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Abstract. We give some examples of non-nilpotent locally nilpotent, and
hence nonlinear subgroups of the planar Cremona group.

0. Foreword

This note has been circulating since 2012 and has been posted to arXiv in 2017

(arXiv:1701.00275), unchanged up to updates and minor corrections. Since it has

been quoted at various places, I have finally wrote down a version aimed at publication.

In addition to the existing material I have added a few remarks an additional section

(Section 3), notably motivated by the follow-up paper [Mat] by O. Mathieu.

1. Introduction

Let K be a field. The planar Cremona group Cr2(K) of K is defined as the
group of birational self-transformations of the 2-dimensional affine space over K.
It can also be described as the group of K-automorphisms of the field of rational
functions K(t1, t2). More generally, one defines Crd(K).

We provide here two observations about the planar Cremona group. The first is
an example of a non-linear finitely generated subgroup of Cr2(C). The existence
of such a subgroup was known to some experts: for instance it follows from an
unpublished construction of S. Cantat (using superrigidity of lattices); our exam-
ple has the additional feature of being 3-solvable. Its non-linearity follows from
the fact it contains torsion-free nilpotent subgroups of arbitrary large nilpotency
class. We also show here that Cr2(K) has no nontrivial linear representation over
any field, extending a result of Cerveau and Déserti (all representations below
are assumed finite-dimensional).

The group of K-defined automorphisms AutK A2 ⊂ Cr2(K) of the affine plane
(often denoted Aut(K2) in the literature) will naturally appear in the discussion.
We end this short introduction with a few questions.

(1) (Cantat) for d ≥ 2, and any field K, is Crd(K) locally residually finite
(i.e. is every finitely generated subgroup residually finite)?

(2) Does there exist a finitely generated subgroup of AutC A2 with no faithful
linear representation? (now answered positively by O. Mathieu [Mat])
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2. A nonlinear subgroup of the Cremona group

For a group G, define G1 = G and Gi+1 = [G,Gi]. The group G is called n-step
nilpotent if Gn+1 = {1}; the smallest such n is called nilpotency class of G.

We provide in this section an example of a finitely generated subgroup of
Cr2(C) that is not linear over any field. It is 3-step solvable and actually lies in the
Jonquières subgroup, that is, the group of birational transformations preserving
the partition of C2 by horizontal lines.

If f ∈ K(X) and g ∈ K(X)×, define αf , µg ∈ Cr2(K) by

αf (x, y) = (x, y + f(x)); µg(x, y) = (x, yg(x)).

We have

αf+f ′ = αfαf ′ ; µgg′ = µgµg′ ; µgαfµ
−1
g = αfg.

Also for t ∈ K, define st ∈ Cr2(K) by (x, y) = (x+ t, y), so that

stαf(X)s
−1
t = αf(X−t); stµg(X)s

−1
t = µg(X−t).

For n ≥ 0, consider the subgroup Γn of Cr2(K) generated by s1 and αXn ; note
that Γn ⊆ AutQ(A2).

Lemma 2.1. The finitely generated group Γn is nilpotent of class at most n+ 1;
moreover if K has characteristic zero the nilpotency class of Γn is n+ 1, and Γn

is torsion-free.

Proof. We introduce the larger subgroup Rn, generated by s1 and by the abelian
subgroup An consisting of all αP , where P ranges over polynomials of degree at
most n. Then An is normalized by s1 and [s1, An] ⊂ An−1 for all n ≥ 1, while
A0 = {1}. Therefore Rn is nilpotent of class at most n + 1, and therefore so is
Γn. Conversely, the n-iterated group commutator

[s1, [s1, · · · , [s1, αXn ] · · · ]] ∈ Γn+1
n

is equal to α∆nXn , where ∆ is the discrete differential operator ∆P (X) = −P (X)+
P (X − 1). So if K has characteristic zero (or p > n) then ∆nXn 6= 0 and hence
Γn is not n-step nilpotent. In this case it is also clear that Rn is torsion-free. �

Now assume thatK has characteristic zero and consider the group Ξ ⊂ Cr2(Q) ⊂
Cr2(K) generated by {s1, α1, µX}.

Proposition 2.2. The finitely generated group Ξ ⊂ Cr2(Q) is solvable of length
three; it is not linear over any field.

The following lemma is most likely well-known.
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Lemma 2.3. Let K be a field and n ≥ 0. Suppose that GLn(K) has a torsion-free
nilpotent subgroup of nilpotency class c ≥ 0. Then c ≤ n (and if K has positive
characteristic then c ≤ 1).

Proof. We can suppose that K is algebraically closed and n ≥ 1. Since Γ is
Zariski-dense in its Malcev completion, every finite index subgroup of Γ also has
nilpotency class c. In particular, we can suppose that the Zariski closure of Γ in
GLn is connected, and hence assume that Γ consists of upper triangular matrices.
If the characteristic is positive, the derived subgroup of Γ is torsion and we deduce
that Γ is abelian.

Now assume that the characteristic is zero, and let us show by induction on
n ≥ 0 the given upper bound for Zariski-connected (rather than torsion-free)
nilpotent subgroups. The case n = 0 is trivial; assume now n ≥ 1. Let G be the
Zariski closure, assumed connected, of Γ. Since G is nilpotent, we have G = D×U
with D the unique maximal torus and U the unipotent radical. If D does not act
by scalars, then G preserves a non-trivial direct product decomposition and by
induction it follows that c ≤ n−1. Otherwise D acts by scalars: then we directly
see that the whole group of upper triangular matrices with constant diagonal has
nilpotency class equal to n, and hence c ≤ n. �

Proof of Proposition 2.2. From the conjugation relations above it is clear that the
subgroup generated by s1, all αf and µg, is solvable of length at most three. If we
restrict to those g of the form

∏
n∈Z(X − n)kn (where (kn) is finitely supported),

we obtain a subgroup containing Γ, that is clearly torsion-free.
Since µn

Xα1µ
−n
X = αXn , we see that Ξ contains Γn for all n, which is torsion-free

nilpotent of class n+ 1. Therefore, by Lemma 2.3 it has no linear representation
over any field.

The fact that Ξ is not 2-step solvable (=metabelian) can be checked by hand,
but also follows from the fact that every torsion-free finitely generated metabelian
group is linear over a field of characteristic zero [Rem]. �

We easily see Γn ⊂ Γn+1 for all n. Denoting Γ∞ =
⋃

Γn, we see that the torsion-
free group Γ∞ is locally nilpotent (that is, all its finitely generated subgroups are
nilpotent) and the above argument works for it. Since Γ∞ is contained in AutQ A2,
we also get:

Proposition 2.4. The group Γ∞ is not linear over any field, and hence neither
are AutQ A2 and AutC A2.

With little further effort, it actually follows from the same argument that Γ∞
(and hence Ξ) is not linear over any finite product of fields. Better, it is not
linear over any product of fields (and therefore over any reduced commutative
ring). This is based on the following improvement of Lemma 2.3 (which fixes an
imprecise argument from the original unpublished version).
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Lemma 2.5. Let R be a reduced scalar (=commutative associative unital) ring
and n ≥ 0. Suppose that GLn(R) has a torsion-free nilpotent subgroup of nilpo-
tency class c ≥ 0. Then c ≤ n.

Proof. We can suppose c ≥ 2. Since every nilpotent group of class c has a finitely
generated subgroup of class c (find a suitable nonzero iterated bracket and choose
the subgroup generated by the group elements involved in the given bracket), we
can suppose that this subgroup Γ is finitely generated, and hence, we can suppose
that R is a finitely generated ring. Let P1, . . . , Pm be the minimal prime ideals in
R (since R is noetherian, they are finitely many). Since R is reduced,

⋂
i Pi = {0}.

So GLn(R) embeds into
∏

i GLn(Ki), where Ki is the field of fractions of R/Pi.
Let Γi be the projection of Γ in GLn(Ki), and Ti the set of torsion elements in Γi.
Since Γi is a finitely generated nilpotent group, Ti is a finite normal subgroup of
Γi. Since Γ is torsion-free and its diagonal map into

∏
i Γi is injective and the Ti

are finite, the diagonal map of Γ into
∏

i Γi/Ti is also injective. So there exists j
such that Γj/Tj has nilpotency class c. Hence, if Λj is a torsion-free finite index
subgroup of Γi, then Λj has nilpotency class c. Hence, by Lemma 2.3, we have
c ≤ n. �

A nice observation by D. Cerveau and J. Déserti [CD, Lemme 5.2] is that
the Cremona group has no faithful linear representation in characteristic zero.
Actually, an easy refinement of the same argument provides a stronger result.

Proposition 2.6. If K is an algebraically closed field, there is no nontrivial
finite-dimensional linear representation of Cr2(K) over any field.

(Note that since the Cremona group is not simple by a result of S. Cantat and
S. Lamy [CL], the non-existence of a faithful representation does not formally
imply the non-existence of a nontrivial representation.)

Proof of Proposition 2.6. In Cr2(K), there is a natural copy of G = (K×)2 o
Z, where Z acts by the automorphism σ(x, y) = (x, xy) of (K×)2. Here, it
corresponds, in affine coordinates, to the group of transformations of the form

(x1, x2) 7→ (λ1x1, x
n
1λ2x2) for (λ1, λ2, n) ∈ (K×)2 × Z.

Consider an linear representation ρ : G→ GLn(F ), where F is any field (here G is
viewed as a discrete group). If p is a prime which is nonzero inK and if ωp ∈ K is a
primitive p-root of unity, set αp(x1, x2) = (ωpx1, ωpx2) and βp(x1, x2) = (x1, ωpx2).
Then σαpσ

−1α−1
p = βp and commutes with both σ and αp. An argument of

Birkhoff [Bi, Lemma 1] shows that if ρ(αp) 6= 1 then n > p (the short argument
given in the proof of [CD, Lemme 5.2] for F of characteristic zero works if it is
assumed that p is not the characteristic of F ).

Picking p to be greater than n and the characteristics of K and F , this shows
that if we have an arbitrary representation π : Cr2(K)→ GLn(F ), the restriction
of π to PGL3(K) is not faithful; since PGL3(K) is simple, this implies that
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π is trivial on PGL3(K); since Cr2(K) is generated by PGL3(K) as a normal
subgroup, this yields the conclusion. �

Remark 2.7. The subsequent paper [Reg] by A. Regeta also uses the idea of con-
sidering suitable families of (solvable) algebraic subgroups to prove that Aut(X)
is non-linear for various varieties X (in characteristic zero).

Remark 2.8. The subsequent paper [Mat] by O. Mathieu shows, by a more
elaborate argument, that AutK(A2) is not linear over any field, regardless of the
infinite fieldK. The case whenK has positive characteristic is indeed significantly
more difficult.

3. Additional comments

After this paper has been circulating, O. Mathieu [Mat] has answered posi-
tively Question (2) of the introduction. This provides a stronger obstruction to
linearity for AutQ A2. Our proof of Proposition 2.4 was based on the fact that
AutQ A2 contains torsion-free nilpotent subgroups of unbounded nilpotency class.
These can be viewed as complementary results, and actually have no “common
denominator”, in view of the following fact:

Proposition 3.1. Let K be a field of characteristic zero and let G be a finitely
generated subgroup of AutK A2. Then torsion-free nilpotent subgroups of G have
bounded nilpotency class, i.e., have nilpotency class ≤ cG, for some cG depending
only on G.

(This is false without the restriction to torsion-free groups, simply because the
finite dihedral groups of order 2n have unbounded nilpotency class (n−1 for each
n ≥ 2), and are isomorphic to subgroups of GL2(C).)

To prove the proposition, we can suppose that K = C. Then we have the
amalgam decomposition AutC A2 = A ∗C B where A is the subgroup of affine
automorphisms and B is the the subgroup of Jonquières automorphisms, i.e., of
the form (x, y) 7→ (ax+b, cy+P (x)) and C = A∩B. This decomposition induces
an inversion-free action on a tree with two vertex orbits, one edge orbit, and one
edge with stabilizer C whose vertices have stabilizers A and B.

S. Lamy [Lam] has “classified” subgroups Γ of AutC A2 with respect to the
action on this tree. For torsion-free subgroups Γ, this classification simplifies as
follows

Lemma 3.2 (Lamy). For a torsion-free subgroup of AutC A2, one of the three
mutually exclusive possibilities holds

(a) Γ has a fixed vertex, or equivalently is conjugate to a subgroup of either
A or B;

(b) Γ is infinite cyclic, generated by a loxodromic element;
(c) Γ has two loxodromic elements with disjoint endpoints, and in particular

contains a non-abelian free subgroup.
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On the proof. This is not summarized in this way in [Lam]. For each group acting
inversion-free on a tree, in general we have exactly one of the five possibilities

(a) (bounded) there is a fixed vertex;
(a’) (horocyclic) each element has a fixed vertex, there is no fixed vertex, there

is a unique fixed point at infinity;
(b) (axial) there is a loxodromic element and an invariant geodesic;
(b’) (focal) there loxodromic elements, all sharing a common endpoint, but no

invariant geodesic;
(c) (general type) there are two loxodromics with no common endpoint.

It is a general standard fact that (c) implies the existence of a non-abelian free
subgroup.

In the setting of subgroups of AutC A2, [Lam, Cor. 4.2] excludes Case (b’).
Also, [Lam, Prop. 3.3] says that elements with an unbounded fixed-point-set are
torsion. This implies that every subgroup as in (a’) is torsion and, in case (b), the
kernel of the natural homomorphism to the automorphism group of the unique
invariant geodesic is torsion. Hence, for a torsion-free subgroup of AutC A2, (a’) is
impossible, and (b) implies that the group is isomorphic to either Z or the infinite
dihedral group, the latter being again excluded since it is not torsion-free. �

Proof of Proposition 3.1. It follows that every torsion-free nilpotent subgroup of
AutC A2 is conjugate into either A or B. Since A embeds into GL3(C), ev-
ery torsion-free nilpotent subgroup of A has nilpotency class ≤ 2. Hence every
torsion-free nilpotent subgroup of AutC A2, of class ≥ 3, is conjugate into B.

Let Bn be the subgroup of B of such automorphisms with P of degree ≤ n.
Then, for n ≥ 1, we have C ⊂ Bn, and, denoting by Gn the subgroup generated
by A ∪ Bn, we have Gn = A ∗C Bn. If Γ is a finitely generated subgroup of
AutC A2, it is contained in Gn for some n. In turn, let N be a torsion-free
nilpotent subgroup of Gn, of nilpotency class ≥ 3. By the previous discussion, it
fixes, in the tree T associated to the amalgam decomposition A ∗C B, a unique
vertex, which is in the orbit of the vertex fixed by B. Since the tree T ′ associated
to the amalgam decomposition can be viewed as a subtree of T , we deduce that
this vertex belongs to T ′ and hence, in Gn, the subgroup N is conjugate to a
subgroup of Bn. Since, by Lemma 2.3, torsion-free nilpotents subgroups of Bn

have bounded nilpotency class, we deduce that torsion-free nilpotent subgroups
of Gn (and hence of Γ) have bounded nilpotency class. �

Remark 3.3. Another obstruction to linearity is the existence of (not necessarily
torsion-free) solvable subgroups of unbounded solvability class [FN]. However,
this obstruction is not satisfied by the planar Cremona group Cr2(C) (Urech [U,
Theorem 1.8], essentially following Déserti [D]).
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