
SOFICITY OF CREMONA GROUPS AND SOFIC PROFILE

YVES CORNULIER

Abstract. We show that Cremona groups are sofic. We actually introduce of
quantitative notion of soficity, called sofic profile, and show that the group of
birational transformations of a d-dimensional variety has sofic profile at most
polynomial of degree d.
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1. Introduction

Let K be a field. The Cremona group Crd(K) of K in dimension d is defined
as the group of birational transformations of the d-dimensional K-affine space.
It can also be described as the group of K-automorphisms of the field of rational
functions K(t1, . . . , td).

The group of polynomial automorphisms of an arbitrary variety is known
[Bas, BL] to be locally residually finite, i.e. every finitely generated subgroup
is residually finite. The proof essentially consists in the following two steps.
Consider a K-variety X and a finitely generated subgroup Γ of the group of
automorphisms of X.

(1) Then for some finitely generated subdomain A of K, the variety X can
be viewed as an A-scheme and the action of Γ is by automorphisms of
A-schemes (A will depend on the structure constants of X and on the
action of the generators of Γ).

(2) Using that A is a residually finite domain, the group of A-automorphisms
of X is itself residually finite (this is very easy in case the variety X is
affine).
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While Step (1) can be performed to a certain extent, Step (2) dramatically
falls through when dealing with birational transformations. Indeed, because of
singularities, there is no action on the set of points over finite fields.

Recall that a group Γ is sofic if it satisfies the following: for every finite subset
F of Γ and every ε > 0, there exists n and a mapping φ : F → Symn satisfying

• dn
Ham(φ(g)φ(h), φ(gh)) ≤ ε for all g, h ∈ F such that gh ∈ F ;

• dn
Ham(φ(1), 1) ≥ 1− ε;

• dn
Ham(φ(u), φ(v)) ≥ 1/4 for all u 6= v,

where dn
Ham is the normalized Hamming distance on the symmetric group Symn:

dn
Ham(u, v) =

1

n
#{i : u(i) 6= v(i)}.

Note that a group is sofic if and only if all its finitely generated subgroups are
sofic. Sofic groups were independently introduced by B. Weiss [Wei] and Gromov
[Gro]. Sofic groups notably include residually finite and amenable groups. For
more, see also [ES2, Pe].

The purpose of this note is to prove

Theorem 1.1. The Cremona group Crd(K) is sofic for all d and all fields K.
More generally, for any absolutely irreducible variety X over a field K, the group
of birational transformations BirK(X) is sofic.

This result was only known for n = 1 since then Cr1(K) = PGL2(K) has all
its finitely generated subgroups residually finite.

Theorem 1.1 is proved in Section 2 in the case of Cremona groups, and in
general in Section 4. Although the latter supersedes the former, the proof in the
Cremona case is much less technical, so we include it. The main two steps are

(1) Reduction to finite fields;
(2) case of finite fields.

The second step uses the “quasi-action” on the set of points, using that the
singular set being of positive codimension, its number of points over a given
finite field can be bounded above in a quantitative way. The first step is fairly
easy in the case of Cremona groups, and uses more elaborate (albeit standard)
arguments in the general case.

No example is known of a non-sofic group; in particular, so far Theorem 1.1
provides no example of groups that cannot be embedded into any Cremona group.
However, the proof provides a property stronger than soficity, namely that Crd(K)
(or more generally BirK(X) when X is d-dimensional) has its “sofic profile” in
O(nd) (see Corollary 4.5), which might result in explicit examples of groups not
embedding into Cremona groups, without exhibiting non-sofic groups. See Sec-
tion 3, in which the sofic profile is defined, and related to the classical isoperimet-
ric profile (or Følner function), and to the sofic dimension recently introduced by
Arzhantseva and Cherix.
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Nevertheless, the sofic property is interesting because of its various positive
consequences. For instance, if G is a group and K is a domain, a conjecture
by Kaplansky asserts that the group algebra KG is directly finite, i.e. satisfies
xy = 1 ⇒ yx = 1. This conjecture is known to hold when G is sofic, by a result
of Elek and Szabo [ES1]. Also another conjecture, by Gottschalk, is that if M is
a finite set, any G-equivariant continuous injective map MG → MG is surjective;
Gromov [Gro] proved that this is true when G is sofic.

Outline of the paper. Section 2 contains the proof of soficity of the Cremona
group Crd(K). Section 3 introduces the notion of sofic profile, yielding various
examples. Then Section 4 proves Theorem 1.1 in full generality. This actually
makes Section 2 (precisely: Proposition 2.2) redundant. A good reason to keep
this plan is that the proof of Proposition 2.2 is much simpler than its general
version, Proposition 4.1; although the latter uses only basic commutative alge-
bra that are extensively used by algebraic geometers (generic flatness, openness
conditions), these notions are not of the utmost common background for readers
in geometric group theory, who can stick to Section 2 and 3. Section 3 can also
be read independently, without reference to Cremona groups.

Finally, Section 5 contains two complementary observations about the Cremona
group. The first is an example of a non-linear finitely generated subgroup of
Cr2(C). The existence of such a subgroup is not new, for instance it follows
from an unpublished construction of S. Cantat; our example has the additional
feature of being 3-solvable. Its non-linearity follows from the fact it contains
nilpotent subgroups of arbitrary large nilpotency length. We also show there
that Cr2(K) has no nontrivial linear representation over any field, extending a
result of Cerveau and Déserti.

We end this introduction by a few questions.

(1) for d ≥ 2, and any field K, is Crd(K) locally residually finite (i.e. is ev-
ery finitely generated subgroup residually finite)? approximable by finite
groups (see Definition 2.1)? (I heard the question about local residual
finiteness for Crd(C) from S. Cantat.)

(2) Does there exist a finitely generated subgroup of Aut(C2) with no faithful
linear representation (see Remark 5.3)?

Acknowledgements. I thank Jeremy Blanc for pointing out several inaccuracies
in a earlier version of the paper. I thank Serge Cantat for stimulating discussions
and Julie Deserti for some useful corrections. I also thank Goulnara Arzhantseva
and Pierre-Alain Cherix for letting me know about their work on sofic dimension.

2. Soficity of Cremona groups

We begin by the notion of approximation, which is classical in model theory.

Definition 2.1. Let C be a class of groups. We say that a group G is approximable
by the class C (or initially sub-C in Gromov’s terminology [Gro]) if for every finite
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symmetric subset F of G containing 1, there exists a group H ∈ C and an
abstract injective map φ : F → H such that φ(1) = 1 and for all x, y, z ∈ F
we have φ(x)φ(y) = φ(z) whenever xy = z (in particular φ(x−1) = φ(x)−1 for
all x ∈ F ). Equivalently, G is approximable by the class C if and only if it is
isomorphic to a subgroup of an ultraproduct of groups of the class C.

Note that plainly, if a group is approximable by C then so are all its subgroups,
and conversely if all its finitely generated subgroups are approximable by C,
then so is the whole group. A residually finite group is always approximable by
finite groups, and the converse holds for finitely presented groups, but not for
general finitely generated groups (see [St, VG]). It is also straightforward from
the definition that if a group is approximable by sofic groups, then it is sofic
as well. Therefore the first part of Theorem 1.1 follows from the following two
propositions.

Proposition 2.2. For any field K and d, the Cremona group Crd(K) is approx-
imable by the family

{Crd(F ) : F finite field}.

Proposition 2.3. For any finite field F and d, the Cremona group Crd(F ) is
sofic.

Proof of Proposition 2.2. Since any field extension K ⊂ L induces a group em-
bedding Crd(K) ⊂ Crd(L), it is enough to prove the proposition when K is
algebraically closed.

Consider f = (f1, . . . , fd), where fi ∈ K(t1, . . . , td). To such a d-tuple corre-
sponds to the regular map defined outside the zero set of the denominators of
the fi, mapping (x1, . . . , xd) ∈ Kd to (f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)). We say
that f is non-degenerate if f has Zariski-dense image. If g is another d-tuple and
f is non-degenerate, we can define the composition g ◦ f by

(x1, . . . , xd) 7→ (g1(f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)), . . . , gd(. . . )).

The non-degenerate d-tuples thus form a semigroup under composition, and by
definition the Cremona group Crd(K) is the set of invertible elements of this
semigroup.

Let W be a finite symmetric subset of Crd(K) containing 1. Write each co-
ordinate of every element of W as a quotient of two polynomials. Let c1 be the
product in K of all nonzero coefficients of denominators of coordinates of ele-
ments of WW ; let c2 be the product of all nonzero coefficients of numerators of
coordinates of elements of the form u − v for distinct u, v ∈ W . Let A be the
domain generated by all coefficients of elements of W , so c = c1c2 ∈ A − {0}.
Since the ring A is residually a finite field [Mal], there exists a finite quotient field
F of A in which c̄ 6= 0, where x 7→ x̄ is the natural projection A → F . If u ∈ F , u
can be viewed as a element of F (t1, . . . , td)

d as above (the denominator does not
vanish because c̄1 6= 0. Also, the condition c̄1 6= 0 implies that whenever uv = w,
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we also have ūv̄ = w̄. In particular, since W is symmetric with 1, it follows that
the elements ū are invertible, i.e. belong to Crd(F ). Finally, whenever u 6= v,
since c̄2 6= 0, we have ū 6= v̄. �

Remark 2.4. It follows from the proof that Crd(K) is approximable by some
suitable subclasses of the class of d-Cremona groups over finite fields: if K has
characteristic p it is enough to restrict to finite fields of characteristic p, and
if K has characteristic p it is enough to restrict to the class of finite fields of
characteristic p ≥ p0 for any fixed p0. Also, if K = Q, it is enough to restrict to
the class cyclic fields Z/pZ (for p ≥ p0).

Proof of Proposition 2.3. Write F = Fq. Let W be a finite symmetric subset of
Crd(Fq) containing 1.

For any u ∈ Crd(K), let Zu be the singular set of u; view it as a closed, Fq-
defined subvariety of the affine d-space; for every Fq-field L, u induces a bijection
from Ld − Zu to Ld − Zu−1 . We extend it arbitrarily (for each given L) to a
permutation û of Ld.

Note that ûv̂ and ûv coincide on the complement of Zv ∪ v−1(Zu).
Then there exists a constant C > 0 such that for all u ∈ W and all m we

have #Zu(Fqm) ≤ Cqm(d−1) (this is a standard consequence, for instance, of the
Lang-Weil estimates [LW] but can be checked directly).

So, when L = Fqm the Hamming distance in Sym(Ld) between ûv̂ and ûv is
≤ 2Cq−m, which tends to 0.

Also, by considering the zero set Duv of the numerator of u−v, we obtain that
if u 6= v, the Hamming distance from û and v̂ is ≥ 1 − 2C ′q−m, for some fixed
constant C ′ and for all m. We thus proved that Crd(K) is sofic. �

Remark 2.5. We actually proved that for every field K, the group Crd(K)
satisfies the following property: for every finite subset W ⊂ Crd(K) there is a
constant c > 0 such that every integer n there exists k ≤ n and a map W → Symk

satisfying

• dk
Ham(φ(g)φ(h), φ(gh)) ≤ cn−1/d for all g, h ∈ F such that gh ∈ F ;

• φ(1) = 1 and φ(g) = φ(g−1) for all g ∈ F ;
• dk

Ham(φ(u), φ(v)) ≥ 1− cn−1/d for all u 6= v.

where dk
Ham is the normalized Hamming distance on the symmetric group Symk.

(In Section 3, we will interpret this by saying that the “sofic profile” of Crd(K)
is in O(nd).) Note that for every integer m ≥ 1 there exists a distance-preserving
homomorphism (Symk, d

k
Ham) → (Symmk, d

mk
Ham); in particular k can be chosen so

that k ≥ n/2.

3. Sofic profile

A notion of sofic dimension of a finitely generated group was recently intro-
duced by Arzhantseva and Cherix (see Remark 3.9 for the precise definition and
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comments). We introduce here a very similar, but different, notion of sofic profile,
not for groups, but for its finite pieces, or “chunks”.

Definition 3.1. Let us call chunk a finite set F , endowed with a basepoint 1F

and a subset D of F × F × F satisfying the condition (x, y, z), (x, y, z′) ∈ D
implies z = z′. So we can view it as a partially defined function (x, y) 7→ z and
we write xy = z to mean that (x, y, z) ∈ D.

If F is an abstract chunk and G is a group, we call representation of F into
G an injective mapping f : F → G such that f(1) = 1 and f(x)f(y) = f(z)
whenever xy = z.

If F is a subset of a group G with 1 ∈ F , it is naturally a chunk by setting
xy = z whenever this holds in the group G. We call it a chunk of G (symmetric
chunk if F is symmetric in G).

In this setting, if C is a class of groups, to say that G is approximable by the
class C means that every chunk of G has a representation in a group in C.

Definition 3.2. Let F be a chunk. If n is an integer and ε > 0, define a ε-
morphism from F to Symn to be a mapping f : F → Symn such that f(1) = 1
and dn

Ham(f(xy), f(x)f(y)) ≤ ε for all x, y ∈ F . A mapping from F to the
symmetric group Symn is said to be (1 − ε)-expansive if dn

Ham(x, y) ≥ 1 − ε
whenever x, y are distinct points of F .

Define the sofic profile of F as the non-decreasing function

σF (r) = inf{n : ∃f : F → (Symn, d
n
Ham),

f is a (1− r−1)-expansive r−1-morphism} (r ≥ 1),

where inf ∅ = +∞. Say that the chunk F is sofic if limn→∞ σF (r) < ∞ for all
r ≥ 1. Say that a group G is sofic if every chunk in G is sofic. If S is a finite subset
of G, write σG,S(r) = σF (r), where F = S endowed with its chunk structure.

Observe that this definition of soficity is exactly the same as the previous one.
Also, it is immediate that the sofic profile of G is bounded (in the sense that σS

is bounded for every finite S ⊂ G). It also equivalent to the statement that it is
sublinear: indeed if F is a chunk and σF (r) = n < r for some r > 1, then the
chunk is representable into Symn.

This notion is related to the classical notion of isoperimetric profile (or Følner
function) of a group G. If S is a finite subset of G and X ⊂ G, define ∂SX =
SX −X. Following Vershik [V], define the isoperimetric profile of (G, S) as the
nondecreasing function

αG,S(r) = inf{n ≥ 1 : ∃F ⊂ G, #(F ) = n, #(∂S(F ))/#(F ) < r−1}.
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By definition, G is amenable1 if αG,S(r) < +∞ for every finite subset S and
r ≥ 1. Note that the isoperimetric profile is bounded if and only if G is locally
finite.

If u, v : [1,∞[→ [0,∞] are functions, we say that u � v if there exist positive
constants such that u(r) ≤ Cv(C ′r) + C ′′ for all r ≥ 1, and u ' v if u � v � u.

If G is a group u is a function, we say that the sofic profile of G is � u(r) if
for every finite subset F in G we have σG,S(r) � u(r), it is � u(r) if for some
finite subset F in G we have σG,S(r) � u(r); it is ' u(r) if both hold. We have
similar definitions for the isoperimetric profile (in this case, if G is generated by
a finite symmetric generating subset S, the isoperimetric profile of G is ' αG,S

in the sense above).

Remark 3.3. The main advantage of this definition is that for a group it depends
only on its chunks, and therefore, tautologically, if any group in C has the property
that its sofic profile is � u(r), then it still holds for any group approximable by
the class C. In particular, for any u, to have sofic profile � u(r) is a closed
property in the space of marked groups.

In contrast to the definition given by Arzhantseva-Cherix (see Remark 3.9),
its main drawback however is that I am unable to define, even for a finitely
presented group, its sofic profile as a certain (asymptotic class of) function. It
might indeed, in principle, happen that larger and larger chunks have larger and
larger sofic profile, and this is why we can only define the sofic profile to be
asymptotically bounded by a certain function.

By a result of Coulhon and Saloff-Coste [CS], the isoperimetric profile grows
at least as fast as the volume growth.

If G = Zd, the isoperimetric profile is ' nd and this is optimal; the same
estimate holds for groups of polynomial growth of degree d. If G is amenable
of exponential growth, then the isoperimetric profile is � 1/ log(n) and this is
optimal for polycyclic groups.

Informally, soficity of G means that points in G are well separated by “quasi-
actions” of G on finite sets, and amenability is the additional requirement that
these finite sets lie inside G with the action by the left multiplication.

It is elementary to check that the sofic profile is asymptotically bounded above
by the isoperimetric profile. Precisely we have the following lemma.

Lemma 3.4. For any finite subset F of G, we have σF (n) ≤ 3IG,F (n).

Proof. Suppose that IG,F (n) < ε and let us show that σF (n) < 3ε. By assumption
there exists X ⊂ G with 0 < #(X) ≤ n and #(FX −X)/#(X) < ε. For s ∈ S,

1The isoperimetric profile is also often defined as the non-increasing function

IG,S(n) = inf{#(∂S(F ))/#(F ) : F ⊂ G, 0 < #(F ) ≤ n}.
We check immediately that for all r ≥ 1, n ≥ 1 we have α(r) ≤ n ⇔ r < I(n)−1. Thus α and
1/I are essentially inverse functions to each other.
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define φ(s) : X → X to map x 7→ sx if sx ∈ X, and extend it arbitrarily to a
bijection. By assumption, the proportion of x such that φ(s)(x) = sx is > 1− ε.
It follows that the Hamming distance of φ(s) and φ(s′) is > 1 − 2ε whenever
s, s′ ∈ F and s 6= s′, and the Hamming distance between φ(st) and φ(s)φ(t) is 3ε
whenever s, t, st ∈ F . So IG,F (n) < 3ε. �

It is known [ES2] that any sofic-by-amenable group (i.e. lying in an extension
with sofic kernel and amenable quotient) is still sofic. The proof given there is
an explicit construction, yielding without any change the following.

Proposition 3.5. Let u, v : [1,∞[→ [1,∞] be functions. Let G be a group in
a short exact sequence 1 → N → G → Q → 1. If the sofic profile of N is
� u(r) and the isoperimetric profile of Q is � v(r), then the sofic profile of G is
� u(r)v(r). �

Example 3.6. Say that a group G has polynomial sofic profile if every chunk
in G has its sofic profile bounded above by a polynomial (no uniformity on the
degree is assumed). This amounts to say that for every suprapolynomial function
u(r) (in the sense that log u(r)/ log r → ∞), the sofic profile of G is � u(r). It
follows from Proposition 3.5 that the class of groups with polynomial sofic profile
is stable under extension with virtually abelian quotients. Since it is also stable
under taking direct limits, it follows that every elementary amenable group has
polynomial sofic profile. (Recall that the class of elementary amenable groups is
the smallest class containing the trivial group and stable under direct limits and
extensions with finitely generated virtually abelian quotients.) In particular, any
solvable group has polynomial sofic profile.

Example 3.7. For k, ` ∈ Z−{0}, the sofic profile of the Baumslag-Solitar group

Γ = BS(k, `) = 〈t, x|txkt−1〉

is at most linear (i.e. is � r). (This group is not approximable by finite groups
unless |k| = 1, |`| = 1, or |k| = |`|.)

Proof. Let N be the kernel of homomorphism onto Q = Z mapping (t, x) to (1, 0).
The assertion follows from Proposition 3.5 the fact that the isoperimetric profile
of Z is linear, and that N is approximable by finite groups (so its sofic profile is
bounded). Let us check the latter fact: using that Γ is the HNN-extension of Z
by the two embeddings of Z into itself by multiplication by k and ` respectively,
the group N is an iterated free product with amalgamation · · ·Z∗Z Z∗Z Z∗Z · · · ,
where each embedding of Z to the left, resp. to the right, is given by multiplication
by k, resp. by ` [Se, I.1.4, Prop. 6]. This group is locally residually finite, i.e.
every such finite iteration Z ∗Z Z ∗Z · · · ∗Z Z is residually finite; this follows, for
instance, from [Ev]. (In case k, ` are coprime, R. Campbell [Ca] checked that N
itself is not residually finite, and even that all its finite quotients are abelian.)
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Since Γ is finitely presented, the assertion of non-approximability means that
Γ is not residually finite except in the excluded cases, this is a result of Meskin
[Me] (correcting a error in [BS]). �

Note that the fact that BS(k, `) is residually solvable (indeed, free-by-metab-
elian) immediately implies its soficity, but yields a much worse upper bound on
its sofic profile.

Problem 3.8. Develop methods to compute lower bounds for the sofic profile of
explicit groups. Is there any group for which the sofic profile is not � r?

This problem only concerns groups not approximable by finite groups, since
otherwise the sofic profile is bounded. Otherwise the sofic profile grows at least
linearly as we observed above, but we have no example with a better lower bound.
Here are some examples of finitely generated groups not approximable by finite
groups, which could be looked over.

• Infinite isolated groups. A group G is by definition isolated if it has
a chunk S such that any representation of S into a group H extends
to an injective homomorphism G → H. (This clearly implies that G
is generated by S and actually is presented with the set of conditions
st = u, s, t, u ∈ S as a set of relators.) These include finitely presented
simple groups. Many more examples are given in [CGP], e.g. Thompson’s
group F of the interval. It includes several examples that are amenable
(solvable or not) and therefore sofic. We can also find in [CGP] examples
of non-amenable isolated groups but their soficity is not known; however
an example of a non-amenable isolated group that is known to be sofic,
is given in [C].

• Other finitely presented non-residually finite groups. This includes Baumslag-
Solitar groups mentioned above, as well as various other one-relator groups
[Bau, BMT]. Another example is Higman’s group [Se, I.1.4, Prop. 5]

〈x1, x2, x3, x4| xi−1xix
−1
i−1 = x2

i (i = 1, 2, 3, 4 mod 4)〉,
which has no proper subgroup of finite index. Its soficity is not known.

• Direct products of the above groups. For instance, BS(2, 3)d has sofic
profile � nd.

Remark 3.9. The notion of sofic dimension previously introduced by Arzhant-
seva and Cherix is the following. Let G be generated by a finite subset S.
The sofic dimension φ(n) is, in the language introduced here, φS(n) = σSn(n).
Arzhantseva and Cherix showed that its asymptotics only depend on G and not
on the choice of S, and related it to the isoperimetric profile. However, it is quite
different in spirit to the sofic profile, because it takes into account the shape of
balls. In particular, the sofic dimension is bounded only for finite groups.

I am not able to adapt the specification process used to estimate the sofic
profile of Cremona groups (Proposition 2.2) to give any upper bound on the sofic
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dimension of their finitely generated subgroups. This is probably doable, but at
the cost of some tedious estimates on the degrees of singular subvarieties arising
in the proof, which would not give better than an exponential upper bound for
the sofic dimension.

Note that the knowledge of the function of two variables Φ(m,n) = σSm(n)
encompasses both the sofic dimension φS(n) = Φ(n, n) and the sofic profile (as-
ymptotic behavior of Φ(m, n) when m is fixed).

4. General varieties

The purpose of this section is to prove Theorem 1.1 in its general formulation
(for an arbitrary absolutely irreducible variety). Since the group of birational
transformations of an absolutely irreducible variety can be canonically identified
with that of an open affine subset, we can, in the sequel, stick to affine varities.

If X is an affine variety over the field K, we define a specification of X over
a finite field F as an affine variety X ′′ over F satisfying the following condition.
Denoting by B, B′′ be the K-algebra of functions of X and the F -algebra of
functions on X ′′, there exists a finitely generated subdomain A of K, a finitely
generated A-subalgebra B′ of B, a surjective homomorphism A → F , so that
B′ ⊗A F ' B′′ as A-algebras, and the natural K-algebra homomorphism B′ ⊗A

K → B is an isomorphism. Note that dim(X ′′) ≤ dim(X).

Proposition 4.1. Let X be an affine d-dimensional absolutely irreducible variety
over a field K. Then the group BirK(X) is approximable (in the sense of Defi-
nition 2.1) by the family of groups {BirF (X ′)}, where F ranges over finite fields
and X ′ ranges over d-dimensional specifications of X over F that are absolutely
irreducible over F .

Proof. Let B be the K-algebra of functions on X and L be its field of fractions,
so that BirK(X) = AutK(L).

Suppose that a finite symmetric subset W with 1 is given in AutK(L). It
consists of a finite family (vi) of pairwise distinct elements of AutK(L). There
exists f ∈ B−{0} such that vi(B) ⊂ B[f−1] for all i. Denote by ui : B → B[f−1]
the K-algebra homomorphism which is the restriction of vi.

Fix generators t1, . . . , tm of B as a K-algebra, so that B[f−1] is generated
by t1, . . . , tm, f−1 as a K-algebra. For each (i, j), we can write ui(tj) as a cer-
tain polynomial with coefficients in K and m + 1 indeterminates, evaluated at
(t1, . . . , tm, f−1). Let C1 be the (finite) subset of K consisting of the coefficients of
these polynomials (i, j varying). Also, under the mapping Xj 7→ tj, the K-algebra
B is the quotient of K[X1, . . . , Xm] by some ideal; we can consider a certain fi-
nite set of polynomials with coefficients in K generating this ideal. Let C2 be the
finite subset of K consisting of the coefficients of those polynomials. Also, f can
be written as a polynomial in t1, . . . , tm; let C3 ⊂ K consist of the coefficients of
this polynomial. Let A0 be the subring of K generated by C1 ∪ C2 ∪ C3.
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Let B′
0 be the A0-subalgebra of B generated by the tj. By generic flatness

[SGA, Lem. 6.7], there exists s ∈ A0 − {0} such that B′ = B′
0[s

−1] is flat over
A = A0[s

−1]. Since A contains coefficients of the polynomials defining B, we have,
in a natural way, B = B′ ⊗A K. Moreover, f ∈ B′ and the homomorphisms ui

actually map B′ to B′[f−1]; if u′i denotes the corresponding restriction map B′ →
B′[f−1], then u′i ⊗A K = ui (here we view − ⊗A K as a functor). In particular,
since the ui are pairwise distinct by definition, the u′i are pairwise distinct as
well. This means that for all i 6= i′ there exists an element xii′ ∈ B′ such that
ui(xii′) 6= ui′(xii′). Let x ∈ B′−{0} be the product of all ui(xii′)−ui′(xii′), where
{i, i′} ranges over pairs of distinct indices. Also, fix k large enough so that the
element g = fk

∏
i ui(f) ∈ B′[f−1]− {0} belongs to B′ − {0}.

There is a natural map φ : Spec(B′) → Spec(A) consisting in taking the
intersection with A. This map is continuous for the Zariski topology. Consider
the open subset of Spec(B′) consisting of those primes not containing gx; this is
an open subset of Spec(B′) containing {0}. Since B′ is A-flat, the map φ is open
[SGA, Th. 6.6]. Therefore there exists a ∈ A − {0} such that every prime of A
not containing a is of the form P∩A for some prime P of B′ not containing gx.

Now since B′ is A-flat and absolutely integral, by [EGA, 12.1.1] there exists
a′ ∈ A − {0} such that for every prime Q of A not containing a′, the quotient
ring B′ ⊗A (A/Q) = B′/QB′ is an absolutely integral (A/Q)-algebra.

It follows that if m is a maximal ideal of A not containing aa′, then B′/mB′

is an absolutely integral (A/m)-algebra and mB′ does not contain gx. Let us fix
such a maximal ideal m ⊂ A (it exists because in a finitely generated domain, the
intersection of maximal ideals is trivial, see for instance [Eis, Th. 4.19]). Since u′i
is a A-algebra homomorphism, it sends mB′ to mB′[f−1], and therefore induces
a (A/m)-algebra homomorphism u′′i : B′/mB′ → B′[f−1]/mB′[f−1]. Since x 6= 0
in B′/mB′, the u′′i are pairwise distinct.

We need to check that dim(B′/mB′) ≤ d. First, by [Eis, Th. 13.8], dim(B′) ≤
dim(A) + d. Now since B′ is A-flat, by [Eis, Th. 10.10] we have dim(B′/mB′) ≤
dim(B′)− dim(Am). Since A is a finitely generated domain, and m is a maximal
ideal, we have dim(Am) = dim(A) (see Lemma 4.3), and from the two inequali-
ties above we deduce dim(B′/mB′) ≤ d. (Actually both inequalities are equalities
(same references): for the first one, [Eis, Th. 13.8] uses the fact that A is univer-
sally catenary, which follows in turn from the fact that Z is universally catenary,
which is part of [Eis, Cor. 18.10].)

To conclude it is enough to prove the following claim

Claim 4.2. The homomorphisms u′′i uniquely extend to pairwise distinct (A/m)-
automorphisms v′′i of the field of fractions of B′/mB′ and whenever vivj = vk we
have v′′i v

′′
j = v′′k .

To check the claim, begin with the following general remark. If R is a domain,
s a nonzero element, and we have two homomorphisms α, β : R → R[s−1], such
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that α(s) is nonzero, then α uniquely extends to a homomorphism R[s−1] →
R[(sα(s))−1] and we can define the composite map αβ : R → R[(sα(s))−1].

Since g 6= 0 in B, this can be applied to the K-algebra homomorphisms (vi =
)ui : B → B[f−1], which are given by t` 7→ U`i(t1, . . . , tm)/fd, where U`i ∈
A[X1, . . . , Xm]. We thus have, for all `

vi(vj(t`)) =vi(U`j(t1, . . . , tm)/fd)

=U`j(ui(t1), . . . , ui(tm))/ui(f)d

=U`j(U1i(t1, . . . , tm)/fd, . . . Umi(t1, . . . , tm)/fd)/ui(f)d.

For all `, j can write the formal identity

U`j(X1/Y, . . . , Xm/Y )Y δ = V`j(T1, . . . , Tm, Y )

for some V`j ∈ B[X1, . . . , Xm, Y ] and some positive integer δ. Thus vivj = vk (or
equivalently uiuj = uk) means that for all ` we have the equality in L, for all `

U`j(U1i(t1, . . . , tm)/fd, . . . Umi(t1, . . . , tm)/fd)/ui(f)d = U`k(t1, . . . , tm)/fd,

that is

V`j(U1i(t1, . . . , tm), . . . Umi(t1, . . . , tm)) = U`k(t1, . . . , tm)ui(f)dfdδ−d,

which actually holds in B′ ⊂ L. This equality still holds modulo the ideal mB′.
Since g 6= 0 in B′/mB′ (i.e., f and uj(f) are nonzero elements of the domain
B′/mB′), this equality exactly means that u′′i u

′′
j = u′′k in the sense above.

Since in particular for every i there exists ι such that vivι and vιvi are the iden-
tity, u′′i u

′′
ι and u′′ι u

′′
i are the identity; in particular u′′i extends to an automorphism

v′′i of the fraction field of B′/mB′. Since the u′′i are pairwise distinct, so are the
v′′i . Moreover, whenever uiuj = uk, we have u′′i u

′′
j = u′′k which in turn implies

v′′i v
′′
j = v′′k . So the claim is proved, and hence Proposition 4.1 as well. �

We used the following standard lemma.

Lemma 4.3. Let A be a finitely generated domain. Then for any maximal ideal
m, we have dim(A) = dim(Am).

Proof. If the characteristic is positive, A is a finitely generated algebra over the
field on p elements, and [Eis, Cor. 13.4] (based on Noether normalization) applies,
giving dim(A) = dim(Am) + dim(A/m) = dim(Am).

If the characteristic is zero, we use the fact that Z is universally catenary
[Eis, Cor. 18.10], to apply [Eis, Th. 13.8], which yields dim(Am) = dim(Zm∩Z) +
dim(A ⊗Z Q). Since m has finite index, m ∩ Z = pZ for some prime p and
dim(Zm∩Z) = 1. So dim(Am) = 1 + dim(A ⊗Z Q). Since this value does not
depend on m, we deduce that dim(Am) = dim(A). �
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Proposition 4.4. For every absolutely irreducible affine variety X over a finite
field F , the group BirF (X) is sofic. Actually, its sofic profile is � nd, where
d = dim(X).

The proof is similar to the one of Proposition 2.3 and left to the reader. The
only additional feature is the fact, which follows from the Lang-Weil estimates
(making use of the assumption that X is absolutely irreducible), that for some
constant c > 0 and every finite extension F ′ of F with q elements, the number of
points in X(F ′) is ≥ cqd.

From Propositions 4.1 and 4.4 we deduce

Corollary 4.5. For every absolutely irreducible affine variety X over a field K,
the group BirK(X) is sofic. Actually, its sofic profile is � nd, where d = dim(X).

5. A nonlinear subgroup of the Cremona group

We provide in this section an example of a finitely generated subgroup of
Cr2(C) that is not linear over any field. It is 3-solvable and actually lies in the
Jonquières subgroup, that is, the group of birational transformations preserving
the partition of C2 by horizontal lines.

If f ∈ K(X) and g ∈ K(X)×, define αf , µg ∈ Cr2(K) by

αf (x, y) = (x, y + f(x)); µg(x, y) = (x, yg(x)).

We have

αf+f ′ = αfαf ′ ; µgg′ = µgµg′ ; µgαfµ
−1
g = αfg.

Also for t ∈ K, define st ∈ Cr2(K) by (x, y) = (x + t, y), so that

stαf(X)s
−1
t = αf(X−t); stµg(X)s

−1
t = µg(X−t).

Consider the subgroup Γn of Cr2(K) generated by s1 and αXn (n ≥ 0).

Lemma 5.1. The group Γn is nilpotent of class at most n + 1; moreover if K
has characteristic zero the nilpotency length of Γn is exactly n + 1, and Γn is
torsion-free.

Proof. Consider the largest group Rn, generated by s1 and by the abelian sub-
group An consisting of all αP , where P ranges over polynomials of degree at most
n. Then An is normalized by s1 and [s1, An] ⊂ An−1 for all n ≥ 1, while A0 = {1}.
Therefore Rn is nilpotent of class at most n+1, and therefore so is Γn. Conversely,
the n-iterated group commutator [s1, [s1, · · · , [s1, αXn ] · · · ]] is equal to α∆nXn ,
where ∆ is the discrete differential operator ∆P (X) = −P (X)+P (X − 1). So if
K has characteristic zero (or p > n) then ∆nXn 6= 0 and Γn is not n-nilpotent.
In this case it is also clear that Rn is torsion-free. �

Now assume that K has characteristic zero and consider the group G ⊂
Cr2(Q) ⊂ Cr2(K) generated by {s1, α1, µX}.
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Proposition 5.2. The group G ⊂ Cr2(Q) is solvable of length three; it is not
linear over field.

Proof. From the conjugation relations above it is clear that the subgroup gener-
ated by s1, all αf and µg, is solvable of length at most three. If we restrict to
those g of the form

∏
n∈Z(X − n)kn (where (kn) is finitely supported), we obtain

a subgroup containing Γ, that is clearly torsion-free.
Since µn

Xα1µ
−n
X = αXn , we see that G contains Γn for all n, which is nilpotent

of length exactly n + 1. Therefore it has no linear representation over any field.
[Sketch of proof of the latter (well-known) result: in characteristic p > 0, any

torsion-free nilpotent subgroup is abelian, so this discards this case. Otherwise
in characteristic zero, since any finite index subgroup of a torsion-free nilpotent
group of nilpotency length n+1 still has nilpotency length n+1, the existence of
a linear representation of G into GLd(C) implies the existence of a Lie subalgebra
of gld(C) of nilpotency length n + 1 for all n; this necessarily implies n + 1 ≤ d2,
and since n is unbounded this is a contradiction.]

The fact that G is not 2-solvable (=metabelian) can be checked by hand, but
also follows from the fact that every torsion-free finitely generated metabelian
group is linear over a field of characteristic zero [Re]. �

With little further effort, it actually follows from the same argument that G
is not linear over any finite product of fields (and therefore over any reduced
commutative ring): indeed at least one of the projections should contain torsion-
free nilpotent subgroups of arbitrary large nilpotency length.

Remark 5.3. It is unknown whether there exists a finitely generated subgroup
of the group Aut(C2) of polynomial automorphisms of C2, that is not linear in
characteristic zero. A construction in the same fashion does not work: indeed
let E be the group of elementary automorphisms, namely of the form (x, y) 7→
(αx+P (y), βy+c) for (α, β, c, P ) ∈ C∗×C∗×C×C[X]. Then, although E is not
linear (since by the argument above, it contains all Γn), every finitely generated
subgroup of E is linear over C.

To see this, write E as a semidirect product (C∗ × (C∗ n C)) n C[X], where
the action on C[X] is by (α, β, c) ·P (X) = αP (βX +c). In particular, this action
stabilizes the subgroup Cn[X] of polynomials of degree at most n. Therefore
any finitely generated subgroup of E is contained in the subgroup (C∗ × (C∗ n
C)) n Cn[X] for some n ≥ 1. This is a (finite-dimensional) complex Lie group
whose center is easily shown to be trivial, so its adjoint representation is a faithful
complex linear representation.

A nice observation by Cerveau and Déserti [CD, Lemme 5.2] is that the Cre-
mona group has no faithful linear representation in characteristic zero. Actually,
an easy refinement of the same argument provides a stronger result.

Proposition 5.4. If K is an algebraically closed field, there is no nontrivial
finite-dimensional linear representation of Cr2(K) over any field.
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(Note that since the Cremona group is not simple by a recent difficult result
of Cantat and Lamy [CL], the non-existence of a faithful representation does not
formally imply the non-existence of a nontrivial representation.)

Proof of Proposition 5.4. In Cr2(K), there is a natural copy of G = (K×)2 o
Z, where Z acts by the automorphism σ(x, y) = (x, xy) of (K×)2. Here, it
corresponds, in affine coordinates, to the group of transformations of the form

(x1, x2) 7→ (λ1x1, x
n
1λ2x2) for (λ1, λ2, n) ∈ (K×)2 × Z.

Consider an linear representation ρ : G → GLn(F ), where F is any field (here G is
viewed as a discrete group). If p is a prime which is nonzero in K and if ωp ∈ K is a
primitive p-root of unity, set αp(x1, x2) = (ωpx1, ωpx2) and βp(x1, x2) = (x1, ωpx2).
Then σαpσ

−1α−1
p = βp and commutes with both σ and αp. An argument of

Birkhoff [Bi, Lemma 1] shows that if ρ(αp) 6= 1 then n > p (the short argument
given in the proof of [CD, Lemme 5.2] for F of characteristic zero works if it is
assumed that p is not the characteristic of F ).

Picking p to be greater than n and the characteristics of K and F , this shows
that if we have an arbitrary representation π : Cr2(K) → GLn(F ), the restriction
of π to PGL3(K) is not faithful; since PGL3(K) is simple, this implies that
π is trivial on PGL3(K); since Cr2(K) is generated by PGL3(K) as a normal
subgroup, this yields the conclusion. �
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