
Appendix A. The Cremona group is not an amalgam

Yves de Cornulier

Let k be a field. The Cremona group Bir(Pd
k) of k in dimension d is defined

as the group of birational transformations of the d-dimensional k-affine space. It
can also be described as the group of k-automorphisms of the field of rational
functions k(t1, . . . , td). We endow it with the discrete topology.

Let us say that a group has Property (FR)∞ if it satisfies the following

(1) For every isometric action on a complete real tree, every element has a
fixed point.

Here we prove the following result.

Theorem A.1. If k is an algebraically closed field, then Bir(P2
k) has Property

(FR)∞.

Corollary A.2. The Cremona group does not decompose as a nontrivial amal-
gam.

Recall that a real tree can be defined in the following equivalent ways (see [1])

• A geodesic metric space which is 0-hyperbolic in the sense of Gromov;
• A uniquely geodesic metric space for which [ac] ⊂ [ab] ∪ [bc] for all a, b, c;
• A geodesic metric space with no subspace homeomorphic to the circle.

In a real tree, a ray is a geodesic embedding of the half-line. An end is an
equivalence class of rays modulo being at bounded distance. For a group of
isometries of a real tree, to stably fix an end means to pointwise stabilize a ray
modulo eventual coincidence (it means it fixes the end as well as the corresponding
Busemann function).

For a group Γ, Property (FR)∞ has the following equivalent characterizations:

(2) For every isometric action of Γ on a complete real tree, every finitely
generated subgroup has a fixed point.

(3) Every isometric action of Γ on a complete real tree either has a fixed
point, or stably fixes a point at infinity (in the sense above).

The equivalence between these three properties is justified in Lemma A.9.
Similarly, we can define the weaker Property (FA)∞, replacing complete real trees
by ordinary trees (and allowing fixed points to be middle of edges), and the three
corresponding equivalent properties are equivalent [3] to the following fourth: the
group is not a nontrivial amalgam and has no homomorphism onto the group of
integers. In particular, Corollary A.2 follows from Theorem A.1.

Remark A.3. a.– Note that the statement for actions on real trees (rather than
trees) is strictly stronger. Indeed, unless k is algebraic over a finite field, the
group PGL2(k) = Bir(P1

k) does act isometrically on a real tree with a hyperbolic
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element (this uses the existence of a nontrivial real-valued valuation on k), but
does not have such an action on a discrete tree (see Proposition A.8).
A.3. b.– Note that Bir(P2

k) always has an action on a discrete tree with no fixed
point (i.e. no fixed point on the 1-skeleton) when k is algebraically closed, and
more generally whenever k is an infinitely generated field: write, with the help of
a transcendence basis, k as the union of an increasing sequence of proper subfields
k =

⋃
kn, then Bir(P2

k) is the increasing union of its proper subgroups Bir
(
P2

kn

)
,

and thus acts on the disjoint union of the coset spaces Bir(P2
k)/Bir

(
P2

kn

)
, which

is in a natural way the vertex set of a tree on which Bir(P2
k) acts with no fixed

point (this is a classical construction of Serre [3, Chap I, §6.1]).
A.3. c.– Theorem A.1 could be stated, with a similar proof, for actions on Λ-
trees when Λ is an arbitrary ordered abelian group (see [1] for an introduction to
Λ-metric spaces and Λ-trees).

In the following, T is a complete real tree; all actions on T are assumed to be
isometric. We begin by a few lemmas.

Lemma A.4. Let x0, . . . , xk be points in a real tree T and s ≥ 0. Assume that
d(xi, xj) = s|i− j| holds for all i, j such that |i− j| ≤ 2. Then it holds for all i, j.

Proof. This is an induction; for k ≤ 2 there is nothing to prove. Suppose k ≥ 3
and the result known up to k − 1, so that the formula holds except maybe for
{i, j} = {0, k}. Join xi to xi+1 by segments. By the induction, the k − 1 first
segments, and the k − 1 last segments, concatenate to geodesic segments. But
the first and the last of these k segments are also disjoint, otherwise picking the
“smallest” point in the last segment that also belongs to the first one, we find
an injective loop, contradicting that T is a real tree. Therefore the k segments
concatenate to a geodesic segment and d(x0, xk) = sk. �

Lemma A.5. If k is any field and d ≥ 3, then Γ = SLd(k) has Property (FR)∞.
In particular, if k is algebraically closed, then PGLd(k) has Property (FR)∞.

Proof. Let Γ act on T . Let F be a finite subset of Γ. Every element of F can be
written as a product of elementary matrices. Let A be the (finitely generated)
subring of k generated by all entries of those matrices. Then F ⊂ ELd(A), the
subgroup of SLd(A) generated by elementary matrices. By the Shalom-Vaserstein
Theorem (see [2]), ELd(A) has Kazhdan’s Property (T) and in particular has a
fixed point in T , so F has a fixed point in T . (There certainly exists a more
elementary proof, but this one also shows that for every isometric action of SLd(k)
on a Hilbert space, every finitely generated subgroup fixes a point.) �

Fix the following notation: G = Bir(P2
k); H = PGL3(k) = Aut(P2

k) ⊂ G; σ
is the Cremona involution, acting in affine coordinates by σ(x, y) = (x−1, y−1).
The Max Noether Theorem is that G = 〈H, σ〉. Let C be the standard Cartan
subgroup of H, that is, the semidirect product of the diagonal matrices by the
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Weyl group (of order 6). Let µ ∈ H be the involution given in affine coordinates
by µ(x, y) = (1− x, 1− y).

Lemma A.6. We have 〈C, µ〉 = H.

Proof. We only give a sketch, the details being left to the reader. In GL3, µ can be

written as the matrix

−1 0 1
0 −1 1
0 0 1

. Multiply µ by its conjugate by a suitable

diagonal matrix to obtain an elementary matrix; conjugating by elements of C
provide all elementary matrices and thus we obtain all matrices with determinant
one; since C also contains diagonal matrices, we are done. �

Lemma A.7. Let G act on T so that H has no fixed point and has a (unique)
stably fixed end. Then G stably fixes this unique end.

Proof. Let ω be the unique end stably fixed by H (recall that if it is represented
by a ray (xt), this means that for every h ∈ H there exists t0 = t0(h) such
that h fixes xt for all t ≥ t0). Then σHσ−1 stably fixes σω. In particular, since
σCσ−1 = C, the end σω is also stably fixed by C. If σω = ω, then ω is stably fixed
by σ and then by the Max Noether Theorem, ω is stably fixed by G. Otherwise,
let D be the line joining ω and σω 6= ω. Since both ends of D are stably fixed
by C, the line D is pointwise fixed by C. Also, µ stably fixes the end ω and
therefore for some t, xt is fixed by µ and therefore, by Lemma A.6, is fixed by all
of H, contradicting the assumption. �

Proof of Theorem A.1. Note that µ ∈ H and µσ has order three. It follows that
σ = (µσ)µ(µσ)−1. Using the Max Noether Theorem, it follows that H1 = H and
H2 = σHσ−1 generate G.

Consider an action of G on T . By Lemmas A.5 and A.7, we only have to
consider the case when H has a fixed point; in this case, let us show that G has a
fixed point. Assume the contrary. Let Ti be the set of fixed points of Hi (i = 1, 2);
they are exchanged by σ and since 〈H1, H2〉 = G, we see that the two trees T1

and T2 are disjoint. Let S = [x1, x2] be the minimal segment joining the two trees
(xi ∈ Ti) and s > 0 its length. Then S is pointwise fixed by C ⊂ H1 ∩ H2 and
reversed by σ.
Claim. For all k ≥ 1, the distance of x1 with (σµ)kx1 is exactly sk.

The claim is clearly a contradiction since (σµ)3 = 1. To check the claim, let
us apply Lemma A.4 to the sequence ((σµ)kx1): namely to check that

d((σµ)kx1, (σµ)`x1) = |k − `|s

for all k, ` it is enough to check it for |k−`| ≤ 2; by translation it is enough to check
it for k = 1, 2 and ` = 0. For k = 1, d(σµx1, x1) = d(σx1, x1) = d(x2, x1) = s.
Since 〈C, µ〉 = H by Lemma A.6, the image of [x1, x2] by µ is a segment [x1, µx2]
intersecting the segment [x1, x2] only at x1; in particular, d(x2, µx2) = 2s. Hence,
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under the assumptions of the claim

d(σµσµx1, x1) = d(µσx1, σx1) = d(µx2, x2) = 2s.

This proves the claim for k = 2 and the proof is complete. �

For reference we include

Proposition A.8. If k is algebraically closed, the group PGL2(k) has Property
(FA)∞ but, unless k is an algebraic closure of a finite field, does not satisfy
(FR)∞.

Proof. If k has characteristic zero, the group PGL2(k) has the property that the
square of every element is divisible (i.e. has nth roots for all n > 0). This
implies that no element can act hyperbolically on a discrete tree: indeed, in the
automorphism group of a tree, the translation length of any element is an integer
and the translation length of xn is n times the translation length of x. If k has
characteristic p the same argument holds: for every x, x2p is divisible.

On the other hand, let I be a transcendence basis of k and assume it nonempty,
and x0 ∈ I. Set L = k(I − {i0}), so that k is an algebraic closure of L(x0). The
nontrivial discrete valuation of L((x0)) uniquely extends to a nontrivial, Q-valued
valuation on an algebraic closure. It restricts to a non-trivial Q-valued valuation
on k.

The remaining case is the case of an algebraic closure of the rational field Q;
pick any prime p and restrict the p-valuation from an algebraic closure of Qp.

Now if F is any field valued in R, then PGL2(F ) has a natural action on a real
tree, on which an element diag(a, a−1), for |a| > 1, acts hyperbolically.

(If k is algebraic over a finite field, then PGL2(k) is locally finite and thus
satisfies (FA)∞.) �

Lemma A.9. The three definitions of (FR)∞ in the introduction are equivalent.

Sketch of proof. The implications (3)⇒(2)⇒(1) are clear. (1)⇒(2) is proved for
trees in [3, Chap. I §6.5], the argument working for real trees. Now assume (2)
and let us prove (3). Fix a point x0. For every finite subset F of the group, let
SF be the segment joining x0 to the set of F -fixed points. Then the union of
SF , when F ranges over finite subsets of the group, is a geodesic emanating from
0. If it is bounded, its other extremity (which exists by completeness) is a fixed
point. Otherwise, it defines a stably fixed end. �
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