subgroup H whose
image in G contains K1 ×K2. Then

• the Dehn function of G is at least exponential.
• if both K1 and K2 are ultrametric, then G is not compactly presented.

Proof. Let k0 be the nilpotency length of H and fix k ≥ k0. Using Lemma 12.B.7
and arguing as in the proof of Proposition 12.B.3 (using Lemma 12.B.7 instead
if Lemma 12.B.2), we obtain that the loops γk,n, which have linear length with
respect to n, have at least exponential area, and asymptotically infinite area in
case K1 and K2 are both ultrametric.

Lift x, y, and gk to elements x̃, ỹ, g̃k in H and t to an element t̃ in G; set
X̃n = t̃nx̃t̃−n; since H is normal, X̃n ∈ H. This lifts γk,n to a path γ̃k,n based at

1; let vk,n be its value at λk,n, so v1,n = X̃nỹX̃
−1
n ỹ−1 and vk+1,n = vk,ng̃kv

−1
k,ng̃k

−1.
We see by an immediate induction that vk,n belongs to the (k + 1)th term in
the lower central series of H. Since k ≥ k0, we see that γ̃k,n is a loop of G, of
linear length with respect to n, mapping to γk,n. In particular, its area is at
least the area of γk,n. So we deduce that γ̃k,n has at least exponential area with
respect to n, and has asymptotically infinite area in case K1 and K2 are both
ultrametric. �

We will also need the following variant, in the real case.

Theorem 12.C.2. Let G1 be a locally compact, compactly generated group, and
suppose there is a continuous homomorphism with dense image

G1 → G = (R×R) o R,

so that the element t ∈ R acts by the diagonal matrix (`t1, `
−t
2 ) (`2 ≥ `1 > 0).

Suppose that G1 has a nilpotent normal subgroup H whose image in G contains
R×R. Then the Dehn function of G is at least exponential.

Proof. Since the homomorphism has dense image containing R×R, there exists
some element t̃ mapping to an element t of the form (0, 0, τ) with τ > 0. Changing
the parameterization of G if necessary (replacing `i by `τi for i = 1, 2), we can
suppose that τ = 1. Then lift x and y and pursue the proof exactly as in the
proof of Theorem 12.C.1. �
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Remark 12.C.3. To summarize the proof, the lower exponential bound is ob-
tained by finding two functions α, β on G1 such that the integral

∫
βdα is bounded

on triangles of bounded diameter, and a sequence (γn) of combinatorial loops of
linear diameter such that

∫
γn
βdα grows exponentially.

This approach actually also provides a lower bound on the homological Dehn
function [Ger92, BaMS93, Ger99] as well. Let us recall the definition. Let G be
a locally compact group with a generating set S and a subset R of the kernel of
FS → G consisting of relations of bounded length, yielding a polygonal complex
structure with oriented edges and 2-faces. Let A denote either Z or R. For
i = 0, 1, 2, let Ci(G,A) be the A-module freely spanned by the set of vertices,
resp. oriented edges, resp. oriented 2-faces. Endow each Ci(G,A) with the `1

norm. There are usual boundary operators

C2(G,A)
∂2→ C1(G,A)

∂1→ C0(G,A).

satisfying ∂1 ◦ ∂2 = 0. If Z1(G,A) is the kernel of ∂1, then it is easy to extend,
by linearity, the definition of

∫
c
βdα (from §12.A) to c ∈ Z1(G,A).

Following [Ger99], define, for c ∈ Z1(G,A)

HFillAG,S,R(c) = inf{‖P‖1 : P ∈ C2(G,A), ∂2(P ) = c}.

and

HδAG,S,R(n) = sup{HFill(z)AG,S,R : z ∈ Z1(G,Z), ‖z‖1 ≤ n}.
Clearly, if c is a basis element (so that its area makes sense)

HFill(c)RG,S,R ≤ HFill(c)ZG,S,R ≤ areaG,S,R(c) ≤ ∞;

it follows that

HδRG,S,R(n) ≤ HδZG,S,R(n) ≤ δ̂G,S,R(n),

where δ̂G,S,R is the smallest superadditive function greater or equal to δG,S,R. (Ex-
amples of non-superadditive Dehn functions of finite presentations of groups are
given in [GS99]; however the question, raised in [GS99], whether any Dehn func-
tion of a finitely presented group is asymptotically equivalent to a superadditive
function, is still open.)

The function HFill(c)AG,S,R is called theA-homological Dehn function of (G,R, S)

(the function HFill(c)ZG,S,R is called abelianized isoperimetric function in [BaMS93]).
If finite, it can be shown by routine arguments that its ≈-asymptotic behavior
only depends on G. Some Bestvina-Brady groups [BeBr97] provide examples of
finitely generated groups with finite homological Dehn function but infinite Dehn
function. Until recently, no example of a compactly presented group was known
for which the integral (or even real) homological Dehn function is not equivalent
to the integral homological Dehn function; the issue was raised, for finitely pre-
sented groups, both in [BaMS93, p. 536] and [Ger99, p. 1]; the first examples
have finally been obtained by Abrams, Brady, Dani and Young in [ABDY13].
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Let us turn back to G1 (a group satisfying the hypotheses of Theorem 12.C.1
or 12.C.2): for this example, since R consists of relations of bounded length, it
follows that the integral of βdα over the boundary of any polygon is bounded.
Since

∫
γn
βdα grows exponentially, it readily follows that HFillRG1

(γn) grows at

least exponentially and hence HδRG1
(n) (and thus HδZG1

(n)) grows at least expo-
nentially.
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