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Abstract. We characterize amalgams and HNN extensions with infinite conju-
gacy classes.

1. Statement of the results

Throughout the paper, we call free group a non-abelian free group.
We characterize amalgams and HNN extensions with infinite conjugacy classes,

thereby answering a question by P. de la Harpe [Ha, Problems 27 and 28]. Some
particular cases are treated in [HP, §V], [St, Théorèmes 0.1 and 2.8] and [NS]. Our
work also provides information about their normal subgroups not containing any free
subgroup, and in particular amenable normal subgroups. Our proofs are essentially
geometric.

We call an amalgam A∗H B non-trivial if A 6= H and B 6= H, and non-degenerate
if moreover H has index at least three in either A or B. Similarly, if K is a group,
H a subgroup, and θ : H → K an injective morphism, we call the HNN extension
HNN(K, H, θ) non-degenerate if either H or θ(H) is a proper subgroup of K, non-
ascending if both are proper subgroups, and strictly ascending if exactly one of the
two is a proper subgroup.

Let G be a group. If g ∈ G, then the conjugacy class of G is finite if and only if
the centralizer CG(g) has finite index in G. With this in mind, it is easy to show
that the union if all finite conjugacy classes is a subgroup FC(G) of G, of course
characteristic, in which every finitely generated subgroup has finite index centralizer
and in particular has centre of finite index.

A group G is called icc (infinite conjugacy classes) if FC(G) = {1}.
If G is a group and N a subgroup of G, we say that N is f-normalized by G if N

is normal in G and the action by conjugation of G on N has no infinite orbit.
Given an amalgam A∗H B, define FCA,B(H) as the largest subgroup N of H which

is normalized by both A and B, and such that the subgroup of Aut(N) generated
by A and B f-normalizes N .

We begin by the non-degenerate cases.

Proposition 1. In a non-degenerate amalgam Γ = A ∗H B, we have FC(Γ) =
FCA,B(H).

For instance, set A = B = Z/4Z n± Z/3Z and H = Z/3Z. Then FC(A ∗H

B) = Z/3Z. This contradicts [NS, Example 3.4] where it is claimed that in a non-
degenerate amalgam the FC-centre should coincide with the centre, while here the
centre is trivial.
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Corollary 2. A non-degenerate amalgam A∗H B is not icc if and only if there exists
a nontrivial subgroup M ⊆ H, normalized by both A and B, such that either M is
finite, or M ' Zn and the images of A and B in Aut(M) ' GLn(Z) generate a
finite subgroup.

Given a HNN extension HNN(K, H, θ), define FCK,θ(H) as the largest normal
subgroup N of K contained in H that is invariant under θ and such that the subgroup
of Aut(N) generated by K and θ f-normalizes N .

Proposition 3. In a non-degenerate HNN extension Γ = HNN(K, H, θ), we have
FC(Γ) = FCK,θ(H).

Corollary 4. A non-degenerate HNN extension HNN(K, H, θ) is not icc if and only
if there exists a nontrivial subgroup M ⊆ H, normal in K and invariant under θ,
such that either M is finite, or M ' Zn and the images of K and θ in Aut(M) '
GLn(Z) generate a finite subgroup.

In the degenerate cases, the FC-centre does not have such a simple description.
However we can characterize when the group is icc.

Degenerate non-trivial amalgams are amalgams Γ = A ∗H B, where H has index
two (and is thus normal) in both A and B. In this case, the quotient of A∗H B by H
is isomorphic to the free product of two cyclic groups of order two, and is denoted
D∞ (infinite dihedral group). We denote by Z its unique cyclic subgroup of index
2, and we define Γ+ as the preimage of Z by the map Γ → D∞.

Proposition 5. A non-trivial, degenerate amalgam A∗HB is icc if and only FCA,B(H) =
{1} and the natural morphism D∞ → Out(H) is injective.

Degenerate HNN extensions are merely semidirect products ZnθK. The following
result is very likely to be known, but having no reference we give the (elementary)
proof.

Proposition 6. A degenerate HNN extension ZnθK is icc if and only if FCK,θ(K) =
{1} and the natural morphism Z → Out(K) is injective.

Two other characteristic subgroups come into play: RM(G), the largest amenable
normal subgroup of G, and NF(G), the largest normal subgroup of G not containing
any free subgroup. We have the inclusions

FC(G) ⊆ RM(G) ⊆ NF(G) ⊆ G.

To see that NF(G) is well defined, observe that if N, N ′ are normal subgroups of
G without free subgroups, then so does NN ′ (as it lies in an extension with kernel
N and quotient N ′/(N ∩ N ′)), and if (Ni) an increasing net of normal subgroups
without free subgroups, then its union does not have any free subgroup neither.

The question by P. de la Harpe mentioned above is related to the operator algebras
of groups. In this context, it is also natural to focus on the condition that the
amenable radical is trivial: indeed, it is known (and easy) to prove that if a group
Γ satisfies RM(Γ) 6= {1}, then Γ is not C*-simple (see [Ha]), while the converse is
probably false but unknown [Ha, Question 4], and known to be true for a large class
of “nice” groups (see the survey in [Ha]).

In an amalgam A ∗H B, define RMA,B(H) as the largest normal subgroup of H
which is amenable and normalized by both A and B. Similarly define NFA,B(H),
and, for a HNN extension HNN(K, H, θ), define RMK,θ(H) and NFK,θ(H).
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Proposition 7. In a non-degenerate amalgam Γ = A ∗H B, we have RM(Γ) =
RMA,B(H) and NF(Γ) = NFA,B(H).

Proposition 8. In a non-ascending HNN extension Γ = HNN(K, H, θ), we have
RM(Γ) = RMK,θ(H) and NF(Γ) = NFK,θ(H).

In particular, in both cases, NF(Γ) is contained in H. Of course this need not be
true in a degenerate amalgam or in an ascending HNN extension: in these cases, if
H has no free subgroup, then neither does G.

The following is an immediate consequence of Proposition 8.

Proposition 9. In a degenerate amalgam Γ = A ∗H B with H of index two in A
and B, we have RM(Γ) = {1} [resp. NF(Γ) = {1}] if and only if RM(H) = {1}
[resp. NF(H) = {1}] and the natural morphism D∞ → Out(H) is injective.

Proposition 10. In a non-degenerate ascending HNN extension Γ = Z n lim−→θK,

we have RM(Γ) = {1} if and only if there exists no nontrivial normal amenable
subgroup N of K such that θ(N) ⊆ N .

Proposition 11. In a degenerate HNN extension Γ = ZnθK, we have RM(Γ) = {1}
if and only RM(K) = {1} and the natural morphism Z → Out(K) is injective.

Acknowledgment. I thank Pierre de la Harpe for encouragement and valuable
comments.

2. Proofs

Consider an amalgam Γ = A ∗H B; let it act on its Bass-Serre tree: this is a
tree with two given vertices α, β with stabilizers A and B respectively, linked by an
(oriented) edge ε with stabilizer H. Also, if Γ = HNN(K,H, θ), its Bass-Serre tree
is a tree with one given vertex α, with stabilizer K and one given (oriented) edge ε
from α to θ(α), with stabilizer H.

Lemma 12. Let A ∗H B be a non-trivial amalgam, or HNN(K, H, θ) be a non-
ascending HNN extension. Let it act on its Bass-Serre tree. Then it does not fix any
point at infinity.

Proof. Suppose that the amalgam Γ = A∗H B fixes a point ω at infinity. Exchanging
the roles of A and B if necessary, we can suppose that there exists a geodesic ray
α0 = α, α1 = β, α2, . . . whose limit is ω. This implies that the stabilizer of α fixes
the edge ε, i.e. A ⊆ H, contradicting that the amalgam is non-trivial.

The case of non-ascending HNN extensions is similar. �

The following lemma is contained in [PV, Propositions 2 and 3].

Lemma 13. Suppose that a group G acts on a tree. Suppose that it contains a
hyperbolic element and preserves no axis, nor any point at infinity. Then G contains
a free subgroup. �

Lemma 14. Suppose that G = A ∗H B is a non-degenerate amalgam, or G =
HNN(K, H, θ) is a non-ascending HNN extension. Consider a normal subgroup N
of G. Suppose that N contains a hyperbolic element (for the action on the Bass-Serre
tree). Then N contains a free subgroup.
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Proof. By Lemma 12, G fixes no point at infinity. Moreover, by the non-degenerate-
ness assumption, it preserves no axis. Hence we can apply Lemma 13. �

The following lemma is equivalent to [PV, Proposition 1].

Lemma 15. Let G act on a tree without global fixed point on the 1-skeleton, by
elliptic isometries. Then G fixes a unique point at infinity. �

Proof of Proposition 7. It is immediate that NF(Γ)∩H = NFA,B(H) (and the similar
assertion holds for RM(Γ)). Thus it suffices to prove that NF(Γ) ⊂ H. Consider
the action of Γ = A ∗H B on its Bass-Serre tree. By Lemma 14, NF(Γ) contains no
hyperbolic element. By Lemmas 15 and 12, it fixes a point p (either a vertex or the
middle of an edge). Since it is normal, it fixes all the points in the orbit of p, hence
fixes its convex hull, that is, all of the tree. In particular, it fixes all oriented edges
and hence NF(Γ) ⊆ H. �

The proof of Proposition 8 is similar and left to the reader.

Proof of Propositions 1 and 3. It is immediate that FC(Γ)∩H is equal to FCA,B(H)
[resp. FCK,θ(H)].

If we exclude the case of non-ascending HNN extensions, by Propositions 7 and
8, FC(Γ) is contained in H, and thus the propositions are proved.

Now consider the case of a strictly ascending HNN extension Γ = Z n lim−→θK.

Note that since the extension is strictly ascending, FC(Γ) ⊆ lim−→θK. Suppose that

x ∈ FC(Γ) and x ∈ θn(K) − θn+1(K) for some n ∈ Z. Since the conjugacy classes
are finite, there exists k < ` such that θk(x) = θ`(x). It follows that x = θ`−k(x),
contradicting our assumption. Thus, x ∈

⋂
n∈N θn(K), and in particular FC(Γ) ⊆ K,

and therefore FC(Γ) = FCA,B(H). �

Proof of Corollary 2. Denote by G the group A∗H B. Clearly, a subgroup satisfying
the condition of the corollary is contained in the FC-centre.

Conversely, suppose FC(Γ) 6= {1}. Let M0 be the subgroup of FC(Γ) generated by
one conjugacy class. This group has a subgroup of finite index d isomorphic to Zn for
some n. If M0 is finite, set M = M0. Otherwise, consider a characteristic subgroup
M of finite index in M0 isomorphic to Zn: for instance, take the intersection of
all subgroups of index d in M0. Then the image of the natural map G → GLn(Z)
is finite. (To see that an infinite subgroup of GLn(Z) has an infinite orbit on Zn,
consider the action on the union of orbits of basis elements.) Finally M ⊆ H by
Proposition 1. �

The proof of Corollary 4 from Proposition 3 is similar and left to the reader.
It remains to deal with the degenerate cases.
The following elementary well-known lemma is useful. Let {1} → N → G →

Q → {1} be an extension of groups. The action of G on N by conjugation provides
a map G → Aut(N), and after composition defines a map G → Out(N). This map
is trivial on N and therefore factors through a (unique) map Q → Out(N).

Lemma 16. Suppose that the natural map Q → Out(N) is injective. Then for every
nontrivial normal subgroup M of G, we have M ∩N 6= {1}.
Proof. If M is a normal subgroup of G satisfying M ∩N = {1}, then [M, N ] = {1}
and therefore M is contained in the kernel of the map G → Out(N), and thus
M ⊂ N , so that M = {1}. �
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Proof of Proposition 5. Consider an amalgam Γ = A ∗H B with H of index two in
both A and B. Note that FC(Γ) ∩H = FCA,B(H).

Suppose that FC(Γ) 6= {1}. If FC(Γ) ∩H 6= {1}, then FCA,B(H) 6= {1}. Other-
wise, FC(Γ) ∩H = {1}, and in particular [FC(Γ), H] = {1} because H is normal in
Γ. So the natural morphism Γ → Out(H) is trivial on both H and FC(Γ), so the
factored map D∞ ' Γ/H → Out(H) is not injective.

Conversely, if FCA,B(H) 6= {1}, then Γ is clearly not icc. It remains to prove that
if ρ : D∞ → Out(H) is not injective, then Γ is not icc.

Let W be the kernel of ρ, and M its preimage in Γ. As M is not contained in
H, W is a nontrivial normal subgroup of D∞, and hence contains a normal infinite
cyclic subgroup 〈y〉. Lift y to an element y′ of Γ. Since y′ acts on H by H-inner
automorphisms, there exists h ∈ H such that z = yh−1 centralizes H.

We distinguish two cases.

• H has nontrivial centre. If u is central element of H, then u is centralized by
H and z, hence by a finite index subgroup of Γ. Accordingly Z(H) ⊆ FC(Γ),
so Γ is not icc.

• H has trivial centre. Indeed, let C denote the centralizer of H in Γ; this is an
infinite normal subgroup of Γ. Then H∩C = {1}, so that C is isomorphic to
a subgroup of D∞. The action of Γ on C by conjugation factors through D∞,
so there are non-trivial finite Γ-conjugacy classes in C, so Γ is not icc. �

Proof of Proposition 6. Consider a degenerate HNN extension Z nθ H.
Suppose that Z → Out(H) is injective. Then by Lemma 16 every nontrivial

normal subgroup of Γ intersects H non-trivially. In particular, if FCK,θ(K) =
FC(Γ) ∩H = {1}, then FC(Γ) = {1}.

For the converse, of course if FCK,θ(K) 6= {1}, then FC(Γ), which contains it, is
non-trivial. Suppose that FC(Γ) ∩H = {1} and that Z → Out(H) is not injective,
denote by W its kernel and M its preimage in Γ. Then, as in the case of amalgams,
Z(H) ⊆ FC(Γ), and hence Z(H) = {1}. So the centralizer of H is a normal, infinite
cyclic subgroup of Γ, and is contained in FC(Γ). �

Proof of Proposition 9. Let us deal with the amenable radical, the other case being
similar. Since H is normal in Γ, RM(H) ⊂ RM(Γ). Therefore if RM(H) 6= {1},
then RM(Γ) 6= {1}. If RM(H) = {1} and the map D∞ = Γ/H → Out(H) is not
injective, let N denote the kernel of the map Γ → Out(H). By assumption it is not
reduced to H. Since RM(H) = {1}, the group H has trivial centre, and therefore
the action by conjugation provides a well-defined map N → H which is the identity
on H. The kernel of this map is normal in Γ and isomorphic to a subgroup of D∞
and hence is amenable.

Conversely if RM(H) = {1} and the map D∞ → Out(H) is injective, then by
Lemma 16 we obtain RM(Γ) = {1}. �

Proof of Proposition 10. Suppose that there exists a nontrivial normal amenable
subgroup N of K such that θ(N) ⊆ N . Then the sequence (θ−n(N)) is non-
decreasing, so that its union is amenable, and clearly normal in Γ.

Conversely, suppose that RM(Γ) 6= {1}. Set R = RM(Γ)∩K. Then, clearly, R is
normal in K, amenable, and θ(R) ⊆ R. So, if R 6= {1}, we are done. If R = {1},
then RM(Γ) ∩ lim−→θK = {1}, but this case is excluded since the HNN extension is

strictly ascending. �
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Proof of Proposition 11. Suppose that RM(Γ) = {1}. Since RM(K) ⊆ RM(Γ), this
implies RM(K) = {1}. Moreover, this implies that Γ has infinite conjugacy classes
so that, by Proposition 6, the natural morphism Z → Out(K) is injective.

Conversely, suppose that the conditions are satisfied. By Proposition 6, Γ has
infinite conjugacy classes. Moreover, RM(Γ) ∩K = {1}, hence RM(Γ) is a normal
cyclic subgroup, so that RM(Γ) = {1} since Γ has infinite conjugacy classes. �

3. Generalization

Since the results are analogous for amalgams and HNN extensions, it is natural
to expect unified statements. This is indeed possible, using graphs of groups.

Recall that a graph Y is defined by the following data:

• A set of vertices V ,
• A set E of (orientation) edges, with two functions: t : E → V (target) and

an involutive map E → E, e → ē without fixed point, thought as reverting
the orientation.

A graph of groups G = (G, Y ) is defined by the following data:

• A connected graph Y ,
• For every v ∈ V , a group Gv; for every e ∈ E, a group Ge with Ge = Gē; for

every e ∈ E, an injective morphism ie : Ge → Gt(e).

To every graph of groups G is associated its fundamental group π1(G) (more cor-
rectly, π1(G, T ) where T is a maximal tree in the graph).

It is constructed as follows. First define F (G, Y ). This is the group generated
by (the free product of) all Gv (v ∈ V ) and all e (e ∈ E) subject to the relations
ē = e−1 and eie(y)e−1 = iē(y) for all e ∈ E and y ∈ Ge. If T is a maximal subtree
of Y , the fundamental group π1(G, Y, T ) is the quotient of F (G, Y, T ) by the edges
in T . Up to isomorphism, the group obtained does not depend on the choice of T
(see [Se, Chap. 1,§5]).

To every graph of groups (G, Y ) is associated its Bass-Serre tree (or universal
covering) X̃ = X̃(G, Y, T ); this a tree on which the fundamental group π1(G, Y, T )
acts with quotient (G, Y ) (in a suitable sense). Moreover, there are sections V →
V (X̃) and E → E(X̃), denoted v 7→ ṽ and e 7→ ẽ, such that the stabilizer of ṽ is
Gv (which is naturally embedded in π1(G, Y, T ) and the stabilizer of ẽ is Ge (more
correctly, the subgroup ie(Ge) of Gt(e)).

We call a graph of groups reduced if there is no edge e ∈ E satisfying simultane-
ously the following conditions:

• t(e) 6= t(ē),
• ie is an isomorphism.

If we have an non-reduced graph of groups and e is an edge satisfying the condi-
tions above, there is a new graph, obtained by removing t(e) (intuitively, we identify
t(e) and t(ē)), and, for every edge e′ such that t(e) = t(e′), define the new target of
e′ as t(e) and replace ie′ by ie

−1 ◦ ie′ . The fundamental group of the new graph is
isomorphic to the old one. Thus, we can replace every finite graph of groups by a
reduced one without altering the fundamental group.

We call a graph of groups a bunch if it has only one vertex.

Lemma 17. 1) Suppose that a reduced graph of groups is not among the following
exceptions:
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• A bunch such that all ie are isomorphisms.
• A bunch with exactly one edge e (and ē), such that ie is an isomorphism (but

not necessarily iē).

Let its fundamental group G act on its Bass-Serre tree (universal covering). Then
the stabilizers of vertices have no common fixed point at infinity. In particular, G
has no fixed point at infinity.

2) If the graph of groups is a bunch with n ≥ 2 edges, then G does not fix any
point at infinity.

Proof. 1) We denote by ordinary letters the vertices or edges in the graph of groups,
and by Greek letters the corresponding vertices or edges in the Bass-Serre tree.

Suppose that ω is a point at infinity fixed by all vertex stabilizers, and let
υ1, . . . , υn, . . . geodesic ray with end ω, and denote by εi the edge joining υi+1 and
υi.

Since the stabilizer of υ1 fixes ω, it fixes ε1. This means that iε1 is an isomorphism.
Since the graph is reduced, this implies that ε1 is a loop, i.e. v1 = v2.

Suppose that v1 is connected to no other edge than ε1 and its inverse, i.e. we
have a bunch with one (non-oriented) edge. Then, by assumption, iε1 is not an
isomorphism, contradiction.

Hence there exists another edge ε0. Let υ0 be its target, and lift ε0 and v0 to
points e0 and v0 in the Bass-Serre tree. Then v0, v1, . . . is a ray with end ω, and
therefore the same argument as before shows that iε0 is an isomorphism. If this is
true for all choices of ε0, this means that the graph is a bunch in which all edge
morphisms, except maybe iε1 , are isomorphisms. But taking the path ε0 and then
ε−1 = ε1, we obtain that iε1 is also an isomorphism, and this is excluded by the
assumptions.

2) It remains to consider the case of a bunch with n ≥ 2 non-oriented edges,
in which all edge maps are isomorphisms. In this case, the Bass-Serre tree can be
identified with the Cayley graph of the free group Fn, and the fundamental group
contains the left translations, which do not fix any point at infinity (any two of the
free generators have no common fixed point at infinity). �

Lemma 18. Consider a reduced graph of groups. The Bass-Serre tree is reduced to
a line only in the following cases:

• A bunch with exactly one edge e (and ē) such that ie and iē are isomorphisms.
• A segment with edge e such that the images of ie and iē have images of index

two.

(Note that this corresponds to degenerate HNN extensions and amalgams.)

The proof is straightforward and omitted.

Proposition 19. Consider a graph of groups, and exclude the cases of ascending
HNN extensions and degenerate amalgams. Denote by G the fundamental group.
Let N be a normal subgroup of G containing no free subgroup. Then the action of
N on the Bass-Serre tree is trivial.

Proof. First note that G has no fixed point at infinity by Lemma 17, and preserves
no axis by Lemma 18.

Suppose that N contains a hyperbolic element. If it fixes exactly one point at
infinity, then this point is G-invariant, contradiction. If it fixes exactly two points
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at infinity, G preserves the axis joining them, contradiction. Hence, by Lemma 13,
N contains a free subgroup, contradiction.

Hence N is elliptic. If it has no fixed point, it preserves a unique point at infinity,
which must be fixed by G, contradiction.

Therefore N fixes a vertex, hence the convex hull of its orbit, that is, all of the
tree. �

It remains to describe the kernel of the action of the fundamental group G on the
Bass-Serre tree.

In the case of an amalgam A ∗H B, this is the biggest subgroup of H which is
normal in both A and B. In the case of a HNN extension HNN(K, H, θ), this is the
biggest subgroup of H which is normal in K and θ-invariant.

In general, this kernel can be described in terms of the data in a graph of group.
We need the following elementary definitions: let X, Y be sets. A partial injection
i : X → Y is a subset of X × Y whose projections into X and Y are both injective;
their images are called Dom(i) and Im(i). We can of course view i as an bijection
of Dom(i) onto Im(i). Every partial injection X → Y has an inverse Y → X,
which is a partial injection. We can compose partial injections X → Y → Z,
although it can happen that we obtain the empty partial injection. In the following,
all the partial injections will be partial homomorphisms of groups (that is, partial
injections with domain and image subgroups, and defining an isomorphism between
these subgroups).

Now, let (G, Y ) be a graph of groups. To every edge is associated a partial
injection Gt(ē) → Gt(e) given by je = ie ◦ i−1

ē , with domain iē(Ge) and image ie(Ge).
Note that je = j−1

ē . Denote by W the closure of {je | e ∈ E} under composition.
There exists a unique maximal family of subgroups Wv (v ∈ V ) normal in Gv, such

that, for every w ∈ W with w a partial injection Gv → Gv′ , we have Wv contained
in the domain of w.

It is then clear that all Wv are isomorphic to a single group W : if v, v′ ∈ V by
connectedness, there exists w ∈ W a partial injection Gv → Gv′ , and by uniqueness
we must have w(Wv) = Wv′ . Fix a base-vertex v ∈ V . Set W = Wv and identify all
Wv′ to Wv through the tree T . It is easy to see that this group W corresponds to
a single subgroup of the fundamental group π1(G, Y, T ), which is the kernel of the
action in the Bass-Serre tree.

Consider elements γi generating π1(Y, v). Every γi induces an automorphism
αi ∈ W of W . Consider the subgroup Λ of Aut(W ) generated by all αi and by
the action by conjugation of all Gv′ (through the identification Wv′ = W described
above).

Proposition 20. Let (G, Y ) be a reduced, non-degenerate finite graph of groups and
Γ = π1(G, Y, T ). Conjugacy classes of Γ contained in W coincide with the orbits of
the action of Λ in W . In particular, Γ is not icc if and only if W has a Λ-invariant
nontrivial subgroup which is either finite, or isomorphic to Zn and such that the
natural morphism Λ → GLn(Z) has finite image.
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