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Abstract. We study the existence of various types of gradings on Lie alge-
bras, such as Carnot gradings or gradings in positive integers, and prove that
the existence of such gradings is invariant under extensions of scalars.

As an application, we prove that if Γ is a finitely generated nilpotent group,
its systolic growth is asymptotically equivalent to its word growth if and only
if the Malcev completion of Γ is Carnot.

We also characterize when Γ is non-cohopfian, in terms of the existence of
a non-trivial grading in non-negative integers, and deduce that this property
only depends on its real (or even complex) Malcev completion.

1. Introduction

The purpose of this paper is twofold: to discuss the existence of certain kinds
of gradings on Lie algebras (and some more general algebras), and to apply the
results to the study of several aspects of finitely generated nilpotent groups.

1.1. Cohopfian properties and systolic growth. This paper will study some
properties in the case of finitely generated nilpotent groups. In this subsection,
we introduce these properties in general.

1.1.1. Systolic growth. Let Γ be a finitely generated group, and endow it with
the word metric with respect to some finite generating subset S. If Λ ⊂ Γ, define
its systole sysS(Λ) to be inf{|g|S : g ∈ Λr {1}} (which is +∞ in case Λ = {1}).
Define, following [Gro] its systolic growth as the function σΓ,S mapping n to
the smallest index of a subgroup of systole ≥ n (hence +∞ if there is no such
subgroup). Note that Γ is residually finite if and only if σΓ,S(n) < ∞ for all n,
and a standard argument shows that the asymptotic behavior (in the usual sense
of growth of groups, see §6) of σΓ,S does not depend on the choice of S; hence we
call it the systolic growth of Γ. It is obviously asymptotically bounded below by
the growth (precisely, σΓ,S(2n+ 1) ≥ bΓ,S(n), where bΓ,S(n) is the cardinal of the
n-ball). It is easy to see that Γ and its finite index subgroups have asymptotically
equivalent systolic growth.
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It is natural to wonder when the growth and systolic growth are equivalent.
Gromov [Gro, p.334] provides a simple argument, based on congruence subgroups,
showing that finitely generated subgroups of GLd(Q) have at most exponential
systolic growth (although he states a less general fact). Bou-Rabee and the
author [BC] actually prove that all finitely generated linear groups (i.e., admitting
a faithful finite-dimensional linear representation over some field) have at most
exponential systolic growth, and hence exactly exponential systolic growth when
the growth is exponential. For finitely generated linear groups, this thus reduces
the question of equivalence of growth and systolic growth to virtually nilpotent
groups.

Remark 1.1. A notion closely related to systolic growth was introduced by Bou-
Rabee and McReynolds [BM] (apparently independently of [Gro]), defining the
residual girth of a group in the same way as the systolic growth above, but
restricting to normal finite index subgroups. If we denote by σCΓ,S(n) the resulting
function, we obviously have

σΓ,S ≤ σCΓ,S ≤ σΓ,S!.

The examples in [BS1] show that σΓ,S, for finitely generated residually finite
groups, can be arbitrary large.

On the other hand, there is an exponential upper bound for the residual girth
of finitely generated linear groups [BC].

Besides, we can define one more notion: if Λ ⊂ Γ, define its normal systole
sysCS (Λ) as the infimum of |g|S, when g ranges over Γ-conjugates of elements in
Λ r {1}. Note that it has a geometric interpretation: let G(Γ, S) be the Cayley
graph of Γ with respect to S. While sysS(Λ) is the length of the smallest non-
trivial based combinatorial loop in the quotient Λ\G(Γ, S) (where non-trivial
means it does not lift to a loop in G(Γ, S)), the normal systole sysCS (Λ) is the
length of the smallest non-trivial combinatorial loop (not necessarily based); of
course when Λ is normal, its normal systole equals its systole. We can then define
the uniform systolic growth of Γ as the function σuΓ,S mapping n to the smallest
index of a subgroup of normal systole ≥ n. Thus clearly we have

σΓ,S ≤ σuΓ,S ≤ σCΓ,S.

I do not know examples for which the uniform systolic growth is not equivalent
to the systolic growth; on the other hand simple examples show that it can fail
to be equivalent to the residual girth, see Remark 1.9.

1.1.2. Cohopfian properties. Recall that a group is non-cohopfian if it admits a
non-surjective injective endomorphism, and cohopfian otherwise. Let us say that
a group Γ is dis-cohopfian if it admits an injective endomorphism φ such that⋂
n≥0 φ

n(Γ) = {1}; such φ is called a dis-cohopf endomorphism. It appears, for a
nontrivial group, as a strong negation of being cohopfian.
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Let us consider an intermediate notion: we say that a group Γ is weakly dis-
cohopfian if it admits a sequence of subgroups (Γn), all isomorphic to Γ, with Γn+1

contained in Γn for all n, and
⋂
n Γn = {1}. This is implied by dis-cohopfian, and

implies, for a nontrivial group, non-cohopfian.

Example 1.2. The group Z is dis-cohopfian. Slightly less trivially, the infinite
dihedral group is dis-cohopfian. Actually, every nontrivial free product A ∗ B
is dis-cohopfian (that non-trivial free products are non-cohopfian is well-known;
whether they are always dis-cohopfian was asked to me by K. Bou-Rabee): indeed,
fix nontrivial elements a0 ∈ A, b0 ∈ B and consider the endomorphism φ defined
by a 7→ a0b0ab

−1
0 a−1

0 for a ∈ A and b 7→ b0a0ba
−1
0 b−1

0 . Let S be the generating set
A∪B for A∗B, and | · | the corresponding word length. Then this endomorphism
formally maps reduced words to reduced words, and hence |φ(x)| = 5|x| for all
x; thus |φn(x)| = 5n|x| for all x and it follows that

⋂
n≥0 Im(φn) = {1}.

The group Z×Z/2Z is non-cohopfian but not weakly dis-cohopfian. Examples
of groups that are weakly dis-cohopfian but not dis-cohopfian will be provided
in Example 5.16. These are the first such examples among finitely generated
nilpotent groups. However, it seems from the discussion in [NP] that they were
aware of examples among polycyclic groups of exponential growth.

Using the Frobenius endomorphism, it is also possible to find examples of dis-
cohopfian groups with exponential growth, such as suitable finite index subgroups
of SLd(Fp[t]), or the lamplighter group (Z/pZ) o Z.

Remark 1.3. There are natural analogues of these cohopfian-like properties, where
injective endomorphisms are required to have an image of finite index. For finitely
generated nilpotent groups (and more generally for virtually polycyclic groups,
or even finitely generated solvable groups of finite Prüfer rank), injective endo-
morphisms automatically have an image of finite index, and thus the notions
coincide. It is unknown (see [NP]) if there exists a finitely generated group that
is not virtually nilpotent, but admits an injective endomorphism φ with image of
finite index, such that

⋂
n≥0 Im(φn) = {1}.

1.2. Gradings on Lie algebras.

1.2.1. Main definitions and results. This subsection is independent of the previ-
ous one. It introduces some notions of Lie algebras and some results about these
notions, which will be used in the study of nilpotent groups in the next subsec-
tion, but purport to be of independent interest, notably for readers interested in
the classification of finite-dimensional nilpotent Lie algebras.

We denote by R a ground commutative ring (always assumed associative with
unit); in most of the discussion, R will be a field. We abbreviate “field of char-
acteristic zero” into “Q-field”.

Given an abelian group A, recall that an A-grading of a Lie R-algebra g is a
direct sum decomposition g =

⊕
α∈A gα where each gα is an R-submodule, and

satisfying [gα, gβ] ⊂ gα+β for all α, β ∈ A.
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Gradings are a convenient way to encode various actions: for instance, a grad-
ing in Z gives rise to an action of the multiplicative group GL1(R) on g, where
r ∈ GL1(R) acts by multiplication by rn on gn. Conversely, under suitable as-
sumptions (algebraic action, R a field, g of finite dimension), every GL1-action
yields a Z-grading of g. Further conditions on the grading, as below, correspond
to further conditions on the action.

Every Lie algebra has a trivial grading, namely with g = g0. Here are three
conditions on a Z-grading of a Lie algebra g:

• the grading is non-negative, that is, in the natural numbers N = {0, 1, 2, . . . }
(i.e., gi = 0 for all i < 0). If g admits a non-negative non-trivial grading,
we call g semi-contractable;
• the grading is positive, that is, in the positive natural numbers N+. If g

admits a positive grading, we call g contractable;
• the Lie algebra g is generated by g1; we then say that the grading is

Carnot. If a Lie algebra g admits a Carnot grading, we call g Carnot;
if g is endowed with a Carnot grading, it is called a Carnot-graded Lie
algebra (see §1.2.2 for counterexamples among nilpotent Lie algebras).

Note that each of these conditions on the grading is implied by the next
one; thus g Carnot implies g contractable, which implies (for g 6= 0) g semi-
contractable. Note that when g is a finitely generated R-module and is con-
tractable, then it is nilpotent and actually our emphasis will be on finite-dimensional
nilpotent Lie algebras over fields, especially of characteristic zero.

Being Carnot can be redefined in the following way: if g is an arbitrary Lie
algebra over the commutative ring R, let (g(i))i≥1 be its lower central series (g(1) =
g and g(i+1) = [g, g(i)]). The associated Carnot-graded Lie algebra Car(g) is
defined as

⊕
i≥1 g

(i)/g(i+1) with the naturally induced bracket and grading; the
Lie algebra g is Carnot if it is isomorphic (as a Lie R-algebra) to its associated
Carnot-graded Lie algebra. A special feature of Carnot gradings is that they
are all conjugate under Aut(g); in particular two Carnot-graded Lie algebras
are isomorphic as graded Lie algebras if and only if they are isomorphic as Lie
algebras. Nevertheless, this is only uniqueness up to conjugacy, and Carnot and
Carnot-graded should be distinguished; for instance, for a non-abelian Carnot-
graded Lie algebra, the automorphism group as a Lie algebra is larger than the
graded automorphism group (see Corollary 3.6 for a precise comparison).

Carnot Lie algebras are ubiquitous in the study of Lie algebras and the as-
sociated Lie and discrete groups. For instance Pansu [Pan2] proved that any
two quasi-isometric simply connected real Lie groups have isomorphic associated
Carnot-graded real Lie algebras. The classification of various classes of nilpo-
tent finite-dimensional Lie algebras also starts with the Carnot case: for instance
Vergne [Ver] classified the Carnot-graded d-dimensional Lie algebras of nilpo-
tency length exactly d − 1 over a field of characteristic 6= 2: for d ≥ 2 there are
1 or 2 such Lie algebras, and 2 precisely when d ≥ 6 is even; the corresponding
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classification in the non-Carnot case is out of reach in general, and only known
in small dimension.

Turning back to gradings, there are further natural conditions not related to
positivity, such as

• The Z-grading is invertible if g0 = {0}.
For finite-dimensional Lie algebras over an algebraically closed Q-field, the

existence of a grading fulfilling one of these various conditions can be easily and
conveniently characterized in terms of the maximal grading, see §3.3.

If g is a Lie algebra and R′ is a commutative R-algebra, then every grading
on g induces a grading on the Lie R′-algebra R′ ⊗R g, which inherits any of the
above conditions. It is natural to wonder whether conversely, under reasonable
hypotheses, the existence of a grading on R′ ⊗R g with additional properties
implies the existence of a similar grading on g.

Let us begin with a few simple counterexamples. The 3-dimensional Lie algebra
sl2(C) admits a grading in {−1, 0, 1} with each component of dimension 1. On the
other hand, the real Lie algebra so3(R) admits no non-trivial Z-grading (because
all its self-derivations are inner and have eigenvalues in iR), and C ⊗R so3(R)
and sl2(C) are isomorphic as complex Lie algebras. More subtle counterexamples
will be provided in the sequel, but let us begin with positive results.

Theorem 1.4 (see Th. 3.15 and Th. 3.25). Being Carnot, contractable, semi-
contractable are invariant under taking extensions of Q-fields. That is, if R = K
is a Q-field, L is an extension of K and g is a finite-dimensional Lie K-algebra,
then g is Carnot (resp. contractable, resp. semi-contractable) if and only if L⊗K g
satisfies the same property as a Lie algebra over L.

There is an analogy between Theorem 1.4 and Sullivan’s result [Sul, Theorem
12.1] that the notion of formality for a nilpotent minimal differential algebra is
independent of the ground field of characteristic zero; however we are not aware
of a link between these two facts. For the Carnot property and the extension
Q ⊂ R, the question whether Carnot goes from R down to Q was raised in 1975
by Johnson [Joh]; a positive solution was written by Dekimpe and Lee but their
argument is mistaken (see Remark 3.16).

Let us introduce a few ideals canonically associated to a finite-dimensional Lie
algebra g over a Q-field.

Definition 1.5. The CNI-radical, or (relatively) characteristically nilpotent rad-
ical cni(g) of g is the intersection of all kernels of all semisimple self-derivations
of g. We say that g is essentially flexible if cni(g) = {0}, and flexible if it admits
an invertible self-derivation.

This seems to be new notions. We say that an ideal is characteristic if it is
invariant under all automorphisms (beware that there exist alternative defini-
tions of characteristic ideals). The CNI-radical is a nilpotent characteristic ideal.
Classically, g is called characteristically nilpotent if cni(g) = g, or equivalently
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if every self-derivation of g is nilpotent; the smallest nonzero examples are 7-
dimensional, see the survey by Ancochea and Campoamor [AC]. By elementary
arguments, the CNI-radical is well-behaved with respect to extensions, in the
sense that cni(L⊗K g) = L⊗K cni(g), and being essentially flexible or flexible is
invariant by taking field extensions. Every characteristically nilpotent character-
istic ideal is contained in cni(g); however in a nilpotent Lie algebra, cni(g) is not
always characteristically nilpotent, see the example in §3.4.

The CNI-radical is also the intersection of fixed point sets in g of all connected
sub-tori in Aut(g).

When the ground Q-field is algebraically closed, being flexible is equivalent
to the existence of an invertible Z-grading. However, the latter property is not
invariant under taking field extensions, see §4.2, which relies on a construction of
Deré. Another property of Lie algebras over Q that does not behave well with
respect to extensions is to be Anosov; see §4.1.

Definition 1.6. The uncontractable radical cni+(g) of g is the intersection of
all kernels of all self-derivations of g that are diagonalizable with eigenvalues in
N = {0, 1, . . . }. We say that g is essentially contractable if cni+(g) = {0}.

Clearly cni(g) ⊂ cni+(g); this is not always an equality; for instance it can
happen that cni(g) = {0} but cni+(g) = g: this holds when g is semisimple, but
also in the example of a nilpotent real Lie algebra described in §4.2.

Note that g is semi-contractable if and only if cni+(g) 6= g. We could make
a similar definition allowing eigenvalues in Z, but the resulting ideal (trapped
between cni(g) and cni+(g)), which can be checked to be the intersection of kernels
of K-diagonalizable self-derivations, would not behave well with respect to field
extensions (e.g., in the example of §4.2). On the other hand, the positiveness
ensures a good behavior:

Theorem 1.7 (see Th. 3.25). Let K be a Q-field and L an extension, and g a
finite-dimensional Lie K-algebra. Then cni+(L⊗K g) = L⊗K cni+(g). In partic-
ular, g is essentially contractable if and only L⊗K g is essentially contractable.

Note that essentially contractable does not imply contractable, since it does not
even imply nilpotent: for example the non-nilpotent 2-dimensional Lie algebra,
is essentially contractable. The implication does not even hold for nilpotent Lie
algebras: the smallest counterexamples are 7-dimensional and not even flexible
(see Remark 3.28).

1.2.2. Small dimension. Let us now put these results in light of the classification
of small-dimensional nilpotent Lie algebras.

In the following table, we write a statement holding in low dimensions, and
in the right column we write the largest dimension for which it holds. Let us
begin by a few statements about NLAs (Nilpotent Lie Algebras) mainly related
to fields of definition
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statement dim. restriction
NLAs with isomorphic complexifications are isomorphic ≤ 5 (K∗2 6= K∗)

every NLA is defined over Q ≤ 6 (K = R,C)
there are finitely many isomorphism classes of NLAs ≤ 6 (K = R,C)

The same holds if we restrict to Carnot Lie algebras, for instance the g7,3,1(iλ) in
Magnin’s classification [Mag] form a 1-parameter family of 7-dimensional Carnot
Lie algebras.

statement dim.
every NLA is Carnot ≤ 4

every NLA is contractable ≤ 6
every nonzero NLA is semicontractable ≤ 6

every NLA is flexible ≤ 6
every NLA is either char. nilpotent or essentially contractable ≤ 7

The largest dimension for which a classification (over an algebraically closed
Q-field) is available is 7. It includes 5 1-parameter families and is generally
described as a list of about 154 types:

• 31 being decomposable as nontrivial direct product, thus contractable;
• among the 123 indecomposable types

– 8 types, denoted g7,0,∗ in Magnin’s classification [Mag], including one
1-parameter family, consist of characteristically nilpotent NLAs;

– 4 types, denoted g7,1,0∗ in Magnin’s classification [Mag], consist of
NLAs that are not flexible, but are semicontractable and essentially
flexible;

– the other 111 types, including four 1-parameter families, are con-
tractable; among them, 36 (including one 1-parameter family) are
Carnot (see [Kuz]).

• In dimension ≤ 6, the classification yields, one indecomposable NLA in
dimension 3, 1 in dimension 4, 6 in dimension 5 (including 2 non-Carnot),
and 20 in dimension 6 (including 10 non-Carnot). The two non-Carnot
5-dimensional NLAs can be described as follows:

– The Lie algebra denoted g5,3 in Magnin’s classification and l5,5 in
de Graaf’s classification, with basis (Xi)1≤i≤5 with nonzero brackets
[X1, X3] = X4, [X1, X4] = X5 and [X2, X3] = X5. Its nilpotency
length is 3. It is not Carnot, for instance because its center is 1-
dimensional but the center of the associated Carnot-graded Lie alge-
bra is 2-dimensional. (Note that although l5,5 is indecomposable as
a direct product, Car(l5,5) ' l5,3 splits as a direct product with the
abelian factor generated by X2.)

– The Lie algebra g5,6 (or l5,6) with basis (Xi)1≤i≤5 with nonzero brack-
ets [X1, Xi] = Xi+1 (i = 2, 3, 4) and [X2, X3] = X5. Its nilpotency
length is 4. Its associated Carnot Lie algebra g5,5 (or l5,7) is defined
in the same way except [X2, X3] = 0.
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1.3. Systolic growth of nilpotent groups. We now turn to the study of the
systolic growth for finitely generated virtually nilpotent groups; as the systolic
growth is invariant under passing to finite index subgroups, it is no restriction
to focus to torsion-free finitely generated nilpotent groups. The main question
raised in §1.1.1 was to understand when the systolic growth and growth are
equivalent. This question is solved for nilpotent groups in the following theorem,
which thus provides a geometric characterization of Carnot simply connected Lie
groups (among those admitting lattices).

Theorem 1.8 (Theorem 6.5). Let G be a simply connected nilpotent real Lie
group whose growth rate is polynomial of degree δ, and whose Lie algebra g is
definable over Q. Equivalences:

(i) the Lie algebra g is Carnot (over R)
(ii) every lattice in G has systolic growth ' nδ

(iii) some lattice in G has systolic growth ' nδ

(iv) G admits a sequence (Γn) of lattices with systole un → ∞ and covolume
� uδn.

Note that (iii)⇒(iv) is clear. Malcev’s arithmeticity of lattices (see [Rag])
shows that definability over Q is equivalent to the existence of a lattice, whence
(ii)⇒(iii); more precisely, any lattice yields a Q-structure on g. Assuming (i), we
use Theorem 3.15 (i.e., the Carnot case of Theorem 1.4) in order to show that
some Carnot grading is defined over Q, which allows to prove (ii). Finally the
implication (iv)⇒(i) consists, roughly speaking, in rescaling G, and view some
Gromov-Hausdorff limit Ξ of the Γn as a lattice in the asymptotic cone of G and
then observe that Γn is isomorphic to Ξ for n large enough. This requires some
preliminaries to ensure that Ξ is indeed a lattice, and that Γn converges to Ξ in
the space of marked groups.

The equivalence between (i) and (ii) was suggested by Gromov [Gro, p.333],
with, as only comment, the easy checking of (ii) in the case of the Heisenberg
group. The proof of (i)⇒(ii) is based on the same construction in general, but as
we already mentioned, it makes, beforehand, a crucial use of Theorem 3.15 in its
full generality (when the field extension is Q ⊂ R), and Gromov made no hint
towards proving that any of the other properties implies (i).

Using (iv), any lattice in a non-Carnot simply connected nilpotent Lie group of
polynomial growth of degree δ has systolic growth � nδ; it would be interesting
to improve this estimate. For instance, for both non-Carnot 5-dimensional Lie
algebras l5,5, l5,6 mentioned earlier (before §1.3), we can check that the systolic
growth is � nδ+1 (with δ the degree of growth, 8 and 11 respectively) and I do
not know if it is optimal in these cases. In general, the obvious upper bound
� ncdim(G), where c is the nilpotency length, given by congruence subgroups is
easy to improve, but the precise behavior remains unclear and its study could
shed light on how to quantify the lack of being Carnot.
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Remark 1.9. For finitely generated nilpotent groups, while obviously the residual
girth σC is polynomially bounded (as we see using an embedding into upper
unipotent integral matrices), it is in general asymptotically much larger that the
systolic growth σ: for instance for the Heisenberg group we easily obtain that
σC(n) ' n6 (while σ(n) ' n4).

The proof of Theorem 1.8 actually shows that in the Carnot case, the uniform
systolic growth (see Remarks 1.1 and 1.9) is asymptotically equivalent to the
growth; I do not know whether it is asymptotically equivalent to the systolic
growth for all finitely generated nilpotent groups.

1.4. Cohopfian properties for nilpotent groups. This part has a strong
similarity with the previous one, since we characterize one property of finitely
generated torsion-free nilpotent groups in terms of a property of Lie algebras
that we have shown to be invariant under extensions of scalars. However, unlike
in the case of systolic growth, we directly obtain the characterization of the
cohopfian properties in terms of the rational Lie algebra. The invariance of the
Lie algebra properties under extensions of scalars, nevertheless, appears as a way
to recognize easily these properties, especially when we only have access to the
complexification of the Lie algebra, as in most of the available classifications.
The invariance also shows that the property does not differ when we consider two
lattices in the same simply connected nilpotent Lie group.

The most familiar examples of infinite finitely generated torsion-free nilpotent
groups fail to be cohopfian; however, Belegradek [Bel] observed that there exists
cohopfian examples: for instance, those for which the Malcev Lie algebra is char-
acteristically nilpotent (i.e. has a virtually unipotent automorphism group). He
gave a criterion for such a group Γ to be non-cohopfian; his criterion [Bel, The-
orem 1] is that the real Malcev completion g admits an automorphism mapping
log(Γ) into itself, and of determinant of norm greater than 1. However this crite-
rion depends on Γ and from this characterization it is by no ways clear whether
it changes when Γ is replaced by a finite index subgroup. Actually, being co-
hopfian is not inherited by subgroups of finite index (see Appendix A); however
the following simple characterization shows that for finitely generated nilpotent
groups, it is a commensurability invariant, and even only depends on the real
Malcev completion.

Theorem 1.10 (Cor. 5.10). Let G be a simply connected nilpotent real Lie group
whose Lie algebra g is definable over Q. Equivalent statements:

(i) g is semi-contractable;
(ii) every lattice of G is non-cohopfian;

(iii) some lattice of G is non-cohopfian.

Part of this theorem has independently been obtained by Dekimpe and Deré,
namely, the statement that a finitely generated torsion-free nilpotent nilpotent
Lie group is co-hopfian if and only if its rational Lie algebra is semi-contractable.
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This is one half of the the proof of Theorem 5.10; the other (independent) part
being that the rational Lie algebra is semi-contractable if and only if the real Lie
algebra is semi-contractable, which is part of Theorem 1.4.

A naive expectation for proving (iii)⇒(i) would be to consider a non-injective
endomorphism and extend it to the Malcev completion, hoping that the resulting
endomorphism necessarily has all its eigenvalues of modulus ≥ 1. This is not
always the case, as the following simple example shows: G = R2, Γ = Z2 and

the endomorphism given by the matrix

(
4 2
2 2

)
, whose eigenvalues are 3 ±

√
5

(=0.76. . . and 5.23. . . ).
A similar statement, with a similar proof, is the following:

Theorem 1.11 (Cor. 5.10). Let G be a simply connected nilpotent real Lie group
whose Lie algebra g is definable over Q. Equivalent statements:

(i) g is contractable;
(ii) every lattice of G is dis-cohopfian;

(iii) some lattice of G is dis-cohopfian.

Remark 1.12. Fix a rational structure on G. When g is known to be contractable
(resp. semi-contractable) over Q, it is easy to check that some lattice in G con-
tained in GQ is dis-cohopfian (resp. non-cohopfian). However to obtain the con-
clusion for every such lattice requires more work, mainly encapsulated in the
technical Lemma 5.8.

Theorem 1.13 (Cor. 5.15). Let G be a simply connected nilpotent real Lie group
whose Lie algebra g is definable over Q. Equivalent statements:

(i) g is essentially contractable;
(ii) every lattice of G is weakly dis-cohopfian;

(iii) some lattice of G is weakly dis-cohopfian.

As an example of a consequence of these results, we have the following corollary.
Recall that the Hirsch length of a finitely generated nilpotent group Γ is the
number of infinite subfactors in any composition series of Γ with cyclic subfactors;
it is also the dimension of any simply connected nilpotent Lie group admitting Γ
as a lattice.
Corollary 1.14.

• Every finitely generated torsion-free nilpotent group of Hirsch length ≤ 6
is dis-cohopfian.
• If Γ is a finitely generated torsion-free nilpotent group of Hirsch length 7,

then either it is cohopfian or weakly dis-cohopfian (dis-cohopfian or not);
this does not hold for Hirsch length 8.
• Every finitely generated torsion-free 2-step nilpotent group is dis-cohopfian.

Questions left open.
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This study of cohopfian properties was limited to torsion-free nilpotent groups
in order to keep the size of the paper reasonable. It would be interesting to
investigate finitely generated virtually nilpotent groups with no restriction.

Question 1.15. Let Γ be a finitely generated virtually nilpotent group, and Γ′ a
torsion-free nilpotent subgroup of finite index. Is it true that Γ is cohopfian if
and only if Γ′ is cohopfian?

The answer is yes for virtually abelian groups, by a non-trivial result of Delzant
and Potyagailo [DP, Proof of Theorem D], namely every infinite finitely generated
virtually abelian group is non-cohopfian.

If we turn to dis-cohopfian and weak dis-cohopfian properties, we need to intro-
duce the polyfinite radical W (Γ), which for an arbitrary group Γ is the subgroup
generated by all finite normal subgroups of Λ. For a virtually polycyclic group
Γ, the subgroup W (Γ) is finite; moreover it follows using [Cor2, Proposition 2.7]
that every injective endomorphism of Γ maps W (Γ) onto itself. It particular,
non-triviality of W (Γ) is an obstruction for Γ to be weakly dis-cohopfian (and
dis-cohopfian).

Question 1.16. Let Γ be a finitely generated virtually nilpotent group withW (Γ) =
{1}, and Γ′ a torsion-free nilpotent subgroup of finite index. Is it true that Γ is
dis-cohopfian (resp. weakly dis-cohopfian) if and only if Γ′ is dis-cohopfian (resp.
weakly cohopfian)?

In the virtually polycyclic case, finding a general characterization remains
widely open. Many semidirect products of the form Zd o Z were shown to be
weakly dis-cohopfian in [NP].

Question 1.17. Can the cohopfian property be characterized, for a virtually poly-
cyclic group, in terms of Lie algebras? is it sensitive to passing to finite index
subgroups? What if we restrict to those polycyclic groups that are Zariski-dense
in a connected algebraic group?

What about the weak dis-cohopfian property, if we assume in addition that the
polyfinite radical is trivial?

For the dis-cohopfian property, we have in mind that a contractable Lie algebra
is always nilpotent. This suggests the following:

Question 1.18. Is it true that no virtually polycyclic group of exponential growth
is dis-cohopfian?

Organization of the paper.
Many properties of the Lie algebras we are interested in, such as the existence

of gradings with given properties, only depend on their (algebraic) group of au-
tomorphisms. Therefore it is convenient to study these properties by forgetting
the Lie algebra structure and retaining the group of automorphisms, and more
generally considering a Zariski-closed subgroup G in GL(V ) and study gradings
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on V defined by sub-tori in G. This is done in the preliminary Section 2. Next,
in Section 3, we specify to group automorphisms of algebras; actually all results
in this section were initially written for Lie algebras, but none of the Lie algebras
axioms are used, except the existence of a bilinear law; therefore this section is
written for arbitrary algebras. This is not the most general context but all ap-
plications we have in mind concern Lie algebras and further generalizations (e.g.,
considering several laws, or ternary laws, etc.) would make the text harder to
read. In addition, for the (counter)examples given throughout the text, and in
Section 4 for some more consistent ones, we especially focus on Lie algebras.

In Section 5, we prove the theorems on cohopfian properties; this makes use of
the contractive decomposition which is studied in Sections 2 and 3.

Section 6 is mostly independent of the others; it starts with a notion of systolic
growth for locally compact groups; it includes the proof of Theorem 1.8 on the
systolic growth, or rather the more general Theorem 6.5. Its main bulk is the
geometric part of the proof, namely (iv)⇒(i).
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conversations, and Pierre de la Harpe and Khalid Bou-Rabee for a number of
corrections and suggestions. I thank Igor Belegradek for letting me know about
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2. Gradings associated to a Zariski closed subgroup of GLd

2.1. Linear algebraic K-groups. In this section, we let K be a Q-field, i.e., a
field of characteristic zero. The facts we will use about linear algebraic K-groups
G (whose unit component is denoted by G◦) are the following.

• G admits a maximal torus that is defined over K (such tori are not nec-
essarily conjugate over K); more generally, every K-defined torus in G is
contained in a maximal torus that is defined over K (see [Con, A.1.2]).
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• [BT, §8.2] G admits maximal K-split tori, which are all conjugate un-
der G◦(K) (but these are not necessarily maximal tori). Their common
dimension r is called the K-rank of G.
• [BS2, §5.1] G admits a Levi factor R defined over K, so that G = U oR

with U the unipotent radical; all such R are conjugate under U(K); every
reductive K-subgroup of G (not necessarily connected) is contained in a
K-defined Levi factor.

Lemma 2.1. Let G′ ⊂ G ⊂ GL(V ) be closed subgroups. Then all pairs (T ′, T ),
where T ′ is a maximal torus in G′ and T a maximal torus in G containing T ′,
are conjugate under G◦.

Proof. Let (T ′1, T1) and (T ′2, T2) be two such pairs. Then there exists g ∈ (G′)◦

such that gT ′1g
−1 = T ′2. Define T3 = gT1g

−1. Let N be the normalizer of T ′2 in G.
Then T2 and T3 are maximal tori of N containing T ′2. Hence there exists h ∈ N◦
such that hT3h

−1 = T2. Since hT ′2h
−1 = T ′2, it follows that hg(T ′1, T1)(hg)−1 =

(T ′2, T2). �

2.2. Maximal split tori and gradings. Let V be the affine n-space, i.e.,
V (K) = Kn for every field K. Let T ⊂ GLd = GL(V ) be a K-split torus,
say r-dimensional. Then T defines a grading of V in the group X(T ) ' Zr of
multiplicative characters of T . Here Vχ = {v ∈ V | ∀t ∈ T : tv = χ(t)v}. Note
that T being K-split means that all χ ∈ X(T ) are K-defined.

Let G ⊂ GL(V ) be a K-closed subgroup, and r its K-rank. Every maximal
K-split torus in G thus yields a grading of V in Zr. Moreover, any two such
gradings (for two choices of maximal split tori and identification of their group
of characters with Zr) are conjugate under G◦(K) and GLd(Z), in the sense that
if (gn)n∈Zr and (g′n)n∈Zr are two such gradings, then there exists s ∈ G◦(K) and
f ∈ GLr(Z) such that g′n = s(gf(n)) for all n ∈ Zr.

2.3. Positive weights, contractive decomposition and fine tori. (The forth-
coming notions do not depend on a field of definition.)

If T ⊂ GL(V ) is a torus, it defines a grading V =
∑

α∈X(T ) Vα. We say that

α ∈ X(T ) is a weight if Vα 6= 0. We say that a homomorphism X(T ) → R is
non-negative if it maps weights to non-negative numbers. We say that α ∈ X(T )
is positive (or T -positive if we want to emphasize T ) if there exists a non-negative
homomorphism f such that f(α) > 0 (such a homomorphism can then be chosen
to be valued in Z).

Definition 2.2. The contractive decomposition associated to T is the decompo-
sition V = V[0]⊕V[+], where V[+] is the sum of all Vα when α ranges over positive
weights, and V[0] is the sum of Vα when α ranges over non-positive weights. We
write V T

[0] and V T
[+] if we want to emphasize T .
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The dimensions of V[+] and V[0] are called the contracted dimension and un-
contracted dimension of (V, T ), or of (V,G) whenever G admits T as a maximal
torus.

If T ′ ⊂ T is a subtorus, we have V T ′

[0] ⊃ V T
[0] and V T ′

[+] ⊂ V T
[+].

Definition 2.3. Given T ′ ⊂ T ⊂ GL(V ), the torus T ′ is fine in T if the re-
striction map X(T ′) → X(T ) maps positive T -weights to positive T ′-weights, or
equivalently if V T ′

[+] = V T
[+], or equivalently if V T ′

[0] = V T
[0].

If G,G′ ⊂ GL(V ) are closed subgroups, we say that G′ ⊂ G is fine if, denoting
by T ′ some maximal torus in G′ and T some maximal torus of G containing T ′,
we have T ′ fine in T (this does not depend on T, T ′).

The following lemma is immediate:

Lemma 2.4. Given G′′ ⊂ G′ ⊂ G, the subgroup G′′ is fine in G if and only if
G′′ is fine in G′ and G′ is fine in G. �

Definition 2.5. Let T ⊂ GL(V ) be a torus. A T -fine cocharacter is a cocharacter
GL1 → T whose associated grading is an N-grading and satisfies V0 = V T

[0]. Every

grading obtained this way is called a fine N-grading for T . If G ⊂ GL(V ) is an
arbitrary closed subgroup, a G-fine cocharacter is a fine cocharacter of some
maximal torus in G.

It follows from the definition that the image of every T -fine cocharacter is fine
in T . There always exist T -fine cocharacters; more precisely:

Lemma 2.6. Every torus T admits a T -fine cocharacter;

Proof. For each positive weight α, choose a non-negative homomorphism fα :
X(T ) → Z such that fα(α) > 0. Then f =

∑
α fα is a non-negative homomor-

phism that is positive on all positive weights. This homomorphism is induced by
some cocharacter, and it satisfies the required properties. �

Theorem 2.7. Let G ⊂ GL(V ) be a K-closed subgroup. Let R ⊂ G be a K-
defined reductive Levi factor; let D be the maximal K-split torus in the center
Z(R) of R. Then D ⊂ G is fine.

Proof. First assume that G is reductive and connected. Write G = ST , where S
is the semisimple part and T = Z(G)◦ the maximal normal torus in G. Write
T = AD, where A is the maximal K-anisotropic torus and D the maximal K-
split torus. Write SA = M , so that G = MD. Decompose V as a direct
sum

⊕
i Vi of K-irreducible components with respect to the action of G. On

each Vi, the action of M has determinant 1, because M admits no nontrivial K-
defined multiplicative character, and the action of D is scalar, given by a weight
αi ∈ X(D). Fix a maximal torus L in M (possibly not K-defined). Write the
weights (counted with multiplicity) of L×D in Vi as (β, αi) ∈ X(L)×X(D), where
β ranges over a set Pi of weights of L. Since the action of L has determinant 1, we
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have
∑

β∈Pi β = 0. Let (β0, αj) be a positive weight. This means that there exists

a homomorphism (f, g) on X(L×D), valued in Z, mapping (β0, αj) to a positive
number and all weights (β, αi) to non-negative numbers. The latter reads: for all
i and every β ∈ Pi, we have f(β) + g(αi) ≥ 0, and f(β0) + g(αj) > 0. Summing
over β, we obtain #(Pi)g(αi) ≥ 0, and hence g(αi) ≥ 0. Also for i = j this
provides g(αj) > 0. This shows that g is non-negative on weights and positive
on αj. This proves that whenever (β0, αj) is a positive weight of LD, then αj is
a positive weight of D. This proves that D ⊂ LD is fine; since LD is a maximal
torus in G, it is fine in G, and hence it follows that D is fine in G.

Now assume thatG is reductive, but not necessarily connected. Define S, T,A,M
from G◦ as above, and let D′ be the maximal K-split torus in Z(G◦). Then
G◦ = MD′, and D ⊂ D′. By the connected case, D′ is fine in G◦, and hence in
G. So we have to show that D is fine in D′. By Lemma 2.6 (or its proof) there
exists a homomorphism f : X(D′)→ Z mapping weights to non-negative integers
and mapping positive weights to positive integers. The finite group G/G◦ acts
on D′ by conjugation, inducing an action on X(D′). This actions permutes the
weights and permutes the positive weights. Therefore if we average f by defining
f̄ =

∑
s∈G/G◦ s · f , then f̄ is a homomorphism X(D)→ Z that is non-negative on

weights, positive on positive weights, and G-invariant. Therefore the correspond-
ing cocharacter is fine in D′ and has its image contained in the center of G, and
hence in D. This proves that D is fine in D′, and hence in G.

Finally, if G is arbitrary, then by the reductive case D is fine in R, and it is
always true (and obvious) that R is fine in G. Hence D is fine in G. �

Corollary 2.8. If G is K-defined, every maximal K-split torus is fine in G.

Proof. Let R and D be given as in Theorem 2.7. Then D is fine in G by the
theorem. Let D′ be a maximal K-split torus of G containing D. Then D′ ⊂ G is
fine as well. �

Corollary 2.9. If G ⊂ GL(V ) is K-defined and T is a maximal K-split torus,
then the (un)contractive dimension of (V,G) equals the (un)contractive dimension
of (V, T ).

Note that the latter corollary is trivial when T is a maximal torus.
A restatement of Corollary 2.8 is the following:

Corollary 2.10. If T ⊂ GL(V ) is a K-defined torus, then there is a K-defined
T -fine cocharacter.

Proof. Let T ′ be the maximal K-split torus in T . By Lemma 2.6, T ′ admits a
K-defined fine cocharacter σ. By Corollary 2.8, T ′ is fine in T . Hence σ is also
fine as a cocharacter of T . �

Another application of Theorem 2.7 concerns finite subgroups.
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Corollary 2.11. Let S be a reductive K-subgroup of G (possibly not connected,
e.g., finite). Then every maximal K-split torus in the centralizer of S is fine in
G. Equivalently, there exists a K-defined fine cocharacter whose image centralizes
S.

Proof. Let R be a K-defined Levi factor containing S. By Theorem 2.7, the
maximal K-split torus D in Z(R) is fine in G. Let C be the centralizer of S in
G. Then D ⊂ C. Let D′ be a maximal K-split torus in C containing D. Since
D is fine in G, so is D′. �

Let us also provide an explicit corollary in extremes cases of the contractive
decomposition. Define a cocharacter GL1 → GL(V ) to be non-negative if it
defines a grading in N, and positive if moreover 0 is not a weight.

Corollary 2.12. Let G ⊂ GL(V ) be a K-closed subgroup, and S a K-closed
reductive subgroup.

• If G has a positive cocharacter, then it admits a positive K-defined cochar-
acter valued in the centralizer of S;
• if G has a non-trivial non-negative cocharacter, then it admits a K-defined

non-trivial non-negative cocharacter valued in the centralizer of S.

Note that for a cocharacter, the condition that it is valued in the centralizer
of S implies that the corresponding grading is preserved by S.

3. Generalities, grading and extensions of scalars

3.1. Arbitrary algebras. Let R be a scalar ring, that is, an associative, unital,
commutative ring. In this section, we call R-algebra an R-module endowed with
an arbitrary R-bilinear law, with no further assumption; it in particular includes
Lie algebras, associative non-unital algebras and various generalizations.

If g is an R-algebra, we define its lower series as follows: g(1) = g, and, for
k ≥ 2,

g(k) =
∑

i,j≥1,i+j=k

g(i)g(j).

This is a bilateral ideal. For k ≥ 0, if g(k+1) = 0, then g is called k-step
nilpotent; if this holds for some k, then g is called nilpotent; its nilpotency length
is the smallest k for which this holds. When g is a Lie algebra, it is the usual
lower central series.

If (A,+) is a magma (a set endowed with an arbitrary binary law), a grading
of an algebra g in A (or A-grading) is a direct sum decomposition g =

⊕
α∈A gα

of g as an R-module, such that gαgβ ⊂ gα+β. The weights of g are those α ∈ A
such that gα 6= {0}.

If V is an arbitrary A-graded R-module, then any graded subquotient of V
inherits an A-grading. In particular, if g is graded in A, then g/g(2) inherits a
grading in A; its weights are called principal weights of g. If g is nilpotent, then
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it can be checked that the set of weights is contained in the submagma generated
by principal weights.

We can extend to arbitrary algebras the definitions of Lie algebras.

Definition 3.1. Let K be a Q-field and let g be a K-algebra that is finite-
dimensional as vector space.

• cni+(g) is the intersection of kernels of K-diagonalizable self-derivations
of g with all eigenvalues in the non-negative integers N;
• cni(g) is the intersection of kernels of semisimple self-derivations of g;
• g is contractable if it admits an algebra grading in positive integers, or

equivalently if it admits a self-derivation with only positive integers as
eigenvalues;
• g is semi-contractable if cni+(g) 6= g, or equivalently if g admits a non-

trivial algebra grading in non-negative integers, or still equivalently if it
admits a self-derivation with only non-negative integers as eigenvalues,
and at least one positive eigenvalue;
• g is characteristically nilpotent if cni(g) = g;
• g is flexible if it admits an invertible self-derivation;
• g is essentially flexible if cni(g) = {0};
• g is essentially contractable if cni+(g) = {0}.

Remark 3.2. In the realm of Lie algebras, characteristically nilpotent is a classical
notion and terminology. Contractable is a classical notion but has no common ter-
minology (it is sometimes called “graded”, but this is also used to mean “Carnot”
which is a strictly stronger notion). Even for Lie algebras, essentially flexible and
essentially contractable are new notions; the latter is motivated by Theorem 1.13.

3.2. Carnot algebras. Here the algebras are over an arbitrary commutative
associative unital ring.

Carnot Lie algebras and associated Carnot-graded Lie algebras are important
objects, appearing in different places (possibly first in Leger’s paper [Leg]) un-
der many more names (“graded”, “naturally graded”, “homogeneous”, “quasi-
cyclic”), which are often inconvenient and ambiguous; the non-ambiguous “fun-
damental graded” is also used by some authors (with negative gradings). The use
of the word “Carnot” in this context is common in sub-Riemannian and conformal
geometry. Here we introduce them in the context of arbitrary algebras.

Definition 3.3. A Carnot grading on an algebra g is a algebra grading of g in
N such that g is generated by g1 as an algebra. An algebra is Carnot-graded if it
endowed with a Carnot grading, and Carnot if it admits one Carnot grading.

Let g be an algebra, and let (g(i))i≥1 be its lower series. The product maps
g(i) × g(j) into g(i+j) for all i, j; in particular, denoting vi = g(i)/g(i+1), it induces
a bilinear map vi × vj → vi+j for all i, j.
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Definition 3.4. The direct sum Car(g) =
⊕

i≥1 vi, endowed with the bilinear
law, is a graded algebra, called the associated Carnot-graded, or associated graded
algebra to g.

The graded algebra Car(g) is indeed Carnot-graded: this follows from the
surjectivity of

⊕
i+j=n vi⊗vj → vn for all n ≥ 2, which implies by induction that

gn is contained in the subalgebra generated by g1 for all n ≥ 1.

Proposition 3.5. An algebra g is Carnot if and only if it is isomorphic (as
an algebra) to its associated Carnot-graded algebra Car(g). Moreover if these
conditions hold, then

• for any Carnot grading on g, the graded algebras g and Car(g) are iso-
morphic;
• for any two Carnot gradings on g, there is a unique automorphism map-

ping the first to the second, and inducing the identity modulo g(2).

Proof. If g is isomorphic to Car(g), then it admits a Carnot grading (inherited
from Car(g)).

For the second sentence, we observe that any Carnot-grading on g defines, in
a canonical way, an isomorphism from g to Car(g), which in restriction to gi is
the restriction of the projection pi : g(i) → g(i)/g(i+1). This proves the first item.
For the second item, suppose that we have two Carnot gradings (gi) and (g′i),
defining as above isomorphisms f, g : g→ Car(g). Then for every x ∈ g1, x

′ ∈ g′1
we have f(x) = p1(x) and g(x′) = p1(x′). Hence, if we define h = g−1f , then
h ∈ Aut(g) and p1(h(x)) = g(h(x)) = f(x) = p1(x). This shows that h equals
the identity modulo [g, g]. Then h maps the first grading to the second grading.
The uniqueness is clear. �

Corollary 3.6. Let g be a Carnot-graded algebra over R. Denote by Aut(g)
its automorphism group as an algebra and Aut(g)0 its automorphism group as
graded algebra. Let Aut(g)≥1 be the group of automorphisms of the Lie algebra g
inducing the identity on g/g(2). Then Aut(g)≥1 is a normal subgroup and

Aut(g) = Aut(g)0 n Aut(g)≥1.

Proof. The group Aut(g)≥1 is clearly normal.
If we have an automorphism φ of g, then it maps the given Carnot grading to

another one. By the last assertion of Proposition 3.5, there exists u ∈ Aut(g)≥1

mapping the first Carnot grading to the second one. Hence v = u−1φ ∈ Aut(g)0,
and φ = uv. �

If we work in a certain category of algebras g (e.g., associative, Lie,. . . ) it is
useful to know that Car(g) is also in the same category. The following proposition
proves it in many cases.

If P = P (X1, . . . , Xk) is any non-associative polynomial (with scalars in R) in
the formal variables X1, . . . , Xk, we say that P is an identity for an algebra g if
P (x1, . . . , xk) = 0 for all xi ∈ g.
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Proposition 3.7. Let P be an identity for g. If P is either multilinear or P (X) =
X2, then it is an identity for Car(g).

Proof. We need to show that P (x1, . . . , xk) = 0 for all x1, . . . , xk ∈ Car(g). By
multilinearity, we can assume that each xi is homogeneous, say of degree ni. Let
yi be a lift of xi in g(ni). For πj be the projection from g(j) to g(j)/g(j+1) and
let n =

∑
ni. Then for every k-multilinear polynomial Q and all zi ∈ g(ni), we

have πn(Q(z1, . . . , zk)) = Q(πn1(z1), . . . , πnk(zk)). In particular, we deduce that
P (x1, . . . , xk) = 0.

For the case of P (X) = X2, consider an element
∑

j≥1 xj with xj ∈ g(j)/g(j+1)

(almost all zero) and let yj be a lift of xj in g(j) (chosen to be 0 if xj = 0). Then(∑
xj

)2

=
∑

x2
j +

∑
k<`

(xkx` + x`xk)

=
∑
j

π2j(y
2
j ) +

∑
k<`

πk+`(yky` + y`yk)

=
∑
j

π2j(y
2
j ) +

∑
k<`

πk+`((yk + y`)
2 − y2

k − y2
` ) = 0, �

because y2
j = (yk + y`)

2 = 0 for all j, k, `.

Remark 3.8. To be multilinear is a useful property for an identity: indeed, it
implies that it passes to extensions of scalars. See the discussion in [Sch].

Example 3.9. Here are some further types of algebras defined by a multilinear
identity:

• Associative algebras: A(x, y, z) = (xy)z − x(yz) (A is known as the asso-
ciator);
• Pre-Lie algebras: PL(x, y, z) = (xy)z−x(yz)−(xz)y+x(zy) = A(x, y, z)−
A(x, z, y);
• Novikov algebras: PL and N(x, y, z) = (xy)z − (xz)y;
• Leibniz algebras: L(x, y, z) = (xy)z − x(yz)− (xz)y.

Some more are defined by an identity with a quadratic variable, which can, by
the obvious polarization formulas, be converted to a multilinear identity when 2
is invertible:

• alternative algebras: AL1(x, y) = A(x, x, y), AL2(x, y) = A(y, x, x), where
A is the associator;
• Malcev algebras: C ′(x, y) = xy+yx andM(x, y, z) = (xy)(xz)−((xy)z)x−

((yz)x)x− ((zx)x)y.

Another classical notion is that of Jordan algebra; classically it is defined as an
algebra satisfying the identity C(x, y) = xy − yx (i.e., commutative) and the
identity Jo(x, y) = (xy)(xx)− x(y(xx)) = A(x, y, xx); if 6 is invertible, a simple
verification is that this is equivalent to satisfy the multilinear identities C and
Jo′(x, y, z, w) = A(x, y, zw) + A(z, y, wx) + A(w, y, xz).
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Lemma 3.10. Let K be a field. Let g be a nilpotent algebra over K; if K has
positive characteristic p, assume that its nilpotency length c is at most p+1. Then
g is Carnot over K if and only if g has a self-derivation inducing the identity on
g/g(2).

Proof. The “only if” part is clear, since any Carnot grading defines such a deriva-
tion, defined to be the multiplication by i on gi. Conversely, assume that there
exists such a self-derivation δ (and keep in mind that we do not assume g to be
finite-dimensional).

For any integer i ≥ 1, define g[i] as the eigenspace of δ for the eigenvalue i. By

assumption, we have δ(x)− x ∈ g(2) for all x ∈ g. By induction, we deduce that
δ(x) − ix ∈ g(i+1) for all i ≥ 1 and x ∈ g(i). Then by a descending induction on
1 ≤ i ≤ c, we see that (δ − i) . . . (δ − c) vanishes on g(i). Eventually for i = 1,
this means that ∆ = (δ − 1) . . . (δ − c) vanishes on g.

First assume that K has characteristic zero, or characteristic p ≥ c. Then
1, . . . , c are distinct in K. This implies that the eigenspaces g[i] for 1 ≤ i ≤ c
span their direct sum, and the vanishing of ∆ implies that they actually span g.
Thus defining gi = g[i] yields a Carnot grading.

Now assume the remaining case, namely p = c−1. Observe that 0 = ∆ can be
rewritten as (δ− 1)2(δ− 2) . . . (δ− p− 1). If we define g〈1〉 = g〈p〉 as the kernel of
(δ − 1)2 and g〈i〉 = g[i] for 2 ≤ i ≤ c− 1, then the g〈i〉 for 1 ≤ i ≤ p− 1 generate
their direct sum, which by the vanishing of ∆ equals g, and g〈i〉g〈j〉 ⊂ g〈i+j〉 for all

integers i, j ≥ 1. Then define g1 as a supplement subspace of g(p) in g〈1〉, define

gp = g(p), and gi = g〈i〉 for 2 ≤ i ≤ p− 1. Then g =
⊕p

i=1 gi and g(2) =
⊕p

i=2 gi,

and, noting that gp = g〈p〉 ∩ g(2), we see that (gi) is an algebra grading; thus it is
a Carnot grading. �

Remark 3.11. In characteristic p, the nilpotency length condition in Lemma 3.10
is optimal: consider the Lie algebra g with basis (U1, X1, . . . , Xp+2, Y1, Z1), with
nonzero brackets [U1, Xi] = Xi+1 for 1 ≤ i ≤ p+1 and [Y1, Z1] = Xp+2. It is easily
checked not to be Carnot. On the other hand, it admits a grading in Z/pZ where
g1 has basis (U1, X1, Xp+1, Y1, Z1), where g2 has basis (X2, Xp+2) and gi has basis
(Xi) for 3 ≤ i ≤ p. This grading induces a derivation which is the identity on the
abelianization (which has the basis (U1, X1, Y1, Z1)). On the other hand, we do
not know whether the assumptions in positive characteristic can be relaxed for
Theorem 3.15.

Example 3.12. Every 2-step nilpotent algebra g is Carnot, as any supplement sub-
space of g(2) yields a Carnot grading. However, the 3-step nilpotent 5-dimensional
Lie algebra g5,3 from §1.2.2 is not Carnot.

Example 3.13. Every nilpotent algebra of dimension at most 3 over a field is
Carnot, by an easy verification. While all 4-dimensional nilpotent Lie algebras,
over an arbitrary field, are Carnot, the following 4-dimensional commutative
associative nilpotent algebra, defined over any ground field, is not Carnot: The
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algebra g defined with basis (x, y, z, w) and nonzero products x2 = z, xz = zx =
w, y2 = w. It can alternatively be described as K[x, y]+/(xy, x

3 − y2), where
K[x, y]+ = (x, y)K[x, y] is the free associative (non-unital) commutative ring on
2 generators, or also described as the unique maximal ideal inK[x, y]/(xy, x3−y2).
The next example also provides a non-Carnot 4-dimensional Leibniz algebra.

Example 3.14. Here is a 4-dimensional nilpotent Leibniz algebra in which every
self-derivation is nilpotent: it has the basis (xi)1≤i≤4 with nonzero products x2

1 =
x3, x2x1 = x3, x2

2 = x4, x3x1 = x4. (It is denoted R4(0) in [AOR, Theorem 3.2].)
Indeed, calling it g, a computation shows that every derivation maps g into g(2).

Theorem 3.15. Let K ⊂ K ′ be fields of characteristic zero. Let g be a finite-
dimensional algebra over K. Then g is Carnot over K if (and only if) K ′ ⊗K g
is Carnot over K ′. More generally, this holds in positive characteristic p when
either

• the nilpotency length of g is at most p+ 1, or
• K is an infinite and perfect field.

Proof. We use the criterion of Lemma 3.10. It is convenient to take a slightly
schematic point of view and write g for the functor L 7→ g

L
= L ⊗K g for every

field extension K ⊂ L.
Let D be the affine space of self-derivations of g that induce the identity on

g/g(2): that is, DL is the (possibly empty) affine space of self-derivations δ of g
L

such that δ(x)− x belongs to g(2)
L

for all x ∈ g
L
. Then D is a K-defined affine

subspace of the space of linear endomorphisms of g. Then by assumption DK′ is
non-empty. It follows that DK is non-empty as well. In other words, g admits a
self-derivation inducing the identity on g/g(2).

Now assume that K is infinite perfect with no further restriction, and that g has
nilpotency length ` ≥ 1 and g⊗KK ′ is Carnot over K ′. We can assume g 6= {0}.
Let H be the algebraic subgroup of GL(g) consisting of those automorphisms
h inducing a scalar multiplication modulo g(2), say by the scalar χ(h). This
is a K-defined subgroup, and χ is a K-defined multiplicative character on H.
By a straightforward induction, the action of h ∈ H on g(i)/g(i+1) is given by
multiplication by χ(h)i, for all i ≥ 1. In particular, we have Ph(h) = 0, where Ph
is the polynomial

∏`
i=1(X−χ(h)i). Since by Rosenlicht’s theorem (which applies

as K is perfect and infinite), H◦(K) is Zariski-dense in H◦(K ′), and since the
Zariski-open subset Ω = {h ∈ H◦(K ′), χ(h)(2`)! 6= 1} is nonempty (because H is
Carnot over K ′), we can find in H◦(K)∩Ω some element g. Then χ(g), . . . , χ(g)k

are pairwise distinct, so Pg has no multiple root and thus g is diagonalizable
with eigenvalues χ(g), . . . , χ(g)`. The corresponding eigenspace decomposition is
defined over K and defines a Carnot grading. �

Remark 3.16. The assertion that if g is a finite-dimensional Lie algebra over Q
and R⊗Qg is Carnot over R, then g is Carnot, was done by Dekimpe and Lee [DL,
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Corollary 4.2]. However, their proof is mistaken. It is based on the assertion [DL,
Lemma 4.1] that in a Carnot Lie algebra, every supplement subspace of [g, g] can
be chosen to be g1 for some Carnot grading. However, this assertion is false. For
instance, it fails when g is the 5-dimensional Lie algebra with basis (X1, . . . , X5)
and nonzero brackets [X1, X2] = X3 and [X1, X3] = X4 (note that X5 generates
a direct factor). Then there is no Carnot grading for which g1 is the subspace
v with basis (X1, X2, X5 + X3). The error in [DL, Lemma 4.1] is the claim, not
verified, that [v, v] and [v, [v, v]] have an intersection reduced to zero.

Let us also mention the following fact, which was asserted for Lie algebras
when S is finite by Dekimpe and Lee [DL, Proposition 4.3], but with a mistaken
proof: indeed their proof consists in observing that [g, g] admits an S-invariant
supplement, but this is not enough (for the same reason as in Remark 3.16).

Proposition 3.17. Let g be a finite-dimensional Carnot algebra over the Q-field
K. Let S be a subgroup of automorphisms of g, with a reductive Zariski closure.
Then there exists an S-invariant Carnot grading.

Proof. We use the conventions of the proof of Theorem 3.15. The group Aut(g)

naturally acts on the space of self-derivations of g, by (g · δ)(x) = gδ(g−1x). This
action preserves the affine subspace D of self-derivations that induce the identity
on g/g(2), which is by assumption non-empty since g is Carnot. Since the Zariski
closure of S, which we denote by S, is reductive and K has characteristic zero,
the affine subspace DS of points in D fixed by S is non-empty; since it is defined
over K, it admits a K-point, and thus DS is non-empty as well. This defines (by
Lemma 3.10) a Carnot-grading on g that is S-invariant. �

3.3. Maximal grading. Let K be a Q-field (i.e., a field of characteristic zero).
Let g be a K-algebra that is finite-dimensional as vector space (with no assump-
tion such as associativity).

Definition 3.18. The K-rank of g, denoted r, is the the K-rank of Aut(g).
The gradings on g in Zr induced by maximal K-split tori of Aut(g) (as in §2.2)

are called K-maximal gradings of g.

Remark 3.19. The systematic use of this notion of maximal grading in the case
of Lie algebras can be found, for instance, in [Fav], where it is called “system of
weights”.

When there is a definition of inner derivation (e.g., in Lie algebras), or inner
automorphism (e.g., in associative algebras), a notion of (inner) maximal grading
can be defined in terms of inner derivations, or inner automorphisms. In the case
of Lie algebras, it is known as the Cartan grading. We will not use this inner
notion here.

Proposition 3.20. Every K-maximal grading on g is an algebra grading in Zr,
and for each such grading, Zr is additively generated by the weights.
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They are conjugate under Aut(g)◦(K) and GLd(Z): if (gn)n∈Zr and (g′n)n∈Zr
are maximal gradings, then there exists u ∈ Aut(g)◦(K) and f ∈ GLd(Z) such
that g′n = u(gf(n)) for all n ∈ Zd.

The K-maximal gradings are the finest gradings of g in torsion-free abelian
groups, in the sense that for every algebra grading (g′α)α∈A of g in a torsion-
free abelian group A, there exists a K-maximal grading (gn)n∈Zr on g and a
homomorphism f : Zr → A such that g′α =

⊕
n∈f−1({α}) gn for all α ∈ A.

Proof. The first statement is straightforward. The second statement (uniqueness
up to conjugacy) is an immediate consequence of the fact that all maximal K-split
tori in G = Aut(g) are conjugate under Aut(g)0(K).

For the last statement, it is no restriction to assume that A is generated by the
weights; in particular A is finitely generated and we can suppose that A = Zs.
Consider the action of GLs1 on g, such that (λ1, . . . , λs) acts on gn by multipli-
cation by

∏
λnii , for n = (n1, . . . , ns) ∈ Zs. Since A is generated by weights,

this action is faithful. The image of GLs1 in Aut(g)◦ is a K-split torus T ′, hence
is contained in a maximal K-split torus T ; consider the corresponding maxi-
mal grading. Then the embedding T ′ ⊂ T induces a surjective homomorphism
f : Zr = X(T )→ X(T ′) with the required property. �

Some properties of the maximal grading are more sensitive to the context: for
instance, if K is an algebraically closed Q-field and g is a Lie algebra, then g0 is
always nilpotent.

Various properties such as those stated in the introduction can be restated in
terms of maximal gradings.

Proposition 3.21. Let g be a K-algebra that is finite-dimensional as vector
space, and endow it with a K-maximal grading in Zr where r is the K-rank of g.
First assume that K is algebraically closed. Then

(1) g is characteristically nilpotent ⇔ r = 0 ⇔ 0 is the only weight of g for the
maximal grading;

(2) g is flexible if and only if g0 = 0;
(3) g is essentially flexible if and only if the only characteristic ideal of g contained

in g0 is zero;
(4) the CNI-radical of g is the largest characteristic ideal of g contained in g0.

When K is an arbitrary Q-field, the first two assertions have the following
more general form:

(1’) g has no nonzero K-diagonalizable derivation ⇔ r = 0 ⇔ 0 is the only
weight of g for the K-maximal grading;

(2’) g has an invertible K-diagonalizable derivation if and only if g0 = 0.

Proof. (1’) is immediate. For (2’), if g admits an invertible K-diagonalizable
derivation, then it induces a grading of g in the additive group of K, with g0 =
{0}. Since the K-maximal grading is a refinement of the latter grading, it also
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satisfies g0 = {0}. Conversely if 0 is not a weight for the K-maximal grading,
pick a homomorphism Zr → Z mapping no weight to 0; then 0 is not a weight
of the resulting grading in Z, which therefore induces an invertible derivation by
multiplication by k on gk. (1) and (2) follow as particular cases.

Let us prove (4), which admits (3) as a particular case. There exists a ho-
momorphism f : Zr → Z not vanishing on any nonzero weight. This defines a
self-derivation of g, defined to be multiplication by f(α) on gα. This derivation
is diagonalizable with integral eigenvalues and the kernel of this derivation is g0

(because the ground field is a Q-field). Hence cni(g) ⊂ g0. Let h be the largest
characteristic ideal contained in g0. It follows that cni(g) ⊂ h. To show the re-
verse inclusion, suppose that x ∈ h and assume by contradiction that x /∈ cni(g).
Then there exists a semisimple derivation D such that x /∈ Ker(D). This deriva-
tion induces a grading of g in the additive group of the algebraically closed field
K, for which the set of weights is the spectrum Spec(D) of D. We can find a
homomorphism from the subgroup generated by Spec(D) to Z that is injective
on Spec(D) ∪ {0}. This defines a grading (g′n)n∈Z of g in Z for which x /∈ g′0.
Then there exists a maximal grading (g′′α) refining this grading, and thus g′′0 ⊂ g′0
and hence x /∈ g′′0. Since all maximal gradings are conjugate by automorphisms,
there exists η ∈ Aut(g) such that η(g′′0) = g0. Hence η(x) /∈ g0. This contradicts
the fact that h is a characteristic ideal contained in g0. �

Note that these properties are very sensitive on the ground field. On the other
hand, we are going to check, using Corollary 2.8, that several properties related
to positivity are invariant under extension of scalars.

It is convenient to use the following language: when a fixed algebra g is graded
in Rd, let us call a linear form on Rd positive if it maps all weights of g to
non-negative numbers; let us call an element of Rd positive if it is mapped to a
positive number by some positive linear form, and non-positive otherwise.

Proposition 3.22. Let g be a finite-dimensional K-algebra of K-rank r, endowed
with a K-maximal grading in Rr.

• g is contractable ⇔ the closed convex cone generated by weights is salient
⇔ there exists a linear form on Rr sending all weights to positive numbers
⇔ all weights of g are positive.
• g is semicontractable ⇔ g 6= {0} and the interior of the convex hull of

weights does not contain 0 ⇔ all weights lie in a closed linear half-space
⇔ there exists a nonzero positive linear form on Rr ⇔ g admits at least
one positive weight
• g is Carnot ⇔ g is nilpotent and there exists a linear form on Rr map-

ping all principal weights to 1 ⇔ the affine subspace of Rr generated by
principal weights does not contain 0.

Proof. If g is contractable, then it admits a grading in Z for which all weights
are positive. This grading has to be obtained by projection from the maximal
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grading; hence there exists a homomorphism Zr → Z mapping all weights to
positive numbers. This holds if and only if the convex cone generated by weights
is salient. Conversely if there exists such a homomorphism, the resulting grading
in Z has only positive weights and hence g is contractable. The characterization
of semicontractable goes along the same lines (keeping in mind that Rr is spanned
by weights).

If g is Carnot, then it is nilpotent and fixing a Carnot grading, the resulting
homomorphism Zr maps all principal weights to 1. Conversely, suppose g is
nilpotent and that some linear map Rr → R maps all principal weights to 1,
consider the resulting grading of g in R; for this grading, 1 is the only principal
weight. Since g is nilpotent, it is generated by the gα where α ranges over principal
weights, and hence is generated by g1. Thus g is Carnot. �

Definition 3.23. Let g be a finite-dimensional K-algebra, and fix a maximal
K-split torus in Aut(g). The resulting contractive decomposition g = g[0] n g[+]

(Definition 2.2) is called K-contractive decomposition of g. The dimensions of
g[0] and g[+] are called the uncontracted and contracted dimensions of g.

We say that an algebra grading of g in N is fine if g = g0n
(⊕

n>0 gn
)

is a K-
contractive decomposition, or equivalently if dim(g0) is equal to the uncontracted
dimension of g.

Here we use the semidirect product notation since g[0] is a subalgebra and g[+]

is a bilateral ideal.

Proposition 3.24. Let g be a finite-dimensional K-algebra and g = g[0] n g[+] a
K-contractive decomposition. Then

• g is contractable if and only if g = g[+] (i.e., g[0] = {0})
• g is semicontractable if and only if g[+] is nonzero
• cni+(g) is the largest characteristic bilateral ideal of g contained in g[0],

and is also the largest bilateral ideal of g invariant under Aut◦(g).
• g is essentially contractable if and only if g[0] does not contain any nonzero

characteristic bilateral ideal, if and only if it does not contain any bilateral
ideal invariant under Aut(g)◦(K).

Proof. Everything follows from the definitions, except the facts referring to Aut(g)◦ =
Aut(g)◦(K). Let us check the last characterization of cni+(g) (the last charac-
terization of being essentially contractable following immediately). Let n be the
maximal Aut(g)◦-invariant bilateral ideal contained in g[0]; we have to show that
n is a characteristic ideal.

Let α be an automorphism of g. Since the contractive decomposition is unique
modulo Aut(g)◦, there exists β ∈ Aut(g)◦ such that βα(g[0]) = g[0]. Thus βα(n)
is an Aut(g)◦-invariant bilateral ideal contained in g0; hence we have βα(n) = n;
thus composing by β−1 we get α(n) = n. �
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Theorem 3.25. Let K ⊂ L be an extension of Q-fields. Let g be a finite-
dimensional K-algebra; write gK = g and gL = L ⊗K g (viewed as L-algebra).
Then

(1) gK is contractable if and only if gL is contractable
(2) gK is semicontractable if and only if gL is semicontractable
(3) gK is essentially contractable if and only if gL is essentially contractable
(4) if gK = g[0] n g[+] is a K-contractive decomposition of gK, then, denoting

gL[∗] = L ⊗K g[∗] for ∗ ∈ {0,+}, we have that gL[0] n gL[+] is a contractive
decomposition of the L-algebra gL = L⊗Kg; in particular the uncontracted
and contracted dimension of g are invariant by field extension of scalars.

(5) the uncontractable radical cni+(gL) is equal to cni+(g)L = L⊗K cni+(g)

Proof. Let g have dimension d, and let G be its automorphism group, viewed as
an algebraic K-subgroup of GLd.

Then (4) immediately follows from Corollary 2.10. In view of Proposition 3.24,
this immediately yields (1) and (2).

By Proposition 3.24, cni+(g) is the largest Aut(g)◦(K)-invariant bilateral ideal
of g contained in g[0]. Thus cni+(g) =

⋂
α∈Aut(g)◦(K) α(g[0]). In particular, for every

α ∈ Aut(g)◦(K), we have cni+(g)L ⊂ α(gL[0]). By Zariski density of Aut◦(g)(K),

we deduce that we have cni+(g)L ⊂ α(gL[0]). Thus cni+(g)L ⊂
⋂
α∈Aut(g)◦(L) α(gL[0]).

Let us show the reverse inclusion. We can write cni+(g) =
⋂n
i=1 αi(g[0]) with

αi ∈ Aut(g)◦(K). Hence we obtain cni+(g)L =
⋂n
i=1 αi(g

L
[0]). Thus

cni+(g)L =
n⋂
i=1

αi(g
L
[0]) ⊃

⋂
α∈Aut(g)◦(L)

α(gL[0]) ⊃ cni+(g)L,

so that all inclusions are equalities. Therefore, again using the characterization of
Proposition 3.24, we obtain cni+(gL) = cni+(g)L, proving (5), and (3) follows. �

Theorem 3.26. Let g be a finite-dimensional K-algebra and S ⊂ Aut(g) a
subgroup of automorphisms with a reductive Zariski closure. Then g admits an
S-invariant fine grading in N.

Proof. This follows from Corollary 2.11. �

It yields the following corollary as particular cases:

Corollary 3.27. Under the assumptions of Theorem 3.26,

• if g is contractable, then it admits an S-invariant positive grading;
• if g is semicontractable, then it admits an S-invariant non-trivial non-

negative grading.

This proves conjectures of Dekimpe and Deré [DD, Sec. 4 and 5].

Remark 3.28 (On the contractive decomposition). If g is the 2-dimensional non-
abelian Lie algebra, then in the contractive decomposition, both g[+] and g[0] are
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1-dimensional; for all Lie algebras up to dimension 3, g[+] is actually equal to the
nilpotent radical (for any contractive decomposition).

For nilpotent Lie algebras, the smallest examples for which g[+] is not either
{0} or g are the Lie algebras denoted g7,1,∗ in Magnin’s classification [Mag],
where ∗ ∈ {01(i), 01(ii), 02, 03} (see also Example 5.16). For the first two, g[0]

has dimension 2; for the last two, g[0] has dimension 1; in all these four cases,
cni+(g) is zero, and g[+] is a characteristic ideal, i.e., does not depend on the
choice of maximal grading. Nevertheless, it is not true in general that g[+] is a
characteristic ideal, see §3.4.

3.4. An example. Here we give a simple example showing that

• the CNI-radical of a nilpotent finite-dimensional Lie algebra is not always
characteristically nilpotent.
• the CNI-radical of a direct product of two Lie algebras can be strictly

contained in the product of the CNI-radicals of the given factors.
• if g = g[0]ng[+] is a contractive decomposition, then g[+] is not necessarily

a characteristic ideal.

Proposition 3.29. Let a be a nonzero abelian Lie algebra and g a charac-
teristically nilpotent Lie algebra, both finite-dimensional. Then cni(g × a) =
cni+(g× a) = [g, g]× {0}.

Proof. Let d be a semisimple derivation. Then d maps the derived subalgebra
[g, g]× {0} into itself, and maps the center z(g)× a into itself. Since g is charac-
teristically nilpotent, we have z(g) ⊂ [g, g]. Thus d maps [g, g]× a into itself. Let
b be a d-stable supplement subspace of [g, g]× a in g× a. Thus h = [g, g]⊕ b is a
d-stable supplement subspace of {0} × a. Then h is isomorphic to g (since both
are isomorphic to (g × a)/a). Thus h is characteristically nilpotent. Hence d is
zero on h. In particular, d is zero on [g, g]× {0}. Thus [g, g]× {0} ⊂ cni(g).

Conversely, it is clear that cni+(g) ⊂ g × {0}. If x0 belongs to g r [g, g],
then there exists a homomorphism f : g → a such that f(x0) 6= 0, and hence
(x, y) 7→ (x, y + f(x)) maps (x0, 0) outside g × {0}, so that (x0, 0) /∈ cni+(g)
since the latter is a characteristic ideal. Therefore cni+(g) ⊂ [g, g] × {0}. Since
cni(g) ⊂ cni+(g), this completes the proof. �

Corollary 3.30. There exist finite-dimensional nilpotent Lie algebras over any
Q-field whose CNI-radical is not characteristically nilpotent. The minimal di-
mension in which such Lie algebras exist is 8.

Proof. We can suppose the field algebraically closed. If g is a nonzero charac-
teristically nilpotent Lie algebra of minimal dimension (namely 7), then [g, g]
is not characteristically nilpotent, and hence if a is abelian and nonzero then
cni(g× a) ' [g, g] is not characteristically nilpotent. (According to the classifica-
tion in dimension 7, [g, g] is then of dimension 4 or 5: it is 4 for only one example,
namely g7,0,8 in Magnin’s classification [Mag], and 5 for all others including the
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infinite family.) Thus picking g of dimension 7 and a of dimension 1, we get
8-dimensional examples (being definable over Q, they work over any Q-field).

Conversely, since according to the classification, in dimension ≤ 6, every Lie
algebra g has a zero CNI-radical, and in dimension 7 the CNI-radical is always {0}
or g, the smallest possible dimension of a nilpotent Lie algebra whose CNI-radical
is not characteristically nilpotent is ≥ 8. �

4. Counterexamples

Here we indicate a few properties of Lie algebras, also related to tori of auto-
morphisms, but which are not well-behaved with respect to extensions.

4.1. Anosov nilmanifolds. Let Γ be a finitely generated torsion-free nilpotent
group. Let GQ and GR be its rational and real Malcev completions, and gQ and
gR the corresponding Lie algebras. An Anosov automorphism of (GR,Γ) is an
automorphism of G preserving Γ, such that the corresponding automorphism of
gR has no complex eigenvalue of modulus 1. The group Γ is called Anosov if
there exists an Anosov automorphism of (GR,Γ). It has long been observed that
this only depends on GQ. More precisely, we have:

Proposition 4.1. The group Γ is Anosov if and only if there exists a Q-defined
torus in Aut(GQ) that is R-split, Q-anisotropic, and which has no nonzero in-
variant vector in gQ.

Proof. Let φ be an Anosov automorphism of (GR,Γ), and let ξ be the corre-
sponding automorphism of gR. Let A be the Zariski closure of 〈ξ〉. Let T be the
maximal torus in A. We claim that T is Q-anisotropic: indeed if V ⊂ gQ is a
nonzero eigenspace of the maximal Q-split torus in A, then ξ preserves a lattice
in V , and hence acts with determinant one, which implies that the eigenspace is
for the trivial character. Let D be the maximal R-split torus in T , and let W
be the set of vectors in gR fixed by D; since A is abelian, it preserves W . Then
the action of TR on W being trivial on D, it factors through (A/D)R, and A/D
is unipotent-by-(R-anisotropic), and hence is by distal matrices (i.e., with all
complex eigenvalues of modulus 1). Since ξ has no such eigenvalues, this forces
W = {0}. Hence D is as required.

Conversely, let T be an R-isotropic, Q-anisotropic torus with no nonzero invari-
ant vector in gQ. Fix an identification of gQ with Qd, so that T (Z) makes sense.
Then T (Z) is a lattice in T (R), and is Zariski-dense in T . Then g 7→ det(g2− 1)
is a nonzero regular map on T and hence does not vanish on T (Z). Let ξ be any
element in T (Z) with det(ξ2 − 1) 6= 0. Since ξ is diagonalizable over R, this im-
plies that ξ has no complex eigenvalue of modulus 1. Let φ be the automorphism
of GQ induced by ξ.

To finish the proof, let us show that some power of φ preserves Γ. Let Γ′ ⊂ GQ

be a full lattice containing Γ as a subgroup (of finite index), where full lattice
means that log(Γ′) is a Lie subring of gQ. In gQ, there are finitely many lattices
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M such that [M ∩Zd : Zd][M ∩Zd : M ] is given. In particular, since Zd is a fixed
point of 〈ξ〉 for its action on the set of lattices in Qd, the orbits of the action of
〈ξ〉 on the set of lattices in Qd are finite. Thus some positive power ξm stabilizes
log(Γ′). Thus φm preserves log(Γ′) Now we can perform the same argument in
the set of lattices of GQ, so that some positive power φmm

′
preserves Γ. (The

latter argument is a variation of the proof of Lemma 1.1 and Corollary 1.2 in
[Dan].) �

This characterization shows in particular that being Anosov, for finitely gen-
erated torsion-free nilpotent groups, is invariant under taking subgroups and
overgroups of finite index; this was proved in [Dan], but the above convenient
criterion was not explicitly written there. Thus we can define Anosov for an arbi-
trary Q-subgroup H of GLd by the existence of a subtorus in H as in Proposition
4.1.

Example 4.2. There exist two lattices in the same simply connected nilpotent Lie
group, one being Anosov and the other not. Namely, consider the 3-dimensional
Heisenberg group H3(R) and G(R) = H3(R) × H3(R). Then G admits several
Q-forms, one of which is the obvious one, whose Q-points form H3(Q)×H3(Q);
this one is not Anosov, because it can be checked that the restriction of its
automorphism group to the 2-dimensional center is a Q-split torus, and thus any
Q-anisotropic torus acts as the identity on the center. On the other hand, all other
Q-forms are Anosov: each such form admits H3(Q[

√
n]) as group of Q-points,

for some square-free integer n ≥ 2, and a standard argument [Lau] provides the
desired Anosov automorphism: its Lie algebra can be written as q = h3(Q[

√
n]),

and can be endowed with a Carnot grading q = q1 ⊕ q2 (as a 3-dimensional
Lie algebra over Q[

√
n]). Then we have a torus of Q[

√
n]-linear automorphisms,

acting by multiplication by ti on qi, for t ranging over the group of elements
of norm 1 in Q[

√
n]∗. Now view this as a torus of Q-linear automorphisms of

the 6-dimensional Lie Q-algebra q. This is a Q-anisotropic torus satisfying the
conditions of Proposition 4.1.

Also, this example shows that the property that G admits at least one Anosov
lattice cannot be read on the complexification of G: indeed as just observed,
H3(R)×H3(R) admits an Anosov lattice, but it has the same complexification as
the real group H3(C), while the latter admits no Anosov lattice, because its group
of automorphisms of determinant 1 acts on the center through an R-anisotropic
torus.

4.2. Existence of an invertible grading is not invariant under taking
extensions.

Proposition 4.3. There exists a finite-dimensional real nilpotent Lie algebra h
thatv admits an invertible Z-grading, and admitting a rational form with no such
grading.
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Proof. In [Der, §4], J. Deré constructs a finite-dimensional real nilpotent Lie alge-
bra as a suitable quotient of the free 6-nilpotent real Lie algebra on 4 generators.
Simple computations (see Lemma 4.4) show that the derivation Lie algebra of
this Lie algebra is solvable and acts on the 4-dimensional abelianization as those
diagonal matrices of trace 0. In particular, any maximal torus of the automor-
phism group is 3-dimensional, R-split, and induces a grading in Z3 of the Lie
algebra.

Deré checks [Der, Proposition 4.5] that this Lie algebra admits an Anosov
rational form. In particular, it admits an invertible Z-grading over C, and hence
over R since the maximal tori of automorphisms are R-split. A more careful
look at his proof shows that the integral points of the torus of automorphisms
defining the rational structure contains a discrete abelian group of rank 3. In
particular, this torus (for this given Q-form) has to be Q-anisotropic, and hence
so are all Q-defined tori of the automorphism group of this Q-form (here we use
that the automorphism group is virtually solvable); in particular, this Q-form
has no nontrivial grading in Z. �

In the above proof, the (real, but the following works over any field K) Lie al-
gebra g is defined with 4 generators X1, . . . , X4, killing all commutators of length
≥ 7, all [Xi, [Xj, [Xk, X`]]] whenever {i, j, k, `} = {1, 2, 3, 4}, as well as the four
elements obtained as cyclic conjugates of [X2, X4]− [[X4, [X3, X4]], [[X2, [X1, X2]]]
(note that there are only two such conjugates up to sign).

Lemma 4.4. The derivations of g act on g/[g, g] as diagonal matrices in the
given basis.

Proof. It is enough to prove this for g/g(5), which is defined with the generators
X1, . . . , X4, by killing the elements all commutators of length ≥ 5, killing [X1, X3]
and [X2, X4] and all [Xi, [Xj, [Xk, X`]]] whenever {i, j, k, `} = {1, 2, 3, 4}.

Since we only kill monomials, all diagonal matrices on (X1, X2, X3, X4) extend
to derivations of g/g(5). The corresponding 4-dimensional diagonal torus defines
a grading of g/g(5) in Z4 for which, denoting by (ei) the canonical basis of Z4, Xi

has degree ei. In turn, this defines a grading on the Lie algebra d of derivations of
g. Let us check that dej−ei = 0 for all i 6= j (this immediately entails the result).
If f ∈ dej−ei , then f(Xi) ∈ Kej, and f(Xk) = 0 for k 6= i. If by contradiction
f 6= 0, we can assume up to multiplication that f(Xi) = Xj. Let k, ` be the two
other elements, and assume that ` 6= j + 2 mod 4. Then

0 = f([Xk, [Xj, [X`, Xi]]]) = [Xk, [Xj, [X`, Xj]]]

We get a contradiction by observing that [Xk, [Xj, [X`, Xj]]] is a nonzero el-
ement of g/g(5). The latter fact holds because the only elements of degree
2ej + ek + e` in the ideal generated by the given relators are the scalar mul-
tiples of [Xj, [Xj, [Xk, X`]]] if k = ` + 2 mod 4, and the plane generated by
[Xj, X`, [Xj, Xk]]] and [X`, Xj, [Xj, Xk]]] if j = k + 2 mod 4). �
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Deré directly checks that diagonal derivations of g have trace 0 in the abelian-
ization, which, unlike the lemma, does not hold for the Carnot Lie algebra g/g(5).

5. Cohopfian nilpotent groups

5.1. Grading associated to a rational torus. Let A ⊂ GLd = GL(V ) a
Q-defined abelian subgroup. Hence its identity component A◦ decomposes as
AsAaU , the almost product of its maximal Q-split and Q-anisotropic subtori,
and of its unipotent radical U . Then A canonically defines a grading of V in
the group of Q-defined multiplicative characters X(As), where Vχ = {v ∈ V :
∀g ∈ As, g(v) = χ(g)v}. The weights of V are by definition those χ such that
Vχ 6= {0}.

Beware that the projection A◦ → As is not well-defined (because of the possi-
ble nontrivial finite intersection As∩Aa), and hence that characters of As do not
all define characters of A. Still, we consider a projection map A◦(C) → As(C),
denoted g 7→ ĝ, such that gĝ−1 ∈ (UAa)(C). Then ĝ is only determined up to
multiplication by an element of the finite group (As∩Aa)(C). As a consequence,
if g ∈ A(C), then χ(ĝ) ∈ C∗ is only defined up to multiplication by some root
of unity. In particular, its modulus |χ(ĝ)| is a well-defined continuous homomor-
phism, denoted |χ|, from A◦(C) to the group R+ of positive real numbers. The
latter extends to a unique continuous homomorphism from A(C) to the group of
positive real numbers, again denoted |χ| (the uniqueness is clear and the existence
follows from the injectivity of R as an abstract Z-module).

Now let ξ be a fixed element of A(Q). Then we define χ ∈ X(As) to be
non-negative (resp. positive, resp. distal) if |χ|(ξ) ≥ 1 (resp. |χ|(ξ) > 1, resp.
|χ|(ξ) = 1). We define V≥0, V>0, V≈0 as the sum of Vχ where χ ranges over
non-negative, resp. positive, resp. distal weights. (All these notions are relative
to the choice of ξ, and do not change if ξ is replaced by a positive power of itself.)

In Qd, by lattice we mean any subgroup isomorphic to Zd. Given a group G
acting on a set X we say that g ∈ G stabilizes Y ⊂ X if gY ⊂ Y and preserves
Y if gY = Y .

Lemma 5.1. Let ξ be an element in GLd(Q).

• ξ stabilizes some lattice if and only if there is a bound on denominators
in the matrices ξn for n ≥ 0
• ξ preserves some lattice if and only if there is a bound on denominators

in the matrices ξn for n ∈ Z.

Proof. If ξ stabilizes (resp. preserves) a lattice, then up to conjugation we can
suppose that this matrix is integral (resp. in GLd(Z)) and hence there is a bound
on the denominators as stated. Conversely, if there is a bound on denominators
of ξn for n ≥ 0 (resp. for n ∈ Z), the subgroup generated by the ξnZd for n ≥ 0
(resp. for n ∈ Z) is a lattice, and is stabilized (resp. preserved) by ξ. �
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Now consider the above grading, written additively, so that V0 is the set of
vectors fixed by As.

Lemma 5.2. If the Zariski closure of 〈ξ〉 contains A◦, then V≈0 = V0.

Proof. It is no restriction to assume that ξ ∈ A◦. Let χ be a distal weight and
let us show that χ = 0. Then AaU acts on Vχ with determinant 1. For g ∈ A◦,
write ǧ = gĝ−1. Then ĝ acts on Vχ by multiplication by χ(ĝ), while ǧ acts on Vχ
with determinant 1. In particular, if δ = dim(Vχ), the determinant of the action
of A◦ on Vχ is given by g 7→ χ(ĝ)δ, which has to be a rational number whenever

g ∈ A◦(Q). Since χ is distal, we have 1 = |χ|(ξ) = |χ(ξ̂)|. Thus χ(ξ̂)δ is a

rational number of modulus 1 and hence is equal to ±1, and hence χ(ξ̂)2δ = 1.

Since χ is also distal with respect to ξn for all n ∈ Z, this shows that χ(ξ̂n)2δ = 1
for all n ∈ Z. In other words, for all n ∈ Z, we have det(ξn|Vχ)2 = 1. By Zariski
density, we deduce that for all g ∈ A◦, we have det(g|Vχ)2 = 1. On the other
hand, if g ∈ As, we have det(g|Vχ)2 = χ(g)2δ. Hence χ(g)2δ = 1 for all g ∈ As.
By connectedness of As, we deduce χ(g) = 1 for all g ∈ As, which in additive
notation means that χ = 0. �

Lemma 5.3. • if ξ stabilizes a lattice then V = V≥0

• if ξ preserves a lattice then V = V≈0

If ξ stabilizes a lattice Λ, the converse of the second implication holds; more
precisely if V = V≈0 then ξ preserves Λ.

Proof. Let us show the implications. It is no restriction to assume that V = Vχ
for some χ ∈ X(As). If ξ preserves a lattice then det(ξ) = ±1. Thus det(ξ̂) = ±1.

Since ξ̂ acts by scalar multiplication by χ(ξ̂), the latter is a root of unity and hence
|χ|(ξ) = 1, which means by definition that χ is a distal weight. Similarly, if ξ

stabilizes a lattice, then det(ξ) is a nonzero integer, and hence | det(ξ̂)| = | det(ξ)|
is a positive integer and hence is ≥ 1, which implies that |χ|(ξ) ≥ 1, which means
by definition that χ is a non-negative weight.

Now let us show the partial converse. Assume that V = V≈0 and that ξ
stabilizes the lattice Λ. Again, we can suppose that V = Vχ; then χ is distal.
The assumption implies that det(ξ) is a nonzero integer m. On the other hand,

det(ξ) = det(ξ̂), and ξ̂ is the scalar multiplication by χ(ξ̂). Hence χ(ξ̂)δ = m,

where δ = dim(Vχ). Since χ is distal, |χ(ξ̂)| = 1. It follows that m = ±1. Since
ξ stabilizes the lattice Λ and det ξ = ±1, we deduce that ξ preserves Λ. �

Remark 5.4. The converse of both implications of Lemma 5.3 are false. For
instance, let ξ be the companion matrix of X2 +(1/2)X+1. Then ξ is irreducible
on Q2, and det(ξ) = 1; hence the Zariski closure A of 〈ξ〉 is a Q-anisotropic torus;
thus V = V0 for this choice of A. But the spectral radius of ξ and ξ−1 in the 2-adic
field Q2 is greater than 1. In particular, (ξn)n≥0 has unbounded denominators
(actually, large powers of 2) and thus ξ stabilizes no lattice.
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Proposition 5.5. Assume that the Zariski closure of 〈ξ〉 contains A◦, and that ξ
stabilizes a lattice Λ in Qd. Let A be the Zariski closure of 〈ξ〉. Then

⋂
n≥0 ξ

n(Λ)

is equal to Λ∩ V0 and is preserved by ξ. Moreover, if Λ′ is another lattice in Qd,
then

⋂
n≥0 ξ

n(Λ′) is a lattice in V0.

Proof. Let ξ′ be a positive power of ξ contained in A◦. If the result is proved for
ξ′ then it immediately follows for ξ. Hence we can suppose that ξ ∈ A. That
Λ ∩ V0 is preserved by ξ follows from the partial converse statement in Lemma
5.3. Hence it remains to check that

⋂
ξm(Λ) ⊂ V0. It is enough to assume that

V = Vχ for χ not distal and show that Λ′ =
⋂
n≥0 ξ

n(Λ) = {0}. Otherwise, let
W be the subspace spanned by Λ′; then W = Wχ and since χ is not distal, it

is positive, i.e., |χ(ξ̂)| > 1. Thus | det(ξ)| = | det(ξ̂)| = |χ(ξ̂)|dim(W ) > 1 since
dim(W ) > 0; this is a contradiction since ξ preserves the lattice Λ′ of W ′.

For the statement about another lattice, it is clear if Λ′ = rΛ for some nonzero
rational number r, and the general case follow since any lattice Λ is contained in
(1/m)Λ and contains mΛ for some positive integer m. �

Now let again A and ξ be as above. We have a grading of V in X(As); through
the homomorphism χ 7→ log(|χ|(ξ)) from X(As) to R, we obtain a new grading
of V in R, which we call the absolute grading of V associated to (A, ξ). Actually,
since given χ, the value of |χ|(ξ) only depends on the restriction of χ to the Zariski
closure of 〈ξ〉, we see that this absolute grading only depends on ξ (and not on
the subgroup A containing ξ), so we call it the absolute grading of V associated

to ξ. To avoid confusion here, we denote it by (V ]
r )r∈R. Then V ]

0 = V≈0; in

particular if ξ generates a Zariski-dense subgroup of A then V ]
0 = V0 (Lemma

5.2). It follows from the definition that all weights in the absolute grading are
non-negative real numbers if and only if V = V≥0, which holds if ξ stabilizes a
lattice, by Lemma 5.3.

If we write V ]
r = V ]

r (ξ) to emphasize ξ, we can note that V ]
r (ξm) = V ]

mr(ξ). In

particular, V ]
0 does not change if ξ is replaced by a nontrivial power.

Lemma 5.6. If ξ is an automorphism of a finite dimensional algebra g over Q,
then the absolute grading defined by ξ is an algebra grading.

Proof. If A is the Zariski closure of 〈ξ〉, then A ⊂ Aut(g), and then the grading
defined by As is an algebra grading. Since the absolute grading of ξ is a projection
of this grading by a group homomorphism, it is also an algebra grading. �

Proposition 5.7. Let Γ be a torsion-free finitely generated nilpotent group, G
its rational Malcev completion, and g the Lie algebra of G. Let φ be an injective
endomorphism of Γ, and Φ the automorphism of G extending φ. Let ξ be the
corresponding automorphism of the Lie algebra g, and endow g =

⊕
r∈R g]r with

the corresponding absolute grading. Let G{1} = G{1}(φ) the rational subgroup of

G corresponding to g]0. Then
⋂
n≥0 φ

n(Γ) is equal to Γ ∩G{1}.
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Proof. We first check that
⋂
n≥0 φ

n(Γ) ⊂ G{1}. The subset log(Γ) is contained in

some lattice L of g, and by Proposition 5.5, we have
⋂
n≥0 ξ

n(L) ⊂ g0 = g]{0}.

Hence
⋂
n≥0 φ

n(Γ) ⊂ G{1}.
On the other hand, since φ(Γ ∩ G{1}) ⊂ Γ ∩ G{1} and the restriction of ξ to

g0 has determinant ±1, this inclusion is an equality. Accordingly Γ ∩ G{1} is
contained in

⋂
n≥0 φ

n(Γ). �

5.2. A lemma for constructing endomorphisms of lattices. By unipotent
Q-group, we mean the group of Q-points of some unipotent linear algebraic Q-
group, or equivalently the group obtained from a finite-dimensional nilpotent Lie
algebra over Q when it is endowed with the group law defined by Baker-Campbell-
Hausdorff formula. The dimension of a Q-group is defined in the obvious way.
By lattice in a Q-group G, we mean any finitely generated subgroup of Hirsch
length equal to dim(G); every unipotent Q-group admits lattices, and they are
all commensurate to each other. Also note that if GR is the real completion of G,
then lattices of G are the lattices of GR (in the usual sense) that are contained
in G.

Lemma 5.8. Let g be a finite-dimensional nilpotent Lie algebra over Q, graded
in the non-negative integers N. For t ∈ Q, let δ(t) be the automorphism of g
defined as the multiplication by tn on gn.

Let G be the corresponding unipotent Q-group and also denote by δ(t) the
corresponding automorphism of G.

Let Γ be a lattice in G. Then there exists an integer m ≥ 2 such that δ(m)
stabilizes Γ, in the sense that δ(m)(Γ) ⊂ Γ. More precisely, there exists k0 such
that every integer m ∈ k0N + 1 satisfies this condition.

Proof. It is convenient to identify the Lie group to the Lie algebra through the
exponential map; thus the group law ∗ is given by the Baker-Campbell-Hausdorff
(BCH) formula, and the group powers are given by x∗m = mx for all m ∈ Z.
Moreover the identification of δ(t) : g → g and δ(t) : G → G is coherent with
this identification.

Fix a basis (ei) of g, with ei homogeneous of degree ni; we can multiply these
basis elements by large enough integers so as to ensure that all structural con-
stants of the Lie algebra are integers. Using this basis, identify g with Qd. There
exist integers k, k′ ≥ 1 such that

k′Zd ⊂ Γ ⊂ k−1Zd.

Fix g ∈ g and an integer m ≥ 0. We need to describe g ∗ (δ(m+1)(g))∗−1 = g ∗
(−δ(m+1)(g)); it is given by the BCH-formula as a certain sum g−δ(m+1)(g)+h,
where h is a Z[1/s]-linear combination of iterated brackets [c1, . . . , c`, [g, δ(m +
1)(g))] . . . ], where 0 ≤ ` ≤ d−2 (actually ` is at most the nilpotency length minus
2), and s is a common denominator for terms in the BCH-formula of degree at
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most the nilpotency length of g (we can choose s = d! although it is far from
optimal), and the ci are in {g, δ(m+ 1)(g)}.

We write g =
∑

n≥0 gn, according to the decomposition g = g0 ⊕
(⊕

n≥1 gn
)
.

Then

δ(m+ 1)(g) =
⊕
n≥0

(1 +m)ngn = g +
⊕
n≥0

((1 +m)n − 1)gn.

Since m divides ((1 +m)n− 1) for all n ≥ 0, we can write δ(m+ 1)(g) = g+mg′.

Here g′ =
⊕

n≥1
(1+m)n−1

m
gn. Hence g−δ(m+1)(g) = −mg′, and [g, δ(m+1)(g)] =

m[g, g′].
Now assume that g ∈ Γ, so that g belongs to k−1Zd. It also follows that all gn

belong to k−1Zd, and hence δ(m + 1)(g) and g′ belong to k−1Zd as well. Hence
[c1, . . . , c`, [g, δ(m+ 1)(g))] . . . ] belongs to mk−dZd. Therefore, if we assume that
skdk′ divides m, we deduce that g ∗ (δ(m + 1)(g))∗−1 belongs to k′Zd and hence
belongs to Γ. Since g ∈ Γ as well, it follows that δ(m+ 1)(g) ∈ Γ. Hence we get
the conclusion with k0 = skdk′. �

5.3. The main theorem about cohopfian properties.

Theorem 5.9. Let Γ be a torsion-free finitely generated nilpotent group, G its
rational Malcev completion, and g the Lie algebra of G. Let k be the uncontracted
dimension of g (Definition 3.23). Then the smallest possible Hirsch length for⋂
n≥0 φ

n(Γ), when φ ranges over injective endomorphisms of Γ, is k. Actually,
if g = g[0] n g[+] is a contractive decomposition of g and G[0] is the subgroup of
G corresponding to g[0], then there exists an injective endomorphism φ of G such
that

⋂
φn(Γ) = G[0] ∩ Γ.

Proof. Let φ be an injective endomorphism of Γ. Then the Hirsch length h(Γ, φ)
of
⋂
n≥0 φ

n(Γ) is, in the notation of Proposition 5.7 and using this proposition,

the dimension of g]0. Let M be the subgroup of R generated by weights of g
in the absolute grading defined by ξ. This is a finitely generated torsion-free
abelian group; hence it has a basis. Then by a small perturbation of those basis
elements, we find a homomorphism M → R mapping all positive weights of g to
positive rational numbers, and then after multiplication we find a homomorphism
M → R mapping all weights to positive integers. Thus we have a Lie algebra
grading of g in N, denoted (gn)n∈Z, for which g0 = g]0. This implies that there
exists a contractive decomposition g = g[0] n g[+] of g such that g0 ⊃ g[0]. Hence

h(Γ, φ) = dim(g]0) ≥ k.
To show that k is achieved, let g = g[0] n g[+] be a contractive decomposition

of g: then there exists a Lie algebra grading of g in N such that g0 = g[0]. Define
δ(t) as in Lemma 5.8, namely to be the multiplication by ti on gi. Then this
lemma asserts that there exists an integer m ≥ 2 such that δ(m) maps log(Γ)
into itself. Thus the corresponding automorphism ∆m = exp ◦δ(m) ◦ log of G
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maps Γ into itself. Then
⋂
n≥0 ∆n

m(Γ) = Γ ∩ G[0]: although this is a particular
case of Proposition 5.7, this can be seen directly since δ(m) is diagonalizable over
Q. Hence h(Γ,∆m) = k. �

Corollary 5.10. Let Γ be a finitely generated torsion-free nilpotent group and g
its rational Lie algebra. Then

• Γ is non-cohopfian if and only if g is semi-contractable;
• Γ is dis-cohopfian if and only if g is contractable.

Proof. If φ is an injective endomorphism of Γ, define h(Γ, φ) as the Hirsch length
of
⋂
φn(Γ), and k as the uncontracted dimension of g, so the theorem asserts

that k = minφ(Γ, φ).
Then g is semi-contractable if and only if k < dim(g), and is contractable if

and only if k = 0. On the other hand, we have h(Γ, φ) < dim(g) if and only if φ
is non-surjective (observing that

⋂
ξn(Γ) cannot be a proper subgroup of finite

index), and h(Γ, φ) = 0 if and only if
⋂
φn(Γ) = {1}. Thus the theorem implies

the corollary. �

Proof of Theorem 1.10. (ii)⇒(iii) is clear, since G admits a lattice.
(iii)⇒(i). Let Γ be a non-cohopfian lattice. Let GQ be the group of Q-points

for the Q-form defined by Γ, and gQ its Lie algebra. Then by Corollary 5.10, gQ
is semi-contractable. Thus g ' R⊗Q gQ is semi-contractable.

(i)⇒(ii) Let Γ be a lattice. Let GQ be the group of Q-points for the Q-form
defined by Γ, and gQ its Lie algebra. Then since g ' R ⊗Q gQ and g is semi-
contractable, by Theorem 3.25 it follows that gQ is semi-contractable. Thus by
Corollary 5.10, Γ is not cohopfian. �

Proof of Theorem 1.11. The proof follows mutatis mutandis the same steps as
the previous ones, replacing “non-cohopfian” with “dis-cohopfian” and “semi-
contractable” with “contractable”. �

5.4. Generalities about being weakly dis-cohopfian. For short, call Γ-chain
any descending sequence (not necessarily with strict inclusions) of subgroups (Γn)
of Γ, all isomorphic to Γ, with Γ0 = Γ. Note that for each such chain, there exists
a sequence (φn)n≥1 of injective endomorphisms of Γ such that Γn = φ1 . . . φn(Γ)
for all n.

Lemma 5.11. Let Γ be a countable group and W a subgroup. Assume that

(1) for every injective endomorphism φ of Γ, we have φ(W ) = W , and
(2) for every γ /∈ W , there exists an injective endomorphism φ of Γ such that

γ /∈ φ(Γ).

Then the following two assertions hold

(a) for every Γ-chain (Γn) we have W ⊂
⋂

Γn;
(b) there exists a Γ-chain (Γn) such that

⋂
Γn = W .
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Proof. (a) is an immediate consequence of (1). Let us prove (b). If W = Γ, there
is nothing to do; otherwise, let (gn)n≥1 be a (possibly non-injective) enumeration
of ΓrW , and define by induction a Γ-chain (Γn) such that gn /∈ Γi for all n ≥ 1.
By definition Γ0 = Γ. Assume n ≥ 1 and Γi is defined for i < n. If gn /∈ Γn−1, we
choose Γn = Γn−1. Otherwise we apply (2) to Γn−1 and γ = gn to define Γn as the
image of an injective endomorphism of Γn−1 whose image does not contain gn.
Since all Γn contain W by (1) and no gn belongs to

⋂
i Γi, we obtain

⋂
i Γi = W .

Accordingly, (Γn) is a Γ-chain with the required property. �

Corollary 5.12. A countable group Γ is weakly dis-cohopfian if and only if for
every g ∈ Γr{1} there exists a subgroup of Γ isomorphic to Γ and not containing
g.

Proof. This is the particular case of Lemma 5.11, when W = {1}, noting that
(1) then holds automatically. �

Remark 5.13. A variant of Lemma 5.11 holds, namely when in both the assump-
tions and conclusions, “injective endomorphism” is replaced with “injective en-
domorphism with image of finite index” and “Γ-chain” is replaced with “Γ-chain
(Γn) such that all Γn have finite index, the proof being the same.

5.5. Weakly dis-cohopfian nilpotent groups. (Refer to §5.4 for the meaning
of Γ-chain.)

Theorem 5.14. Let Γ be a finitely generated torsion-free nilpotent group, G
its rational Malcev completion, and g the Lie algebra of G. Let cni+(G) be the
subgroup corresponding to cni+(g). Then for every Γ-chain (Γn), we have

⋂
n Γn ⊃

cni+(G) ∩ Γ, with equality for some choice of (Γn).

Proof. Let φ be an injective endomorphism of Γ, φ̂ its unique extension to an
automorphism of G, and ξ = log ◦φ̂ ◦ exp the corresponding automorphism of g.
Since ξ preserves cni+(g), φ̂ preserves cni+(G). Hence φ stabilizes cni+(G) ∩ Γ.
Since the determinant of the restriction of φ to cni+(g) is ±1, it follows that φ
preserves cni+(G) ∩ Γ. Accordingly, cni+(G) ∩ Γ ⊂

⋂
n Γn.

Let us now show the existence statement. Let g = g[0] n g[+] be a contractive
decomposition of g, and G[0] the subgroup corresponding to g[0]. Then by Theo-
rem 5.9, there exists an injective endomorphism φ of Γ such that

⋂
n≥0 φ

n(Γ) is
equal to G[0] ∩ Γ.

Define W = cni+(G) ∩ Γ. By the previous verification, φ′(W ) = W for every
injective endomorphism φ′ of Γ, which is the assumption (1) of Lemma 5.11.
Let us check (2) of the same lemma. Fix x ∈ Γ r W . Thus x /∈ cni+(G),
that is, log(x) /∈ cni+(g). Thus there exists a contractive decomposition of g
such that log(x) /∈ g[0]. Given a non-negative Lie algebra grading of g such
that g0 = g[0], Lemma 5.8 provides an injective endomorphism ξ of Γ such that⋂
ξn(Γ) ⊂ exp(g0). In particular x does not belong to the image of ξn for some n.
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This means that (2) holds, and hence Lemma 5.11 implies that for some Γ-chain
(Γn) we have

⋂
Γn = W . �

Corollary 5.15. Let Γ be a finitely generated torsion-free nilpotent group, and g
its rational Lie algebra. Then Γ is weakly dis-cohopfian if and only if cni+(g) =
{0}.

Proof of Theorem 1.13. Again, the proof follows mutatis mutandis from that of
Theorem 1.10, replacing the use of Corollary 5.10 by Corollary 5.15. �

Example 5.16. Let g be one of the four complex 7-dimensional Lie algebras re-
ferred to in Remark 3.28. For instance, the Lie algebra g7,1.02 can be defined from
a basis (Z1, A2, A3, A4, B5, B6, C7) by the nonzero brackets

[Z1, A2] = A3, [Z1, A3] = A4, [A2, A3] = B5, [Z1, B5] = B6,

[A2, A4] = B6, [A2, B5] = C7, [A2, B6] = C7, [A3, B5] = −C7.

(The grading on N for which Z1 has degree 0, Ai has degree 1, Bi has degree
2, and C7 has degree 3, is a maximal grading.)

These Lie algebras being defined using rational coefficients, we can find a lattice
Γ in the real group. Then cni+(g) = {0} but g is not contractable. Thus Γ is
weakly dis-cohopfian but not dis-cohopfian.

6. Systolic growth and geometry of lattices in nilpotent groups

6.1. Generalities on the systolic growth. If f, g are non-negative functions
defined on the integers or reals, we say that f � g, or that f is asymptotically
bounded above by g, if there exists a positive constant C such that f(x) ≤
Cg(Cx) +C for all x large enough. If f � g � f , we say that f, g are asymptot-
ically equivalent and write f ' g.

Also, we write f ∼ g if f = O(g) and g = O(f) (for instance, 2n ' 3n but
2n � 3n).

We first generalize the notion of systolic growth from the introduction to com-
pactly generated locally compact groups.

Definition 6.1. Let G be a locally compact group. We say that G is residually
systolic if for every compact neighborhood S of 1, there exists a lattice Γ in G
such that Γ ∩ S = {1}.

When G is discrete, residually systolic just means residually finite. In gen-
eral, residually systolic implies the existence of lattices, and in particular implies
unimodular. If G admits a residually finite lattice, then it is residually systolic.

Let now G be a locally compact, compactly generated group, endowed with the
word length |·| with respect to some compact generating subset, or any equivalent
length. We fix a left Haar measure on G, so that every discrete subgroup has a
well-defined covolume (possibly infinite).



GRADINGS, SYSTOLIC GROWTH AND COHOPFIAN GROUPS 39

Definition 6.2. If Γ ⊂ G, we define its systole as

sys(Γ) = inf{|γ| : γ ∈ Γr {1}},

with inf ∅ = +∞. The systolic growth of G is the function σ = σG,|·| mapping
r to the infimum of covolumes of discrete subgroups of G of systole ≥ r (+∞ if
there is no such subgroup).

Note that σ(r) < ∞ for all r if and only if G is residually systolic, i.e., G
admits lattices of arbitrary large systole. The growth is a lower bound for the
systolic growth: if v(r) is the volume of the open r-ball, then σ(2r) ≥ v(r).

Note that an alternative definition would restrict to cocompact lattices; if we
focus on nilpotent groups or discrete groups, of course this makes no difference.

Definition 6.3. If Γ ⊂ G, define its normal systole as

sysC(Γ) = inf{|gγg−1| : γ ∈ Γr {1}, g ∈ G}.

The uniform systolic growth of G is the function σu = σuG,|·| mapping r to the

infimum of covolumes of discrete subgroups of G of normal systole ≥ r (+∞ if
there is no such subgroup).

Obviously, we have sysC ≤ sys, and σu ≥ σ. For standard reasons, the asymp-
totic behaviors of σ and σu do not depend on the choice of word length and Haar
measure.

Lemma 6.4. The '-asymptotic growth of the uniform systolic growth is a com-
mensurability invariant for finitely generated groups.

Proof. Suppose Γ′ ⊂ Γ has finite index. We endow Γ with a word length | · |, and
endow Γ′ with the restriction of this word length, which is equivalent to the word
length on Γ′, and define the systoles with these lengths.

If Λ is a finite index subgroup in Γ, then [Γ′ : Λ∩Γ′] ≤ [Γ : Λ] and sysCΓ′(Λ∩Γ′) ≥
sysCΓ (Λ). This implies that σuΓ′ ≤ σuΓ.

Let us now prove an inequality in the other direction. Write Γ = FΓ′ with F
finite. If g ∈ Γ, define [g]Γ = infh∈Γ |hgh−1|, and [g]Γ′ = infh∈Γ′ |hgh−1|. Then

[g]Γ′ − k ≤ [g]Γ ≤ [g]Γ′ , k = 2 sup
h∈F
|h|

It follows that for every finite index subgroup Λ of Γ′, we have

sysCΓ′(Λ)− k ≤ sysCΓ (Λ) ≤ sysCΓ′(Λ),

and this implies σuΓ(n − k) ≤ [Γ : Γ′]σuΓ′(n) for all n ≥ k, thus σuΓ � σuΓ′ . Finally
we deduce σuΓ ' σuΓ′ . �
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6.2. The main theorem on systolic growth and first part of the proof.

Theorem 6.5. Let G be a connected unipotent Q-group. Let

δ =
∑
i≥1

i dim(G(i)/G(i+1))

be the growth rate of the simply connected nilpotent Lie group GR. Let gQ and
gR = R ⊗Q gQ be the corresponding Lie algebras. Let σ and σu be the systolic
growth and uniform systolic growth of GR. Equivalences:

(i) the Lie algebra gR is Carnot over R;

(i+) the Lie algebra gQ is Carnot over Q

(ii−) either G = {1}, or every lattice in GQ (i.e., lattice of GR contained in GQ)
admits an injective endomorphism φ such that, for some integer m ≥ 2,
we have sys(Im(φn)) ∼ sysC(Im(φn)) ∼ mn and covol(Im(φn)) = λmδn for
some λ > 0 and all n ∈ N;

(ii) every lattice in GQ has systolic growth ' nδ;
(iii) some lattice in GQ has systolic growth ' nδ;

(iv−) σ(r) ' rδ;

(iv) lim inf σ(r)/rδ <∞;
(v) every lattice in GQ has uniform systolic growth ' nδ;

(vi) GR has uniform systolic growth ' rδ.

Note that Theorem 1.8 holds as a consequence. We are going to prove the
equivalences of all properties except (vi) by proving the cycle of implications

(i)
•⇒(i+)

•⇒(ii−)
◦⇒(v)

◦⇒(ii)
◦⇒(iii)

◦⇒(iv−)
◦⇒(iv)

•⇒(i),

which along with the implications (ii)
◦⇒(vi)

◦⇒(iv−) proves all the equivalences.

Here
•⇒ means an implication requiring a proof, that is part of the work of

the paper, while
◦⇒ means an implication which are trivial or only require a few

comments, which follow here:

• (ii−)⇒(v) and (ii−)⇒(vi): formally speaking, (ii−) implies that nδ is an
asymptotic lower bound for the uniform systolic growth of both G and its
lattices. Since conversely the growth of both G and its lattices is ' nδ

and is an asymptotic lower bound for the uniform systolic growth, this
yields the conclusion.
• (v)⇒(ii) and (vi)⇒(iv−): just use that the systolic growth is asymptoti-

cally trapped between the growth and the uniform systolic growth; simi-
larly, for (iii)⇒(iv−), just use that the systolic growth of GR is asymptot-
ically trapped between the growth of GR and the systolic growth of any
of its lattices.
• (ii)⇒(iii): this follows from the existence of a lattice, which is known to

be equivalent to the assumption that g is definable over Q.
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It remains to consider the implications
•⇒. Since (i)⇒(i+) is part of Theorem

3.15, the only two remaining are (i+)⇒(ii−) and (iv)⇒(i).

Proof of Theorem 6.5, (i+)⇒(ii−). Write the Carnot grading as gQ =
⊕

(gi)Q.
Write g = gR and gi = (gi)R. Fix norms on the gi, and define, for x =

∑
xi ∈

g =
⊕

gi, the “length” `(x) = sup ‖xi‖1/i. By Guivarch’s estimates [Gui], the
word length on G and on its lattices are equivalent to ` ◦ log. Therefore in the
sequel of the proof, we use | · | to denote ` ◦ log, although it is not necessarily a
length (it may fail to be sub-additive, but this does not matter), and use it in
the definition of systole. If x ∈ gr {0}, write i(x) = min{i : xi 6= 0}.

We can assume that g 6= {0}. Let Γ be a lattice in GQ, and define Γ′ = log(Γ).
Define δ(m) as the automorphism of g (and gQ) defined to be the multiplication
by mi on gi. By Lemma 5.8, there exists an integer m ≥ 2 such that δ(m) maps
Γ′ into itself. Let φ = exp ◦δ(m) ◦ log be the corresponding automorphism of G.
Then φ(Γ) has index mδ in Γ, and it follows that covol(φn(Γ)) = mnδcovol(Γ) for
all n ∈ Z.

It remains to estimate the systole and normal systole of φn(Γ). We have
`(δ(m)h) = m`(h) for all h ∈ g, and thus sys(φn(Γ)) = mnsys(Γ). This also
yields sysC(φn(Γ)) ≤ mnsys(Γ). To obtain a lower bound for sysC(φn(Γ)), con-
sider any g ∈ Γ′ r {0} and write i = i(g), and define πi as the projection on gi.
Then for every h ∈ GR, we have πi(hgh

−1) = πi(g) (we identify the group and the
Lie algebra in order to avoid cumbersome notation), and thus `(hgh−1) ≥ ‖gi‖1/i.
Thus for any n ≥ 0, any g ∈ Γ′ r {0}, we have `(hφn(g)h−1) ≥ mn‖gi‖1/i. If
we define k = infg∈Γ′r{0} ‖gi(g)‖1/i(g), then k > 0 (the infimum is attained, by an

easy argument using that the projection of Γ on G(i)/G(i+1) is discrete for all i),
and we thus have `(hφn(g)h−1) ≥ kmn for all h ∈ GR and g ∈ Γ′ r {0}. Thus
sysC(φn(Γ)) ≥ kmn for all n ∈ N. �

Before proceeding to the last and most difficult implication (iv)⇒(i) in §6.3,
we provide a few auxiliary results.

Corollary 6.6. Let Γ be a finitely generated, virtually nilpotent group, of growth
' nδ. Suppose that the rational Lie algebra of some/any torsion-free nilpotent
finite index subgroup is Carnot. Then the systolic growth and uniform systolic
growth of Γ are ' nδ.

This follows from the theorem (namely the already-proved implication (i+)⇒(ii)),
along with the commensurability invariance of the systolic and uniform systolic
growth, the latter being checked in Lemma 6.4.

6.3. The geometric part of the proof. We now complete the proof of Theorem
6.5, by proving (iv)⇒(i). We note that here no particular choice of Q-structure on
g is relevant. Hence we use the notation as in Theorem 1.8, and will assume (iv)
(which is equivalent to (iv of Theorem 6.5)), namely that G admits a sequence
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(Γn) of lattices with systole un → ∞ and covolume � uδn, and aim at proving
that the real Lie algebra g is Carnot.

We need some further definitions pertaining to the geometry of lattices. For
the moment, let G be a group endowed with a left-invariant distance. Let Br be
the closed r-ball in G.

Definition 6.7. Given a subgroup Γ of G, define its packing packG(Γ) to be
supg∈G d(g,Γ) ∈ [0,∞]. Also define its generating radius gerG(Λ) as the infimum
of the r such that Λ is generated by Λ ∩Br.

All these definitions are understood with the usual conventions: the infimum
of the empty set and the supremum of an unbounded subset of positive reals are
+∞.

Lemma 6.8. Let G be a locally compact group with a continuous left-invariant
geodesic distance d and let Γ be a cocompact lattice. Then gerG(Γ) ≤ 2packG(Γ);
moreover any element γ ∈ Γ with d(γ, 1) ≤ n is a product of n elements of
B2packG(Γ)+1 ∩ Γ.

Proof. Fix an integer m ≥ 1. Given γ ∈ Γ with d(γ, 1) ≤ n, consider a geo-
desic joining γ to 1. On this geodesic choose points 1 = x0, . . . , xmn = γ with
d(xi−1, xi) ≤ 1/m for all i = 1 . . . k. There is γi in Γ with d(xi, γi) ≤ packG(Γ)

for all i, where we choose γ0 = 1 and γk = γ. Hence γ =
∏k

i=1 γ
−1
i−1γi, and

d(1, γi−1γi) ≤ 2packG(Γ) + 1/m for all i. Hence gerG(Γ) ≤ 2packG(Γ) + 1/m;
since this holds for all m we deduce gerG(Γ) ≤ 2packG(Γ); on the other hand
taking m = 1 in the above argument shows that γ is a product of n elements
from B2packG(Γ)+1 ∩ Γ. �

Lemma 6.9. Let V be a Euclidean space and Λ a lattice (in this case, gerV (Λ)
is often denoted λdim(V )(Γ) in the literature). Then

2

dim(V )
packV (Λ) ≤ gerV (Λ) ≤ 2packV (Λ).

Proof. The right-hand inequality is borrowed from Lemma 6.8. For the left-hand
inequality, V has a basis (ei) with ei ∈ Λ and ‖ei‖ ≤ gerV (Λ). If x ∈ V ,
we write x =

∑
αiei; hence we can decompose x = w + y with w ∈ Λ and

y =
∑
βiei with |βi| ≤ 1/2 for all i. Hence ‖y‖ ≤ dim(V )gerV (Λ)/2, whence

packV (Γ) ≤ dim(V )gerV (Λ)/2. �

Assume now that G is a simply connected nilpotent Lie group, endowed with
a left-invariant Riemannian metric. Guivarch [Gui] established that the growth
rate of G and of its lattices is ' nδ, where δ is characterized in terms of the lower
central series by δ =

∑
i≥1 dim(g(i)).

The arithmeticity of lattices (see [Rag]) implies in particular that for every
lattice in G, its projection on G/[G,G] is also a lattice. We endow V = G/[G,G]
with the Euclidean metric defined by identifying g/[g, g] with the orthogonal of
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[g, g]. Let p : G → G/[G,G] be the projection, which is 1-Lipschitz. Let λ be a
left Haar measure on G.

Lemma 6.10. There exists a constant C (depending only on G and its Rie-
mannian metric) such that for every lattice Γ in G and Λ = p(Γ), we have
packG(Γ) ≤ CpackV (Λ).

Proof. We argue by induction on the nilpotency length c of G. If c = 1 the
result is trivial (with C = 1). Otherwise, the c-iterated commutator induces
an alternating multilinear form from V c to G(c), and more precisely a surjective
linear map F from ΛcV onto G(c). If we endow both V and G(c) with their
intrinsic Riemannian (Euclidean) metric, There exists a constant C0 such that
F (v1, . . . , vc) ≤ C0

∏c
i=1 ‖vi‖ for all v1, . . . , vc ∈ V .

Note that F (Λ⊗c) is a lattice in G(c), of finite index in Γ ∩ G(c). Moreover, it
is generated by the image of the generators of Λ⊗c, and therefore is generated by
elements of norm ≤ C0gerV (Λ)c. Thus, using twice Lemma 6.9, we successively
obtain packG(c)(F (Λ⊗c)) ≤ C1gerV (Λ)c for some constant C1 = (dimG(c))C0/2
and then, packG(c)(F (Λ⊗c)) ≤ C2packV (Λ)c with C2 = 2cC1.

On the other hand, denote by p′ the projection G→ G′ = G/G(c). If Γ′ = p(Γ),
we have, by induction, packG′(Γ

′) ≤ C3packV (Λ) for some constant C3 depending
only on G and its fixed Riemannian metric. Thus if x ∈ G, there exists γ ∈ Γ
such that d(p′(x), p′(γ)) ≤ C3packV (Λ).

If we lift a minimal geodesic joining 1 to p(x−1γ), we obtain y ∈ G such that
p(y) = p(γ−1x) and d(1, y) ≤ C3packV (Λ). Since y−1γ−1x ∈ G(c), there exists
γ′ ∈ F (Λ⊗c) ⊂ Γ with dG(c)(γ′−1y−1γ−1x, 1) ≤ C2packV (Λ)c. Here dG(c) is the
intrinsic distance of G(c), which by Guivarch’s estimates is distorted in such a way
that d(w, 1) ≤ C4dG(c)(w, 1)1/c for all w ∈ G(c). Hence, writing s = γ′−1y−1γ−1x,

we have d(1, s) ≤ C4C
1/c
2 packV (Λ).

We have x = γyγ′s = γγ′ys, because γ′ is central. Hence we have

d(ys, 1) ≤ CpackV (Λ); C = C3 + C4C
1/c
2

thus d(x,Γ) ≤ CpackV (Λ) and accordingly packG(Γ) ≤ CpackV (Λ). �

Lemma 6.11. For every lattice Γ in G with systole ≥ 2r+ 1, we have, denoting
again Λ = p(Γ) ⊂ V = G/[G,G], the following lower bound on its covolume

covolG(Γ) ≥ packV (Λ)λ(Br)

2r + 1
.

Proof. Define a possibly finite sequence of cosets Wi of Λ by W1 = Λ, and,
assuming W1, . . . ,Wi are defined, if d(x,

⋃
1≤j≤iWj) < 2r + 1 for all x ∈ V , then

stop; otherwise there exists, by connectedness, x ∈ V such that d(x,
⋃

1≤j≤iWj) =
2r + 1 and we define Wi+1 = x+ Λ.

Since the Wi are at pairwise distance ≥ 2r+1, the process stops, say at i = kr.
Since for 2 ≤ i ≤ kr every point in Wi is at distance 2r+ 1 to a point in

⋃
j<iWj
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and every point in V is at distance ≤ 2r + 1 to a point in
⋃
iWi, it follows that

every point in V is at distance ≤ kr(2r + 1) of some point in Λ. In other words,
packV (Λ) ≤ kr(2r + 1).

Fix xi ∈ Wi and lift it to some element gi ∈ G. Define X =
⋃

1≤i≤kr xiBr. This
is a disjoint union, since the xi are at pairwise distance ≥ 2r + 1. Moreover, the
Xγ for γ ∈ Γ are pairwise disjoint: indeed if gibγ = gjb

′γ′ with b, b′ ∈ Br and
γ 6= γ′ ∈ Γ, then, projecting, we obtain xi − xj + p(b) − p(b′) = p(γ−1γ′) ∈ Λ.
Since ‖p(b) − p(b′)‖ ≤ 2r, this forces i = j. Thus gi = gj, hence bγ = b′γ′.
Hence b−1b′ = γγ′−1 ∈ Γ; since the systole of Γ is ≥ 2r + 1, this implies γ = γ′,
contradiction. This proves that the covolume of Γ is at least equal to the volume
of X, and hence is ≥ krλ(Br).

Combining both inequalities yields the lemma. �

Conclusion of the proof of (iv)⇒(i). Let now (Γn) be a sequence of lattices in G,
satisfying sys(Γn) ≥ 2un + 1 and covol(Γn) � uδn. Define Λn = p(Γn) as the
projection of Γn on V = G/[G,G].

We first claim that we have packV (Λn) � un. Indeed, we have, by Lemma
6.11, covol(Γn) ≥ packV (Λn)λ(Bun)/(2un + 1). Since by assumption covol(Γn) '
λ(Bun) ' uδn, we deduce that packV (Λn) � un, proving the claim.

Lemma 6.10 combined with the above claim implies that packG(Γn) � un, say
packG(Γn) ≤ (Cun − 1)/2 (for n large enough). It follows from Lemma 6.8 that
Γn is generated by the elements in BCun ∩ Γn, in such a way that for any integer
R ≥ 1, any element in the BRun ∩ Γn is a product of at most R elements in
BCun ∩ Γn.

If we divide the distance in G by un, the lattice Γn endowed with the resulting
distance has the property that its systole is ≥ 2 + 1/un and that every element
in the R-ball is product of at most R elements in the C-ball, and the packing of
Γn in (G, (1/un)d) is bounded independently of n.

By Pansu’s thesis [Pan1], the (G, (1/n)d) converge in the sense of Gromov-
Hausdorff to a (real) Carnot simply connected nilpotent Lie group endowed with
a Carnot-Carathéodory metric, with the same dimension asG (thatH is isometric
to a Carnot group is due to Pansu; that H inherits the group law as limit of the
laws from G is proved in [Cor1]). Denote by BH(r) the closed r-ball in H.

Fix any non-principal ultrafilter ω on the positive integers. The metric ul-
tralimit Ξ of the sequence (Γn, (1/un)d) is a discrete subset of H, with systole
≥ 2, with the property that any element of Ξ ∩ BH(R) is a product of at most
R elements of Ξ ∩ BH(C), for all R ≥ 1, and any element of H is at bounded
distance to some element of Ξ. The fact that Ξ is a subgroup follows from the
refinement in [Cor1] of Pansu’s result mentioned above. Thus Ξ is a lattice in H.

Recall that a marked group on k generators is a group endowed with a map
(called marking) s from {1, . . . , k}, whose image generates the group, and a net
(Mi, si) of such marked groups converges to (M, s) if, denoting by Ni (resp. N)
the kernel of the unique homomorphism Fk → Mi extending si (resp. Fk → M
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extending s), we have the convergence 1Ni → 1N pointwise on the set of functions
Fk → {0, 1}; see [CG] for more details.

The sequence (#(B(Cun)∩ Γn)) being bounded, let k be an upper bound and
for each n, choose a surjective map sn from {1, . . . k} onto B(Cun) ∩ Γn.

Since B(Cun) ∩ Γn generates Γn, this provides a marking of Γn. Define s(i) =
limn→ω sn(i) ∈ Ξ for 1 ≤ i ≤ k. Then s defines a marking of Ξ: indeed every
element of the R-ball in (Γn, (1/un)d) is a product of ≤ R elements in the C-ball;
this fact passes to the ultralimit to show that every element in the R-ball of Ξ is
a product of ≤ R elements of S, and thus the image of s generates Ξ.

A straightforward argument (using that these groups are uniformly discrete)
then shows that (Γn, sn) tends to (Ξ, s) for the topology of marked groups.

Since Ξ is finitely presented, eventually Γn lies as a quotient of Ξ (by [CG,
Lemma 2.2]), in the sense that there exists I ∈ ω such that for all n ∈ I,
the kernel of Fk → Γn contains the kernel of Fk → Ξ. Since both Ξ and Γn
are torsion-free of the same Hirsch length, we deduce that Γn is isomorphic to
Ξ for every n ∈ I. The rigidity of nilpotent lattices [Rag] asserts that if two
simply connected nilpotent Lie groups admit isomorphic lattices, then they are
isomorphic. It follows that G is isomorphic to H, and hence that G is Carnot
(i.e., g is Carnot over R).

(Note that the fact that Γn is generated by elements of length � un —and hence
bounded length after rescaling— played a crucial role: otherwise the ultralimit
of the (Γn, (1/un)d) could have been of Hirsch length less that that of G, yielding
no conclusion.) �

Appendix A. Cohopfian does not pass to finite index

It was asserted in [CM] that it is an open question whether cohopfian is inher-
ited by subgroups of finite index; however, it seems that this question is already
settled in the negative: a general criterion for being cohopfian, for finitely pre-
sented groups with infinitely many ends, with cohopfian vertex groups, was pro-
vided by Delzant and Potyagailo. It turns out that this criterion can be applied
to virtually free groups. The general theorem being a bit technical, let us provide
an easier instance, with a self-contained proof.

Proposition A.1. Let A,B be cohopfian groups with Property FA, with a com-
mon cohopfian subgroup C. Suppose that C is equal to its normalizer in both A
and B. Then the amalgam G = A ∗C B is cohopfian. In particular, there ex-
ists some cohopfian group among non-elementary virtually free finitely generated
groups, and being cohopfian does not pass to finite index subgroups.

Recall that a group has Property FA if each of its actions on a tree fixes a vertex
or an edge. For instance, finite groups have Property FA, and this is enough for
our purposes.

Proof. We can suppose that A 6= C 6= B since otherwise the result is trivial.
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Let G act on its Bass-Serre tree T , with a fundamental domain consisting of an
edge e with stabilizer C and vertices a and b with stabilizers A and B respectively.
We observe that the only vertices fixed by C are a and b. Indeed, otherwise it
would fix another neighbor of a or b; but the self-normalization assumption rules
this out.

Let φ be an injective endomorphism of G. Then φ(A) and φ(B) fix vertices a′

and b′ respectively, and in particular φ(C) fixes the segment [a′, b′]. If a′ = b′, we
obtain an embedding of G into either A or B, which contradicts that A and B are
cohopfian. Otherwise, after possibly composing φ with an inner automorphism,
we can suppose that e is contained in [a′, b′]. Then φ(C) fixes e, and hence
φ(C) ⊂ C. Since C is cohopfian, we deduce from the previous observation that
φ(C) = C. In particular, since φ(C) fixes [a′, b′], we deduce that {a, b} = {a′, b′}.
Replacing φ by φ2 if necessary, we have (a, b) = (a′, b′). Thus φ(A) ⊂ A, and
φ(B) ⊂ B; by the cohopfian assumption, we have φ(A) = A and φ(B) = B, and
the surjectivity of φ follows.

The second statement follows by picking, for instance, the double S3 ∗S2 S3,
where Sn is the symmetric group on n elements (as a finite group, S3 has Property
FA). This group is cohopfian by the first statement, but admits a non-abelian
free subgroup of finite index (of index 6), which is not cohopfian. �

Remark A.2. [[Being Hopfian also does not pass to finite index subgroups in
finitely generated groups: the Baumslag-Solitar group BS(2, 4) = 〈t, x | tu2t−1 =
u4〉 is Hopfian [CoL], but admits a non-Hopfian subgroup of index 2, namely the
kernel Λ of the homomorphism to {±1} mapping (t, x) 7→ (1,−1); it is generated
by {t, u, y}, where u = xtx−1 and y = x2. The Reidemeister-Schreier method
yields the presentation

Λ = 〈t, u, y | tyt−1 = uyu−1 = y2〉,

which is the first example of a non-Hopfian finitely presented group, due to Hig-
man [Hig]. (This is partly due to Meskin (proof of Lemma 2.2 in [Mes]); Meskin
uses a homomorphism u : Λ→ BS(2, 4) to show that the latter is not residually
finite —actually, in a slightly broader context— but does not make the observa-
tion, later made by Sapir that u is injective and has image of finite index.)

Nevertheless, being Hopfian, for finitely generated groups (or more generally
groups with finitely many subgroups of each given index) is inherited from finite
index subgroups [Hir, Co. 2]1.]]

On the other hand, I do not know if the cohopfian property passes to overgroups
of finite index, including in the case of finitely generated groups.

1This bracketed paragraph was added after publication. I apology that this fact about
Hopfian property and finite index subgroups is misquoted in the published version.
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(1973), 53–90.

[Gra] W. de Graaf. Classification of 6-dimensional nilpotent Lie algebras over fields of char-
acteristic not 2. Journal of Algebra 309 (2007) 640–653.

[Gro] M. Gromov. Systoles and intersystolic inequalities. Actes de la table ronde de
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