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Abstract. Introduced by Gromov in the nineties, the systolic growth of a
Lie group gives the smallest possible covolume of a lattice with a given systole.

In a simply connected nilpotent Lie group, this function has polynomial
growth, but can grow faster than the volume growth. We express this systolic
growth function in terms of discrete cocompact subrings of the Lie algebra,
making it more practical to estimate.

After providing some general upper bounds, we develop methods to provide
nontrivial lower bounds. We provide the first computations of the asymptotics
of the systolic growth of nilpotent groups for which this is not equivalent to
the volume growth. In particular, we provide an example for which the degree
of growth is not an integer; it has dimension 7. Finally, we gather some open
questions.

1. Introduction

1.1. Background. Every locally compact group G has a Haar measure µ, unique
up to positive scalar multiplication. If in addition G is generated by a symmetric
compact neighborhood S of 1, the function b(n) = µ(Sn) is called the volume
growth (or word growth) of G ; while its values depend on the choice of (S, µ),
its asymptotics (in the usual meaning, recalled in §3.1) does not. The volume
growth is either exponential or subexponential. Those compactly generated lo-
cally compact group with polynomially bounded growth have been characterized
by Guivarch and Jenkins [Gui, Jen] in the case of connected Lie groups, Gro-
mov in the case of discrete groups [Gro1], and Losert [Los] in general. All such
groups are commable, and hence quasi-isometric, to simply connected nilpotent
Lie groups, and thus, by work of Guivarch [Gui] have an integral degree of poly-
nomial growth that is easily computable in terms of the Lie algebra structure
(see §2.1).

The object of study of the paper is the following related notion of growth,
introduced by Gromov in [Gro2, p. 333].
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Definition 1.1. Let H be a locally compact group and | · | the word length
relative to some choice of compact generating subset. If X ⊂ H, define its
systole as sys(X) = inf{|x| : x ∈ X r {1}} ∈ R+ ∪ {+∞}.

EndowH with some left-invariant Haar measure. The systolic growth of (H, |·|)
is the function mapping r ≥ 0 to the infimum σ(r) ∈ R+ ∪ {+∞} of covolumes
of cocompact lattices of H with systole ≥ r.

See Remark 3.1 for the geometric interpretation in a Riemannian setting. Note
that the definition makes sense when H is discrete, in which case lattices just
refer to finite index subgroups: this is actually the setting in Gromov’s original
definition. In the setting we will focus on, H will always be nilpotent and in this
case all lattices are cocompact. In general, we can define another type of systolic
growth, allowing non-cocompact lattices.

The asymptotics of the growth of σ does not depend on the choice of the word
length. The number σ(r) is always bounded below by the volume of the open
r/2-ball in H.

The function σ is interesting only when it takes finite values, in which case we
say that H is residually systolic. When H is discrete, this just means that H is
residually finite. In general, a sufficient condition for H being residually systolic
is that H admits a residually finite cocompact lattice.

It is natural to compare the volume growth and the systolic growth. For finitely
generated linear groups of exponential growth, the systolic growth is exponential
as well [BouCor].

1.2. Background with focus in the nilpotent case. Given a Lie algebra
g, denote by (gi)i≥1 its lower central series (see §2.1); by definition g is c-step
nilpotent if gc+1 = {0}. The homogeneous dimension of g is classically defined
as the sum

D = D(g) =
∑
i≥1

dim(gi);

we have D <∞ if and only g is nilpotent and finite-dimensional.
A classical result of Malcev is that a simply connected nilpotent Lie group ad-

mits a lattice (which is then cocompact and residually finite) precisely when its
Lie algebra can be obtained from a rational Lie algebra by extension of scalars.
Therefore this is also equivalent to being residually systolic. In this case, the sys-
tolic growth is easy to bound polynomially; nevertheless the comparison between
volume growth and the systolic growth is not obvious, because the precise rate
of polynomial growth is an issue.

A first step towards a good understanding is the following result (all asymptotic
results are meant when r → +∞).

Theorem 1.2 ([Cor]). Let G be a simply connected nilpotent Lie group with a
lattice Γ. Let g be the Lie algebra of G, and let D be its homogeneous dimension
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(so, for both G and Γ, the growth is ' r 7→ rD and the systolic growth is � rD,
see §2.1). The following are equivalent:

(1) the systolic growth of G is ' rD;
(2) the systolic growth of Γ is ' rD;
(3) g is Carnot, i.e., admits a Lie algebra grading g =

⊕
i≥1 gi such that g1

generates g.

Otherwise, if σ denotes the systolic growth of either Γ or G, then it satisfies
σ(r)� rD.

In the non-Carnot case, the proof of Theorem 1.2 does not provide any explicit
asymptotic lower bound improving σ(r) � rD. In this paper, we carry out the
task of evaluating the systolic growth in a number of explicit non-Carnot cases.
Such results are presented in §1.4. We start with some general upper bounds. We
will often emphasize the quotient σ′(r) = r−Dσ(r), since it often naturally occurs
in computations, and its growth is a measure of the failure of being Carnot.

1.3. Upper bounds. We provide here some upper bounds on the systolic growth.
We denote by d·e the ceiling function. Given c ≥ 0, we define

kc(g) =

dc/2e−1∑
i=1

( c
2
− i
)

dim(gi/gi+1);

Note that kc(g) ≤
(
c
2
− 1
)

dim(g/gdc/2e).

Proposition 1.3 (See Proposition 5.1). Let g be a finite-dimensional c-step nilpo-
tent real Lie algebra with homogeneous dimension D, and let k = kc(g) be defined
as above. Assume that the corresponding simply connected nilpotent Lie group G
admits lattices. Then the systolic growth σ(r) of G and its lattices is � rD+k.

We have kc(g) ≤ 1
6

dim(g)2 (see Proposition 5.2) when c is the nilpotency length
of g, so that we obtain an upper bound on σ(r)/rD depending only on dim(g).
For small values of c, we have

k≤2(g) = 0; k3(g) =
1

2
dim(g/g2), k4(g) = dim(g/g2);

k5(g) =
3

2
dim(g/g2) +

1

2
dim(g2/g3); k6(g) = 2 dim(g/g2) + dim(g2/g3).

Also note that D(g)+kc(g) ≤ c dim(g)/2. This improves the trivial upper bound
� rcdim(g), making use of congruence subgroups in a lattice, which was mentioned
in [Cor].

Note that every 2-step nilpotent Lie algebra is Carnot; the smallest nilpotency
length allowing non-Carnot Lie algebra is 3. When g is 3-step nilpotent, the
above proposition yields σ(r) � rD+dim(g/g2)/2. This bound is not very far from
sharp, see Theorem 1.7.
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1.4. Lower bounds on the systolic growth and precise estimates. This
part is the bulk of the paper. It contains the first exact estimates of the asymp-
totic behavior of the systolic growth of nilpotent Lie groups beyond the Carnot
case covered by Theorem 1.2. The first non-Carnot Lie algebras occur in dimen-
sion 5 and in this case we have the following theorem.

Theorem 1.4. Let G be a 5-dimensional simply connected nilpotent Lie group
whose Lie algebra g is non-Carnot (there are 2 non-isomorphic possibilities for
g, for which the homogeneous dimension D is either 8 or 11). Then the systolic
growth of both G and its lattices is ' rD+1.

Both cases are obtained in a single proof. In dimension 6, the classification
yields 13 non-Carnot nilpotent real Lie algebras; a similar approach provides
precise estimates for at least some of them, but I do not know if it can exhibit a
behavior different from being ' rD+h with h ∈ {1, 2, 3}. In dimension 7, where a
classification is still known (but lengthy), a similar approach yields an example
for which the degree is not an integer:

Theorem 1.5. There exists a 7-dimensional simply connected nilpotent Lie group
for which the systolic growth, as well as the systolic growth of one of its lattices,
is ' rD+3/2.

This contrasts with the fact that the volume growth always has an integral
degree of polynomial growth (the homogeneous dimension D). Yet so far we only
know, for the systolic growth, behaviors of the form rD+h with h a non-negative
rational, but we actually do not know if log σ(r)/ log(r) always converges, and if
so, if its limit is always a rational, and what kind of further constraints we can
expect on h (see the questions below).

At the computational level, let us also provide some families of unbounded
dimension, for which we obtain unbounded values for h.

Theorem 1.6 (Truncated Witt Lie algebra). For n ≥ 3, let G(n) be the simply
connected nilpotent Lie group corresponding to the Lie algebra g(n) with basis
(ei)1≤i≤n and nonzero brackets [ei, ej] = (i− j)ei+j, (i+ j ≤ n). Then its systolic
growth grows as r 7→ rD+h with h = d(n−4)/2e (here the homogeneous dimension

is D = n(n−1)
2

+ 1).

The following family of examples with unbounded h consists of 3-step nilpotent
Lie groups.

Theorem 1.7 (see Theorem 7.6). For n ≥ 0, let g(4+2n) be the 3-step nilpotent
(4 + 2n)-dimensional Lie algebra obtained as central product of a 4-dimensional
filiform Lie algebra and a (2n+1)-dimensional Heisenberg Lie algebra, and G(4+
2n) the corresponding simply connected nilpotent Lie group. Then its systolic
growth grows as r 7→ rD+n, where D = 2n+ 7 is the homogeneous dimension.

The same method actually yields examples for which the polynomial degree of
r−Dσ(r) is comparable to the square of the dimension, see Remark 7.8.
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1.5. Outline of the method. Let us outline the method used to obtained the
estimates of §1.4.

The first step is to translate the problem, which concerns lattices in a simply
connected nilpotent Lie group, into a problem about discrete cocompact subrings
in its Lie algebra. This uses the fact that even if there is no exact correspondence
between the two (the exponential of a Lie subring can fail to be a subgroup,
and the logarithm of a subgroup can fail to be a Lie subring), this is true “up
to bounded index”. This important fact, for which we claim no originality but
could not refer to a written proof, is formulated in Lemma 4.1 and proved (along
with a more precise statement) in the appendix.

Then the notion of systolic growth can be made meaningful in a real finite-
dimensional nilpotent Lie algebra: it maps r to the smallest covolume of a discrete
cocompact subring of Guivarch systole ≥ r. Here the Guivarch systole is the
Lie algebra counterpart of the systole: this is the smallest Guivarch length of
a nontrivial element in the lattice. The Guivarch length is recalled in §2.1; for
instance, in the 3-dimensional Heisenberg Lie algebra, the Guivarch length of an

element

0 x z
0 0 y
0 0 0

 can be defined as the value |x| + |y| + |z|1/2. See §4.2. The

previous fact shows that the systolic growth of a simply connected nilpotent Lie
group is asymptotically equivalent to that of its Lie algebra.

Next, we have to estimate the systolic growth in various Lie algebras. The
idea is to use a flag of rational ideals g = w1 ≥ . . . . . .wk = {0}. Here, if we
consider arbitrary lattices, we need these ideals to be rational for every rational
structure (we call this solid and provide some basic fact about such ideals in
§2.2). For instance, terms of the lower central series are such ideals. Then any
lattice intersects each wi into a lattice and this intersection maps into a lattice in
wi/wi+1; let ai be the corresponding covolume. Then the covolume of the whole
lattice is

∏
i ai. Then we use the stability under brackets and the hypothesis of

Guivarch systole ≥ r to obtain lower bounds on
∏
ai, which in some cases are

better than the trivial lower bound (the trivial lower bound has the form � rD).
More precisely, this approach typically yields, for a lattice of Guivarch systole
≥ r, some inequalities of the form aiaj ≥ akr

m(i,j,k) for some integer (i, j, k). If
we write Ai = logr(ai) (so that the covolume is r

∑
Ai), this can be rewritten as

Ai + Aj ≥ Ak + m(i, j, k). Then such a family of inequalities can yield a lower
bound of the form

∑
Ai ≥ q for some rational q, and thus yielding a lower bound

for the covolume
∏
ai ≥ rq.

Once such a method is checked to yield precise estimates in some cases, it is
not a surprise to find that in well-chosen examples, it yields non-integral degrees,
as in Theorem 1.5.

Let us also mention that we actually renormalize the problem by a well-chosen
family of linear automorphisms (§6.1), which yields lower bounds for r−Dσ(r)
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and simplifies the computations (for instance, it allows to treat simultaneously
both examples of Theorem 1.4). The approach also provides a new, simpler proof
of the implication (1)⇒(3) in Theorem 1.2, see §6.3.

1.6. Open questions. Let us mention some open problems. Since the number h
is possibly not always defined, we write things as follows. Let H be a compactly
generated, locally compact group of polynomial growth, admitting at least a
lattice (we especially have in mind the cases when H is a simply connected
nilpotent Lie group, or H is a finitely generated nilpotent group). So its systolic
growth r 7→ σ(r) is well-defined. Let D be its homogeneous dimension. Define

hH = lim
log(σ(n)/nD)

log(n)
; hH = lim

log(σ(n)/nD)

log(n)

Question 1.8.

(1) Is it always true that hH = hH? (I conjecture a positive answer).

(2) Are hH and hH always rational numbers?

(3) Is it true that σH(n) ' nD+h′ for some h′ ≥ 0? (Of course this implies a
positive answer to (1), but this is more optimistic and I do not conjecture
anything.)

Question 1.9. Does there exist infinitely many non-equivalent types of systolic
growth asymptotically bounded above by some given polynomial?

Question 1.10. Let G be a simply connected nilpotent Lie group with a lattice
Γ, with systolic growth σG and σΓ (so σG � σΓ).

(1) Do we always have σG ' σΓ?
(2) We now refer to the uniform systolic growth introduced in §3.3. We have

σG � σuG � σuΓ,G. Do we always have σG ' σuG? Do we always have
σuG ' σuΓ,G?

Acknowledgements. I thank Yves Benoist for useful hints, and Pierre de la
Harpe for corrections on a preliminary version of this paper. I thank the referee
for various corrections and useful references.
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2. Algebraic preliminaries

In all this section, K is a field of characteristic zero, unless explicitly specified.

2.1. Lie algebras: lower central series, growth. Let g be a nilpotent fd
Lie algebra over K (fd stands for finite-dimensional). Its lower central series is
defined by g1 = g, gi+1 = [g, gi] for i ≥ 1. Let vi be a supplement subspace of
gi+1 in gi, so that g =

⊕
i≥1 vi (and vi = 0 for large i). We have, for all i, j

[vi, vj] ⊂
⊕
k≥i+j

vk, vi+1 ⊂ [v1, vi] + gi+2.

Let G be the group of K-points of the corresponding unipotent algebraic group;
G can obtained from g using the Baker-Campbell-Hausdorff formula as group law.
When K = R, this is the simply connected Lie group associated to g.

The integer

D = D(g) = D(G) =
∑

i dim(vi) =
∑
i

dim gi

is called the homogeneous dimension of G. Indeed, in the real case, the volume
of the r-ball is ' rD [Gui] (see §3.1 for the definition of '); this degree formula
was also found by Bass [Bas] while restricting to the discrete setting. We have
D ≥ dim(g), with equality if and only if g is abelian.

Again in the real case, fix a norm on each vi. If x = (x1, x2, . . . ) ∈ g in
the decomposition g =

⊕
i≥1 vi, define its Guivarch length bxc = sup ‖xi‖1/i.

This length plays an important role, as Guivarch established that bxc is a good
estimate for the word length of exp(x) in the simply connected nilpotent Lie
group G associated to g.

2.2. Solid ideals. We introduce here the notion of solid ideals, which will be
useful when computing lower bounds on the systolic growth of simply connected
nilpotent Lie groups.

Let g be a Lie algebra (over K). A Q-structure on g is the data of a Q-subspace
l such that the canonical homomorphism j : l⊗QK → g is a linear isomorphism
of Lie K-algebras. If l is a Q-subalgebra, we call it a multiplicative Q-structure,
and then j is a K-algebra isomorphism.

Given a Q-structure l, a K-subspace V of g is called Q-defined if it is generated
as a K-subspace by V ∩ l. If g is a Lie K-algebra, we say that an ideal is solid if
it is Q-defined for every multiplicative Q-structure. The following properties are
straightforward.

• A ideal contained and solid in a solid ideal is solid in the whole Lie algebra;
• the inverse image of a solid ideal by the quotient by a solid ideal is solid;
• the bracket of two solid ideals is solid:
• the centralizer of a solid ideal is solid;
• the intersection and the sum of two solid subalgebras are solid.
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For instance, if g is abelian, then the only solid ideals of g are {0} and g.
To single out solid ideals in fd Q-definable real nilpotent Lie algebras g is useful

in view of the following: an ideal V ⊂ g is solid if and only if for every discrete
cocompact subring Λ, the intersection Λ∩V is a lattice in V (or equivalently, the
projection on g/V is a lattice in g/V ). The reason is that the Q-linear span of any
discrete cocompact subring is a multiplicative Q-structure, and that conversely
any multiplicative Q-structure contains a discrete cocompact subring.

Solid ideals can almost be recognized using how they behave under the auto-
morphism group. Say that an ideal I in g is absolutely Aut-invariant if, denoting
by K̄ an algebraic closure of K and Aut(g)K̄ for the group of automorphisms of
the K̄-algebra g⊗K K̄, the ideal I ⊗K K̄ is Aut(g)K̄-invariant.

Theorem 2.1. Assume that K is uncountable. Let g be a fd Lie algebra over K.
Then

(1) every solid ideal is invariant under Aut(g)0 (or equivalently, stable under
all K-linear self-derivations of g);

(2) every absolutely Aut-invariant ideal is solid.

Remark 2.2. If I is an ideal of g, we have: I absolutely Aut-invariant ⇒ I
Aut(g)-invariant ⇒ I Aut(g)0-invariant (H0 denoting the connected component
of the unit in the Zariski topology). The reverse implications do not hold in
general. For instance, in sl2(K)×sl2(K), the ideal sl2(K)×{0} only satisfies the
third condition. Also, over the reals, in sl2(R) × so3(R), the ideal sl2(R) × {0}
only satisfies the latter two conditions (however, it is solid). Over the complex
numbers, I do not know whether every solid ideal is Aut(g)-invariant.

Theorem 2.1 follows from the next two propositions. Since the Lie algebras
axioms plays no role here, we consider arbitrary algebras and the context could
be even more general. Also, solid can be defined for arbitrary subspaces and we
use this straightforward generalization. However, in a Lie algebra solid subspaces
are always ideals (Corollary 2.6)

Proposition 2.3. Let g be a fd K-algebra and I a K-subspace, Q-defined for
at least one multiplicative Q-structure; let K̄ be an algebraically closed extension
of K. If I ⊗K K̄ is Aut(g)K̄-invariant and Q-defined for some multiplicative
Q-structure on the algebra g, then I is solid.

Proof. Let Ξ be the Galois group of K̄ over Q.
Let V be a finite-dimensional K-vector space. Let W ⊂ V be a Q-structure

in V . Then Ξ acts coordinate-wise on VK̄ = V ⊗K K̄ = W ⊗Q K̄ (for some
choice of basis of W , whose choice does not matter). We denote this action as
γ · v = uW (γ)v for γ ∈ Ξ. Then uW (γ) is a Q-linear automorphism of VK̄ ; it
is also γ-semi-linear, in the sense that uW (γ)(λv) = γ(λ)uW (γ)v. It follows in
particular that if W ′ is another Q-structure, then ηW,W ′(γ) = u−1

W (γ)uW ′(γ) is a
K̄-linear automorphism of VK̄ .
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Now suppose that the action uW of Ξ leaves a K̄-subspace J ⊂ VK̄ invariant.
This implies that J is the K̄-linear span of J ∩W (see [Bou2, corollaire in Chap.
V.4]).

We apply this to J = IK̄ = I ⊗K K̄. By assumption, I is Q-defined for some
multiplicative Q-structure W ′. So J is uW ′(Ξ)-invariant. It is also Aut(g)(K̄)-
invariant, by assumption. Hence, by the first paragraph of the proof, it is uW (Ξ)-
invariant. So IK̄ is the K̄-linear span of J ∩W . This means that dimQ(J ∩W ) =
dimK̄(IK̄). Since the latter equals dimK(I) and since J ∩W = I ∩W , this in
turn implies that I is the K-linear span of I ∩W , that is, I is Q-defined. �

Proposition 2.4. Let g be a fd algebra over an uncountable field of characteristic
zero, definable over Q. Let V be a subspace of g. Suppose that V is solid, that is, it
is Q-defined for every Q-structure on g. Then V is invariant under H = Aut(g)0,
that is, when K has characteristic zero, V is stable under every derivation of g.

Proof. Let L ⊂ H be the stabilizer of V . If L 6= H, then H(K)/L(K) is uncount-
able: if K is R or C this is because it is a manifold of positive dimension; in
general see Lemma 2.5. The map hL→ hV from H(K)/L(K) to the set of sub-
spaces of g being injective, it has an uncountable image. So, given Q-structure
gQ, there exists h ∈ H(K) such that hV is not Q-defined. Accordingly, for the
new Q-structure defined by h−1gQ, V is not Q-defined, contradicting that V is
solid. �

Lemma 2.5. Let H be a connected linear algebraic group defined over an infinite
perfect field K, and L a K-closed proper subgroup. Then H(K)/L(K) is has the
same cardinality as K.

Proof. (Beware that the canonical injective map H(K)/L(K) → (H/L)(K) can
fail to be surjective, so it is not enough to compute the cardinal of the latter.)

Clearly the cardinal of H(K) is bounded above by that of K (as soon as K is
infinite), so we have to prove the other inequality.

We first take for granted that there exists a K-closed curve C in H, K-
birational to P1, such that C * L and 1 ∈ C. This granted, let us conclude
(without the perfectness restriction on K).

On C, we consider the equivalence relation x ∼ y if x−1y ∈ L. This is a closed
subvariety of C×C, and does not contain any layer C×{y0} since y0 ∈ L and then
C ⊂ L would follow. So equivalence classes are finite. Since C is K-birational to
P1, its cardinal is the same as K, and then its image in the quotient H(K)/L(K)
being the quotient of C(K) by the equivalence relation ∼ with finite classes, it
also has at least the cardinal of K.

To justify the existence of C, we can argue that H is K-unirational (this
uses that K is perfect), as established in [BorSpr, Corollary 7.12]; consider a
dominant K-defined morphism f : U → H, with U open in the affine d-space Ad.
Conjugating with translations both in Ad and H, we can suppose that 0 ∈ U and
f(0) = 1. Since U(K) is Zariski-dense and f is dominant, f(U) is Zariski-dense,
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and hence it contains a point f(x) /∈ L for some x ∈ U . Let D ⊂ Ad be the line
through x. Then the Zariski closure of f(D ∩ U) is the desired curve. �

Corollary 2.6. In a fd Lie algebra over a field of characteristic 0, every solid
subspace is an ideal.

Proof. We have to show that if V is Aut(g)0-invariant then it is an ideal. Indeed,
differentiation implies that V is invariant under derivations of g, and this includes
inner derivations. Since left and right multiplications are derivations, this finishes
the proof. �

Example 2.7 (A solid complete flag in a filiform Lie algebra of dimension ≥ 4).
Recall that, for d ≥ 2, a filiform Lie algebra denotes a d-dimensional nilpotent
Lie algebra whose nilpotency length is exactly d− 1, which is the largest possible
value. Such a Lie algebra g admits a basis (e1, . . . , ed) such that, denoting by g≥i
the subspace with basis (ei, . . . , ed), we have, for all i ∈ {2, . . . , d}, gi = g≥i+1. In
addition, if d ≥ 4, we can arrange to choose [e1, e2] = e3 and [e1, e3] = e4. This
being assumed, each g≥i is a solid ideal. Indeed, for i 6= 2, this is because it is a
term of the lower central series. For i = 2, this is because it is the centralizer of
g2(= g≥3) modulo g4(= g≥5).

3. Systolic growths: facts and bounds

3.1. Asymptotic comparison. Given functions f, g (of a positive real variable
r), we write f � g if f(r) ≤ Cg(C ′r) + C ′′ for some constants C,C ′, C ′′ > 0 and
all r. We say that f and g are '-equivalent and write f ' g if f � g � f . Also,
we write f � g if g/(|f | + 1) → +∞ (usually limr→∞f > 0, in which case this
just means g/f → +∞).

3.2. Residual girth. The residual girth is defined in the same way as the systolic
growth, but allowing only normal subgroups.

Let G be a simply connected nilpotent Lie group, of dimension d and nilpotency
length c with a lattice Γ. We can find an embedding of G into the group of
upper triangular unipotent real matrices, mapping Γ into integral matrices. Then
congruence subgroups (the kernel of reduction modulo n, in restriction to Γ) have
index ' nd and systole ' n1/c. This yields for Γ the polynomial upper bound on
the residual girth � r 7→ rcd; this simple observation was made independently in
[BouStu, Cor]. As observed in [Cor], in the case of the 3-dimensional Heisenberg
group, it is sharp: the residual girth of every lattice is ' r6. In [BouStu], it
is shown that, more generally, the residual girth of every lattice is indeed ' rcd

when the center of G coincides with the c-th term of the central series. Otherwise
the picture is not completely clear.

The above provides an easy polynomial upper bound on the systolic growth of
Γ and of G, which are also � rcd. Nevertheless, we will not concentrate further
on the residual girth σCΓ , inasmuch as its asymptotic behavior is usually much



NILPOTENT LIE ALGEBRAS AND SYSTOLIC GROWTH OF NILMANIFOLDS 11

larger than the systolic growth σΓ: as soon as G is non-abelian, σΓ(r)� rcd, and
it is also very likely that σΓ � σCΓ always holds.

3.3. Systolic growths. Another notion, also related with conjugacy phenom-
ena, but more closely related to the systolic growth, is the uniform systolic growth
introduced in [Cor]: we define it now.

Let H be an arbitrary compactly generated locally compact group. We use
the standard natural convention inf ∅ = +∞. In the setting we will study more
deeply (compactly generated locally compact nilpotent groups), all lattices are
cocompact. So we stick to cocompact lattices, but in general it would make sense
to consider the analogous notion allowing arbitrary lattices.

In the setting of Definition 1.1, one can define the uniform systole, orH-uniform
systole, of X ⊂ H as the infimum

inf
h∈H

sys(hXh−1) = inf
{
|hxh−1| : h ∈ H, x ∈ X r {1}

}
.

The uniform (or H-uniform) systolic growth of H is then defined as the function
mapping r > 0 to the infimum σu(r) ∈ R+ ∪ {+∞} of covolumes of cocompact
lattices of H with uniform systole ≥ r.

Given a cocompact lattice Γ in H, we can consider the uniform systolic growth
σΓ of Γ (computed within Γ) and the uniform systolic growth σH of H. But while
σH � σΓ, a similar estimate for the uniform systolic growths might fail because
for a finite index subgroup of Γ, the H-uniform systole can be much smaller than
the Γ-uniform systole (see Example 3.2, in the Heisenberg group). Hence another
notion naturally appears: the H-uniform systolic growth σuΓ,H of Γ, considering
the uniform systole computed in H but finite index subgroups of Γ. At this
point we have a bunch of growths, which we summarize now (up to asymptotic
equivalence, allowing to not specify the choice of lengths): each maps r ≥ 0 to
the smallest covolume of a cocompact lattice of H with the additional conditions:

• (systolic growth σH of H): of systole ≥ r;
• (systolic growth σΓ of Γ: contained in Γ, of systole ≥ r;
• (uniform systolic growth σuH of H): of H-uniform systole ≥ r
• (uniform systolic growth σuΓ of Γ): contained in Γ, of Γ-uniform systole
≥ r
• (H-uniform systolic growth σuΓ,H of Γ): contained in Γ, of H-uniform

systole ≥ r.

with asymptotic inequalities

σH � σΓ � σuΓ � σuΓ,H ; σH � σuH � σuΓ,H .

(Let us also mention that all these functions are � σCΓ : the only nontrivial case
is that of σuΓ,H , and follows from the fact that for a subgroup Λ normalized by
a fixed cocompact lattice Γ, the H-normal systole is bounded by the Γ-uniform
systole plus a constant depending only on Γ, independently of Λ.)
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In the context when H = G is a simply connected nilpotent Lie group, all
these functions take finite values and are asymptotically bounded above by the
residual girth of Γ, and in particular are polynomially bounded by r 7→ rcdim(G),
a better upper bound (implying � rcdim(G)/2) is provided in Proposition 5.1. In
this context, we do not know if all these five functions have the same asymptotic
behavior (Question 1.10). In various cases where we prove an upper bound on
the systolic growth, by constructing an explicit sequence of lattices, we actually
provide an upper bound on σuΓ,G and therefore on all others.

Remark 3.1. Most of these functions can be interpreted in the geometry of G/Γ.
More precisely, endow G with a right-invariant Riemannian metric, which thus
passes to the quotient G/Γ, as well as its covering G/Λ when Λ is a finite index
subgroup of Γ. Then Γ can naturally be identified to π1(G/Γ) by a bijection
γ 7→ jγ (the base-point is meant to be the obvious one). The length of γ ∈ Γ
is equivalent to the length in X = G/Γ of a smallest representative based loop
of jγ. Its G-uniform length is equivalent to the infimum of lengths of arbitrary
loops in the free homotopy class of jγ. Therefore, the systole (resp. G-uniform
systole) of Λ is equivalent the smallest size of a based loop (resp. of a loop) in
X not homotopic to a point. Call the latter the geometric based systole, resp.
geometric systole, of X (classically, the word “geometric” is dropped, since these
notions come from Riemannian geometry!). The geometric based systolic growth,
resp. geometric systolic growth, of X is defined as the function mapping r to the
smallest degree of a covering of X with geometric based systole, resp. systole
≥ r. Thus the geometric based systolic growth of X coincides with the systolic
growth of Γ, and the geometric systolic growth of X coincides with the G-uniform
systolic growth of Γ.

Example 3.2. In the 3-dimensional real Heisenberg group G, let us write, for the

sake of shortness, M(a, b, c) =

1 a c
0 1 b
0 0 1

. We write |M(a, b, c)| = |a|+|b|+
√
|c|;

we use this approximation of the distance to the origin to compute systoles.
Let Γn be the subgroup generated by the matrices xn = M(1, 0, n), yn =

M(0, n2, 0); this is a lattice. We claim that its G-uniform systole is 1 while its
Γn-uniform systole is ≥

√
n.

Let us describe Γn. Define zn = xnynx
−1
n y−1

n . Then zn = M(0, 0, n2) and
elements of Γn are precisely those xany

b
nz

c
n when (a, b, c) ranges over Z3. We see

that

xany
b
nz

c
n = M(a, bn2, n(a+ (ab+ c)n)).

In G, xn is conjugate to M(1, 0, t) for every real t, and hence the G-systole of
Γn is equal to 1.

Let us compute the Γn-uniform systole. Consider (a, b, c) ∈ Z3 r {0} and
consider g = xany

b
nz

c
n, and g′ any conjugate of g (for the moment, a G-conjugate).
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• If (a, b) = (0, 0), then c 6= 0 and g = M(0, 0, cn2) is central, so |g′| = |g| =√
|c|n ≥ n;

• if b 6= 0, then |g′| ≥ |a|+ |b|n2 ≥ n2;
• if b = 0 and a 6= 0, then g = xanz

c
n = M(a, 0, n(a+ cn)). We discuss

– if |a| ≥
√
n, then |g′| ≥

√
n;

– if |a| <
√
n, we now assume that g′ is a Γn-conjugate of g, namely

by some element M(∗, dn2, ∗′) with d ∈ Z (we do not have to care
about the coefficients denoted by stars); this gives

g′ = M(a, 0, n(a− (ad− c)n)).

If by contradiction |g′| <
√
n, then a − (ad − c)n = 0, but since

|a| < n this implies a = 0, a contradiction. So |g′| ≥
√
n.

We conclude that in all cases |g′| ≥
√
n, so the Γn-systole of Γn is ≥

√
n.

4. Algebraization of the systolic growth

The purpose of this section is to describe the various systolic notions in terms
of discrete cocompact subrings of the Lie algebra, instead of lattices in the Lie
group. While the exponential of a discrete cocompact subring can fail to be a
subgroup and the logarithm of a lattice can fail to be an additive subgroup or
fail to be stable under taking brackets, the correspondence is true up to bounded
index. This is the contents of the following lemma.

Lemma 4.1 (Folklore). Let g be a real fd nilpotent Lie algebra and G the cor-
responding simply connected nilpotent Lie group. There exists C ≥ 1 depending
only on dim(g) such that:

(1) for every cocompact discrete subring Λ in g, there exist lattices Γ1,Γ2 in
G with Γ1 ⊂ exp(Λ) ⊂ Γ2 and [Γ2 : Γ1] ≤ C.

(2) for every lattice Γ in G, there exist cocompact discrete subrings Λ1,Λ2 in
g with Λ1 ⊂ log(Γ) ⊂ Λ2 and [Λ2 : Λ1] ≤ C.

We include a proof (of a slightly stronger statement) in Appendix A.

4.1. Systolic growth of a real nilpotent Lie algebra. We define a Lie algebra
analogue of the systole and systolic growth as follows (fix some Lebesgue measure
on the vector space g). Recall that b·c denotes the Guivarch length, introduced
in §2.1.

Definition 4.2. If H ⊂ g, define

sys(H) = inf
{
bhc : h ∈ H r {0}

}
∈ R+ ∪ {+∞}.

Also define the uniform (or G-uniform) systole as sysu(H) = infg∈G sys(g · H)
(where G acts through the adjoint representation).

The systolic (resp. uniform systolic) growth of (g, b·c) is the function mapping
r ≥ 0 to the infimum σ(r) ∈ R+ ∪ {+∞} of covolumes of cocompact discrete
subrings of g with systole (resp. uniform systole) ≥ r.
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Note that the systolic growth also depends on the choice of normalization of
the Lebesgue measure. Its asymptotic growth, however, only depends on the real
Lie algebra g. Its interest lies in the following fact:

Proposition 4.3. The systolic (resp. uniform systolic) growth of g (as a Lie
algebra) and the systolic (resp. uniform systolic) growth of G are '-equivalent.

Proof. The exponential map preserves the systole of subsets up to a bounded mul-
tiplicative error, by Guivarch’s estimates. So the proposition would be already
proved if the exponential map were giving an exact correspondence between co-
compact discrete subrings of g and lattices in G. This is not the case, but is,
however, “true up to a bounded index error”, as explained in Lemma 4.1, which
entails the result for systolic growth.

The uniform case follows, using in addition that the exponential map g→ G is
G-equivariant, for the adjoint action on g and the conjugation action on G. �

4.2. Systolic growth of a rational nilpotent Lie algebra. To estimate the
systolic growth in the lattice, we need a similar notion pertaining to rational
Lie algebras. Namely, let l be a fd nilpotent Lie algebra over Q. Define its
“realification” g = l ⊗Q R. Choose vi and norms as above on g, so as to define
the Guivarch length b·c; so we have a notion of systole for subsets g, and choose
a Lebesgue measure on g.

Definition 4.4. The systolic (resp. G-uniform systolic) growth of the rational Lie
algebra (l, b·c) is the function mapping r ≥ 0 to the infimum σ(r) ∈ R+ ∪ {+∞}
of covolumes of cocompact discrete subrings of g contained in l, with systole (resp.
G-uniform systole) ≥ r.

Note that the only difference in the last definition is that we restrict to those
subrings contained in l. In particular, this function is bounded below by the
systolic growth of G (relative to the same choice of norms, etc.). Also note that
we did not attempt to define an analogue of the Γ-uniform systolic growth.

Denoting L = exp(l) (which can be thought as the group GQ of Q-points of G
for a suitable rational structure), we have

Proposition 4.5. If Γ is any lattice in G contained in L, then the systolic (resp.
G-uniform systolic) growth of Γ is '-equivalent to the systolic (resp. G-uniform
systolic) growth of the rational Lie algebra l.

Proof. An observation is that in Lemma 4.1, if Λ ⊂ l then automatically Γi ⊂ L,
and in the other direction if Γ ⊂ L then automatically Λi ⊂ l. This being granted,
the proof follows the same lines as that of Proposition 4.3. �

5. General upper bounds on the systolic growth

We prove here Proposition 1.3, giving here a more general result since we
consider the uniform systolic growth.
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Proposition 5.1. Let G be a simply connected nilpotent Lie group with a lattice
Γ. Let D be its homogeneous dimension and let k be defined in §1.3. Then
σuΓ,G(r) � rD+k, and hence the systolic growth and G-uniform systolic growth of

both G and Γ are all � rD+k.

Proof. It is enough to show that the G-uniform systolic growth of Γ is � rk
′
,

where

k′ =
c

2
dim(g/gdc/2e) +

c∑
i=dc/2e

i dim(gi/gi+1) =
c∑
1

max(c/2, i) dim(gi/gi+1).

Let GQ ⊂ G be the rational Malcev closure of Γ and gQ its Lie algebra. From
the lower central series we choose supplement subspace to obtain a vector space
decomposition g =

⊕c
i=1 gi, with

⊕
j≥i gj = gi for all i (this is not necessarily

a Lie algebra grading). We choose bases of these subspaces so as to ensure
that all structure constants are integral; thus gi(Z) means the discrete subgroup
generated by the given basis of gi.

We now define, for every square integer n, Λn =
⊕c

i=1 n
max(c/2,i)gi(Z). We have

to check that this is a subalgebra, namely that

Bij := [nmax(c/2,i)gi(Z), nmax(c/2,j)gj(Z)] ⊂ Λn

for all i, j. Indeed, keeping in mind that n is a square,

Bij ⊂ nc[gi(Z), gj(Z)] ⊂ nc
c⊕

p=i+j

gp(Z) ⊂ Λn.

The G-uniform systole of Λn is � n: indeed, any nonzero element has the form
w =

∑
j≥i n

jvj with vi ∈ gi(Z) r {0}. So any G-conjugate of w has the form

nivi + µ with µ ∈ gi+1 and hence has norm ≥ ni (for the `1-norm with respect
to the fixed basis), and thus has Guivarch length ≥ n. Then Λn precisely has
covolume nk

′
.

Using that the exponential map g→ G is G-equivariant and in view of Lemma
4.1, we deduce the desired upper bound. �

The following proposition provides upper bounds on k and k′ = k+D depend-
ing only on the dimension d. Recall that the maximal homogeneous dimension

D for given dimension d ≥ 2 is equal to d(d−1)
2

+ 1 and is precisely attained for
filiform Lie algebras, which are those of maximal nilpotency class (namely d−1).

Proposition 5.2. Let g be a finite-dimensional nilpotent Lie algebra of dimension
d, nilpotency length c, and homogeneous dimension D, and k = kc(g) is defined
in §1.3. Then

k ≤ d2

6
− d

2
+

1

2
and k +D ≤ 5d2 − 4d

8
.
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Proof. We denote b = dc/2e and d = dim(g). Then

k =
b−1∑
i=1

( c
2
− i
)

dim(gi/gi+1)

=
c

2
dim(g/gb)− dim(g/g2)−

b−1∑
i=2

i dim(gi/gi+1);

=
c

2
(d− dim(gb))− (d− dim(g2))−

b−1∑
i=2

i dim(gi/gi+1);

for i ≥ 2 we use the inequality dim(gi/gi+1) ≥ 1, dim(gi) ≥ c− i+1 for 1 ≤ i ≤ c
(applied for i = 2 and i = b) and get

k ≤ c
2

(d− c+ b− 1)− (d− c+ 1)− b(b− 1)

2
+ 1;

write c = 2b− e with e ∈ {0, 1}, this yields

k ≤ −3c2 + 2(2d+ 3)c− 8d+ e

8
.

A polynomial function of the form −3x2 + 2ax is maximal for x = a/3, where
it takes the value a2/3. Hence

k ≤
1
3
(2d+ 3)2 − 8d+ e

8
=

1

6
d2 − 1

2
d+

3 + e

8
.

Now consider k′ = k +D and again write c = 2b− e with e ∈ {0, 1}. Then

k′ =
c

2
dim g +

c∑
i=b

(
i− c

2

)
dim(gi/gi+1)

=
cd

2
+

c∑
i=b

(
i− c

2

)
+

c∑
i=b

(
i− c

2

)
(dim(gi/gi+1)− 1);

≤cd
2

+
c∑
i=b

(
i− c

2

)
+
c

2

c∑
i=b

(dim(gi/gi+1)− 1);

=
cd

2
+

c∑
i=b

(i− c) +
c

2

c∑
i=b

dim(gi/gi+1);

=
cd

2
+
c(c+ 1)

2
− b(b− 1)

2
− c(c− b+ 1) +

c

2

c∑
i=b

(dim(gi/gi+1)− 1);

=
4cd− c2 + (2e− 2)c+ e

8
+
c

2
dim(gb).
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For all i ≥ 2 we have dim gi ≤ d − i. Therefore we have (assuming c ≥ 3, so
b ≥ 2)

k′ ≤ 4cd− c2 + (2e− 2)c+ e

8
+
c

2
(d− b) =

8cd− 3c2 − 2c+ e

8
.

A function of the form x 7→ −3x2 + ax increases until it takes its maximum
for x = a/6; actually, using d ≥ 4, d− 1 ≤ (8d− 7e− 6)/6, and since c ≤ d− 1,
so the last expression is bounded above by the same when c is replaced with its
maximum possible value d− 1. Hence

k′ ≤ 8(d− 1)d− 3(d− 1)2 − 2(d− 1) + e

8
=

5d2 − 4d+ e− 1

8
. �

6. The strategy for lower bounds

We consider a fd c-step nilpotent real Lie algebra g, with lower central series
(gi)i≥1 and dimension d. We decompose it as a direct sum of subspaces g =⊕c

i=1 vi, so that for all i, gi =
⊕

j≥i vj (we call this a compatible decomposition).
Let us choose a basis of g as a concatenation of bases of the vi. Note that

the basis determines the subspaces vi, which is spanned by the subset of basis
elements that belong to gi r gi+1.

It is convenient to also directly define such a basis (without defining the vi
beforehand). A basis (e1, . . . , ed) in a fd nilpotent Lie algebra is compatible if it
satisfies the following three conditions:

• for all i, j, (ej ∈ gi r gi+1 and ek ∈ gi+1) implies j < k;
• {ej : j ≥ 1} ∩ gi spans gi for all i;
• the subspaces gi = 〈ej : j ≥ 1, ej ∈ gi r gi+1〉 span their direct sum.

Thus any compatible basis determines a compatible decomposition, and any
compatible decomposition yields compatible bases.

In the real case, it is convenient to assume that the nonzero structure constants
of g with respect to this basis have absolute value ≥ 1 (this is a mild assumption
as it always hold after replacing the basis by a scalar multiple, thus not changing
the compatible decomposition).

We define a compatible flag as a sequence of ideals

(6.1) g = w1 > w2 > · · · > wk = {0},
such that each term gi occurs among the wj.

6.1. Dilations. Fix a nilpotent fd Lie algebra with a compatible decomposition
g =

⊕c
i=1 vi.

For a nonzero scalar r define the diagonal linear automorphism u(r) of g given
by multiplication by ri on vi.

We define a new Lie algebra g[r], with underlying k-linear space g, with the
bracket [x, y]r = u(r)−1[u(r)x, u(r)y], that is, the pull-back of the original bracket
by the linear automorphism u(r).
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Example 6.1. Consider the 5-dimensional Lie algebra with basis (e1, . . . , e5) and
nonzero brackets [e1, e3] = e4, [e1, e4] = [e2, e3] = e5. This is a compatible basis,
with v1, v2, v3 having bases (e1, e2, e3), (e4) and (e5) respectively. Then g[r] has, in
this basis, the nonzero brackets [e1, e3]r = e4, [e1, e4]r = e5, and [e2, e3]r = r−1e5.

Remark 6.2. If g =
⊕

vi is a Lie algebra grading (and thus a Carnot grading),
then [·, ·]r = [·, ·]. Beware that for an arbitrary (e.g., Carnot) nilpotent Lie algebra
of nilpotency length c ≥ 3, we can find a compatible decomposition g =

⊕
vi

such that [v1, v1] is not contained in v2.

Remark 6.3. We have g = g[1], and the function (g, h, r) 7→ [g, h]r is polynomial
with respect to r−1 (with each coefficient a skew-symmetric bilinear map g×g→
g). The constant coefficient [·, ·]∞ of this polynomial can be thought as the limit
of the brackets [·, ·]r when r → ∞ (this is indeed the case when K is a normed
field), and (g, [·, ·]∞) is the associated Carnot-graded Lie algebra of g, in which
for x ∈ vi and y ∈ vj, the bracket [x, y]∞ is defined as the projection of [x, y] on
vi+j modulo gi+j+1. This 1-parameter family of brackets has been used by Pansu
and Breuillard [Pan, Bre].

6.2. Renormalization of the algebraic systolic growth. As in §6.1, we fix
a nilpotent fd Lie algebra with a compatible decomposition g =

⊕c
i=1 vi, and

assume in addition that the ground field is the field of real numbers. Then the
dilation u(r) multiplies the Lebesgue measure (for any choice of normalization)
by |r|D, where D is the homogeneous dimension of g (see §2.1).

We fix a norm on g which is the sup-norm with respect to this decomposition,
that is, for every x =

∑
xi, xi ∈ vi, we have ‖x‖ = max ‖xi‖. This implies that

u(r) multiplies the Guivarch length by |r|. This also implies that for x ∈ g, the
conditions ‖x‖ ≥ 1 and bxc ≥ 1 are equivalent.

Let Λr be a discrete cocompact subring of Guivarch systole ≥ r. For instance,
assuming that g admits a rational structure, we can choose, by compactness, Λr

to have covolume exactly σ(r) (i.e., has minimal covolume among those discrete
cocompact subrings of Guivarch systole ≥ r.

Then Ξr = u(r)−1Λr has Guivarch systole ≥ 1; this is a discrete cocompact
subring in g[r]. Its covolume satisfies cov(Ξr) = r−Dcov(Λr).

The idea is that rather than studying Λr (whose systole tends to infinity), we
study Ξr (which has bounded systole ≥ 1), the only caveat being that Ξr is a Lie
subring of g[r] (i.e., for some Lie bracket which varies with r).

6.3. First application: small systolic growth. Assume here that limr−Dσ(r) <
∞ and let us prove that g is Carnot.

Suppose that cov(Λr) ≤ CrD (for r ∈ I, where I is an unbounded set of
positive real numbers). Then cov(Ξr) ≤ C. By compactness of the set of lattices
with systole ≥ 1 and covolume ≤ C, we can find an unbounded subset J ⊂ I
such that limJ3r→∞ Ξr = Ξ∞ (in the Chabauty topology) for some lattice Ξ∞.
Clearly Ξ∞ is a subring of (g, [·, ·]∞).
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Then Ξr is isomorphic as a Lie ring to Ξ∞ for large enough r ∈ J . Indeed,
choose a basis (u1, . . . , ud) of Ξ∞ as a Z-module. Then we can find uri ∈ Ξr with
uri → ui. Then [ui, uj] =

∑
k n

k
ijuk for suitable integers nkij (here exponents are

additional indices, and not powers). Then [uri , u
r
j ]−

∑
k n

k
iju

r
k belongs to Ξr and

converges to zero, hence is zero for r large enough. Moreover, since the covolume
is a continuous function, eventually (uri ) is a Z-basis of Ξr. This shows that this
is indeed an isomorphism. Since g ' Ξr ⊗Z R and (g, [·, ·]∞) ' Ξ∞ ⊗Z R as real
Lie algebras, this shows that (g, [·, ·]∞) ' g. Thus g is Carnot.

6.4. Covolume inequalities. (In this §6.4, the Lie algebra bracket plays no
role.) Assume now that the ground field is the field of real numbers.

We fix a compatible flag as in (6.1), denoted F for short. We fix Lebesgue
measures on all wj/wj−1, and thus on g. Fix a compatible basis, compatible
with this flag. This basis defines (in a compatible way) normalizations of the
Lebesgue measures on each quotient wj/wk, where the cube [0, 1[q (for the given
basis) has volume 1, and sup norms with respect to this basis.

The basis also yields a compatible decomposition; we thus have a notion of
Guivarch length (§2.1). Observe that u(r) multiplies the Guivarch length by |r|.

We say that an additive lattice Λ of (g,+) is F -compatible if Λ∩wj is a lattice
in wj for every j. This implies that for all j the projection Λ[j] of Λ ∩ wj on
fj = wj/wj−1 is a lattice in fj as well. Let aj(Λ) be the covolume of Λ[j] in fj.
Then the covolume of Λ ∩wj is equal to

∏
k≥j ak(Λ).

Note that for any v ∈ g, we have ‖v‖ ≥ 1 if and only if bvc ≥ 1. So for an
additive lattice of systole ≥ 1 (for either the norm or the Guivarch length), the
covolume is ≥ 1. Thus,

∏
k≥j ak(Λ) ≥ 1 for all j. This means that the following

holds:

Lemma 6.4. For any j, any F -compatible additive lattice of g of Guivarch systole
≥ 1 satisfies∏

k≥j

ak(Λ) ≥ 1, or equivalently,
∑
k≥j

logr(ak(Λ)) ≥ 0, ∀r > 1. �

In the sequel, these inequalities will be combined with other inequalities making
use of further assumptions (namely that Λ is a Lie subring).

The requirements about the norm will be fulfilled when we consider a Lie
algebra with basis (e1, . . . , ed), and a flag containing all elements of the lower
central series such that, denoting g≥i, each element of the flag is one of the g≥i;
on each g≥i/g≥j the norm being the `∞ norm and the Lebesgue measure being
normalized so that the cube [0, 1[k has measure 1.

7. Precise estimates

We give explicit estimates of the systolic growth for various illustrating exam-
ples. While we obtain upper bounds by easy explicit construction, we use the
method of §6 to obtain lower bounds.
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7.1. 5-dimensional non-Carnot Lie algebras. Following a convenient cus-
tom, when we describe a Lie algebra by saying that the nonzero brackets are
[ei, ej] = fij, we mean that [ej, ei] = −fij and that all other brackets between
basis elements are zero. That an algebra defined in such a way is indeed Lie is
equivalent to say that

J(ei, ej, ek) = [ei, [ej, ek]] + [ej, [ek, ei]] + [ek, [ei, ej]] = 0, ∀i < j < k.

There are exactly two non-isomorphic non-Carnot nilpotent 5-dimensional real
Lie algebras. Using the notation in [Gra], these are defined, in the basis (e1, . . . , e5),
by the nonzero brackets:

L5,5 : [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5;

L5,6 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5.

The lower central series in L5,5 is 123/4/5 (this concise notation means g2 = g≥4

and g3 = g≥5) and in L5,6 it is 12/3/4/5. Thus we can write the Lie algebra law
of g[r] in each case:

L5,5 : [e1, e2]r = e4, [e1, e4]r = e5, [e2, e3]r = r−1e5;

L5,6 : [e1, e2]r = e3, [e1, e3]r = e4, [e1, e4]r = e5, [e2, e3]r = r−1e5.

Lemma 7.1. In both cases, the complete flag (g≥i)1≤i≤5 is made up of solid ideals.

Proof. All are part of the lower central series, except g≥2 in both cases and g≥3

for L5,5. The upper central series is 12/34/5 for L5,5, so g≥3 is also solid in this
case. Finally, g≥2 is the centralizer of g≥4 in both cases, so is solid. �

Let now, in either case, Λr be a discrete cocompact subring in g, with Guivarch
systole ≥ r and covolume σ(r), and define Ξr = u(r)−1Λr, which is a discrete
cocompact subring of g[r] with systole ≥ 1. As in §6.4, let ai(r) be the systole of
the projection of Ξr ∩ gi in gi/gi+1, and write Ai = logr(ai(r)).

Lemma 7.2. In both cases, we have, for all r > 0, the inequalities A1 +A4 ≥ 0,
A2 + A3 ≥ 1, A5 ≥ 0. In particular,

∑5
i=1 Ai ≥ 1.

Proof. It is convenient to denote by o(i), resp. O(i), an unspecified element of
g≥i+1, resp. g≥i. By definition, Ξr contains elements v1 = a1e1 + o(1), v2 =
a2e2 + o(2), v3 = a3e3 + o(3), v4 = a4e4 + o(4), v5 = a5e5.

Then A5 ≥ 0 means a5 = ‖v5‖ ≥ 1, which is a trivial consequence of having
systole ≥ 1.

Then [o(1), O(4)] = [O(1), o(4)] = [o(2), O(3)] = [O(2), o(3)] = 0 in both cases.
Since for both L5,5[r] and L5,6[r] we have [e1, e4]r = e5 and [e2, e3]r = r−1e5, it
follows that [v1, v4]r = a1a4e5 and [v2, v3]r = r−1a2a3e5. Therefore a1a4 ≥ 1 and
r−1a2a3 ≥ 1, which means that A1 +A4 ≥ 0 and A2 +A3 ≥ 1. The last inequality
follows

A1 + A2 + A3 + A4 + A5 = (A1 + A4) + (A2 + A3) + A5 ≥ 0 + 1 + 0 = 1.
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�

Lemma 7.2 shows that the covolume cov(Λr) =
∏

i=1 ai is ≥ r, which in turn
means that σ(r) = cov(Λr) = rDcov(Ξr) ≥ rD+1.

To get a reverse inequality, let us define Ξ′r as the additive lattice with basis
(e1, re2, e3, e4, e5). This is indeed a subring of (g, [·, ·]r). Its covolume is r and its
systole is ≥ 1. We thus define Λ′r = u(r)Ξ′r (an explicit basis depends on u(r),
which is not the same for the two Lie algebras in consideration): it has Guivarch
systole r and covolume rD+1.

Accordingly, for both Lie algebras, for this choice of norm, compatible decom-
position and covolume, σ(r) = rD+1.

Actually, the previous construction of lattices (Ξ′r) satisfies some additional
features: first, when n is a positive integer, Λ′n is contained in the subring g[Z].
This implies that the systolic growth of the corresponding lattices is � rD+1.
Since real nilpotent Lie algebra up to dimension 5 have a unique rational structure
up to automorphism (see [Gra]), this implies that the systolic growth of the
lattices is also ' rD+1, proving 1.4.

Second, the G-uniform Guivarch systole of the lattices Ξ′r is also ≥ 1: this is
because every nonzero element has the form nei + o(i) for some integer n and
hence all its G-conjugates still has the form nei + o(i) and thus has Guivarch
norm ≥ 1. Therefore, this proves that the G-uniform systolic growth of G and
its lattices is ' rD+1 as well.

7.2. One example with non-integral polynomial degree. Its law is given
by the symbolic notation

12|3, 13|4, 14|5, 15|6, 16|7,
23|5, 24|6, 34|7.

This means that the nonzero brackets are given by [e1, e2] = e3, [e1, e3] = e4,
etc. (It appears as g7,1,1(0) in Magnin’s classification [Mag].)

It is filiform, that is, its nilpotency length is as large as possible for the given
dimension; its lower central series is given, in symbols, as 12/3/4/5/6/7. All the
g≥i are solid (see Example 2.7).

Once more, let Λr be a discrete cocompact subring of covolume ≤ r and Guiv-
arch systole σ(r), Ξr = u(r)−1Λr. We define ai, Ai as previously. Then, by
Lemma 6.4,

7∑
i=j

Ai ≥ 0, 1 ≤ j ≤ 7

Also the law in Λr is given by

12|3, 13|4, 14|5, 15|6, 16|7,
23|r−15, 24|r−16, 34|r−17.

Lemma 7.3. 2A1 + A5 + A6 ≥ 0 and 2(A2 + A3 + A4) ≥ 3.
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Proof. There exist elements vi = aiei + o(i) in Λr.
Then [v1, v5] = a1a5e6+o(6) and [v1, v6] = a1a6e7. These two elements generate

a lattice of covolume a2
1a5a6 in g≥6. Since it has systole≥ 1, we deduce a2

1a5a6 ≥ 1,
that is, 2A1 + A5 + A6 ≥ 0;

Next [v2, v3] = r−1a2a3e5 +o(5), [v2, v4] = r−1a2a4e6 +o(6), [v3, v4] = r−1a3a4e7.
These three elements generate a lattice of covolume r−3a2

2a
3
3a

2
4 in g≥5. Since it

has systole ≥ 1, we deduce r−3a2
2a

3
3a

2
4 ≥ 1, and hence 2(A2 + A3 + A4) ≥ 3. �

Corollary 7.4.
∑
Ai ≥ 3/2.

Proof. Indeed, A5 + A6 + A7 ≥ 0 by Lemma 6.4 and hence

2
∑

Ai = 2(A2 + A3 + A4) + (2A1 + A5 + A6) + (A5 + A6 + A7) + A7 ≥ 3. �

We deduce σ(r) � nD+3/2 (here1 D = 2 +
∑6

2 k = 22).
In the other direction, for r ≥ 1 we define Ξ′r to be the lattice with basis

(e1,
√
re2,
√
re3,
√
re4, e5, e6, e7). This is a discrete cocompact subring in g[r], with

Guivarch systole 1 and covolume r3/2. So Λ′r = u(r)Mr is a discrete cocompact
subring of Guivarch systole r and covolume rD+3/2, so that σ(r) � rD+3/2. To
conclude, σ(r) ' rD+3/2 (with D = 22).

Moreover, for r a square integer, this lattice Λ′r has an integral basis, so this
also provides an upper bound for the systolic growth of the lattices relative to
the given rational structure.

7.3. Truncated Witt Lie algebras. Here we prove Theorem 1.6. The method
is similar to the approach in the previous examples, except the final computation,
which is more complicated. So, let us begin with this computation and briefly
make the connection afterwards.

Lemma 7.5. Consider the system of inequalities, with real unknowns A1, . . . , An:
∑n

i=j Ai ≥ 0 ∀j
A1 + Ai ≥ Ai+1 ∀i = 2, . . . , n− 1

Ai + Aj ≥ Ai+j + 1, ∀2 ≤ i < j, i+ j ≤ n

Then under this constraints, we have
∑n

i=1 Ai ≥ d(n− 4)/2e, and this is attained
when we set Ai = 1 for 2 ≤ i < n/2, and Ai = 0 for other i (i = 1 and
n/2 ≤ i ≤ n).

Proof. The given solution realizes the inequalities and the claimed minimal value
of
∑
Ai.

1I erroneously wrote D = 29, instead of D = 22, in the published version, which would be
the growth of a 8-dimensional filiform nilpotent Lie group. This error has no incidence.
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Let us show the lower bound on
∑
Ai. We begin with n = 2m−1 odd (m ≥ 2),

so we have to show
∑
Ai ≥ m− 2. Then

2m−1∑
i=1

Ai =A1 + A2m−2 + A2m−1 +
m−1∑
i=2

(Ai + A2m−1−i)

≥2A2m−1 +
m−1∑
i=2

(A2m−1 + 1) = m− 2 +mA2m−1 ≥ m− 2.

The case when n = 2m is even (where we have to prove
∑
Ai ≥ m − 2) is a

bit more complicated as we gather terms by triples, which leads to discuss on the
value of m modulo 3.

Let i ≥ 1 be such that m− 3i ≥ 2 (so m+ 3i− 1 ≤ 2m− 3). We consider the
following sum of 6i terms

m+3i−1∑
j=m−3i

Ai =
i∑

k=1

(Am−3k + Am−3k+1 + Am−3k+2 + Am+3k−3 + Am+3k−2 + Am+3k−1)

=
i∑

k=1

(Am−3k + Am+3k−2) + (Am−3k+1 + Am+3k−1) + (Am−3k+2 + Am+3k−3)

≥
i∑

k=1

(1 + A2m−2) + (1 + A2m) + (1 + A2m−1)

= 3i+ i(A2m−2 + A2m−1 + A2m).(7.1)

If instead, we choose i such that m− 3i = 1, computing the previous inequality
works in the same way, except that once we have to use an inequality of the form
A1 + Aj ≥ Aj+1 (instead of A1 + Aj ≥ Aj+1 + 1), so there is one less +1 term
and we get

(7.2)
m+3i−1∑
j=m−3i

Ai ≥ (3i− 1) + i(A2m−2 + A2m−1 + A2m).

If m = 3k + 1, we choose i = k, so that (m − 3i,m + 3i − 1) = (1, 2m − 2),
3i− 1 = m− 2; we then have, using (7.2)

2m∑
i=1

Ai ≥ (A2m−1 + A2m) +m− 2 + k(A2m−2 + A2m−1 + A2m) ≥ m− 2.
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If m = 3k, we choose i = k − 1, so that (m − 3i,m + 3i − 1) = (3, 2m − 4),
3i = m− 3; using (7.1) we get.

2m∑
i=1

Ai ≥(A1 + A2m−1) + (A2 + A2m−3) + A2m−2 + A2m

+m− 3 + (k − 1)(A2m−2 + A2m−1 + A2m)

≥m− 2 + A2m + k(A2m−2 + A2m−1 + A2m) ≥ m− 2.

Finally if m = 3k + 2, we choose i = k, so (m− 3i,m+ 3i− 1) = (2, 2m− 3),
3i = m− 2. Then, using that

A1 + A2m−2 + A2m−1 =
1

2
((A1 + A2m−2) + (A1 + A2m−1) + (A2m−2 + A2m−1)

≥1

2
(A2m−1 + A2m + (A2m−2 + A2m−1)

=
1

2
(A2m−2 + 2A2m−1 + A2m),

we get, incorporating the previous inequality (7.1),

2m∑
i=1

Ai ≥ A1 + A2m−2 + A2m−1 + A2m +m− 2 + i(A2m−2 + A2m−1 + A2m)

≥ 1

2
A2m +

1

2
(A2m−1 + A2m) + (i+ 1/2)(A2m−2 + A2m−1 + A2m) +m− 2

≥ m− 2. �

To prove Theorem 1.6, we can assume n ≥ 4, so that g≥i are solid, as checked
in Example 2.7.

Then for convenience we rescale the basis by considering fi = n−1ei. Then

[fi, fj] = (i−j)
n
fi+j for i + j ≤ n, so the coefficients are all ≤ 1, and we consider

the `∞ norm with respect to this basis.
It follows that the bracket in g[r] is given by

[f1, fi] =
1− i
n

fi+1 (i ≥ 2); [fi, fj] =
r−1(i− j)

n
fi+j (i, j ≥ 2).

As in the previous cases, we consider a discrete cocompact subring Λr of Guiv-
arch systole ≥ r and Ξr = u(r)−1Λr, which has systole ≥ 1 and is a discrete
cocompact subring in g[r]. If ai is the systole of the projection on g≥i/g≥i+1, we
consider an element aifi + o(i) for all i. Computing the brackets and defining
Ai = logr(ai), we deduce A1 +Ai ≥ Ai+1 (2 ≤ i ≤ n− 1) and Ai +Aj ≥ Ai+j + 1
(2 ≤ i < j ≤ n − i) (here we use that nonzero structure coefficients are ≤ 1 in
absolute value). This gives rise to the system of inequalities solved in Lemma 7.5,
and hence

∑
Ai ≥ b(n − 4)/2c. Accordingly, the covolume of Ξr is ≥ rb(n−4)/2c,

and hence that of Λr is ≥ rD+b(n−4)/2c.
(Note that the case n = 5 covers L5,6 from §7.1.)
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7.4. Further examples. The next example, unlike the previous ones, do not
admit a complete flag of solid ideals. Therefore, lower bounds on the systolic
growth now rely on some geometric lemmas about lattices, such as Lemma 7.7
below.

Consider the Lie algebra g = g(2n + 4) (here 2n + 4 is the dimension) with
basis

(U, V,W,Z,X1, Y1, . . . , Xn, Yn)

and nonzero brackets

[U, V ] = W, [U,W ] = Z, [Xi, Yi] = Z, ∀1 ≤ i ≤ n.

Its nilpotency length is 3, the derived subalgebra g2 is the plane generated by
(W,Z), g3 is the line generated by Z. We have dim(g/g2) = 2n + 2, and the
homogeneous dimension is D = 2n + 7. Note that Proposition 5.1 predicts
σ(r) � rD+n+1. This is not sharp but almost:

Theorem 7.6. For every fixed n, the systolic growth of g(2n+ 4), as a function
of r, is ' r3n+7 = rD+n.

The proof relies on the following general lemma.

Lemma 7.7. Let V be a d-dimensional real vector space (d even) with a fixed
Lebesgue measure. Let φ be a symplectic form of determinant 1. Let Γ be a lattice
in V such that for all x, y ∈ Γ we have φ(x, y) ∈ Z. Then the covolume of Γ is
≥ 1.

If for some s > 0, we have φ(x, y) ∈ sZ for all x, y ∈ Γ, then the covolume of
Γ satisfies cov(Γ) ≥ sd/2.

Proof. We argue by induction on d/2. The case d = 0 is trivial. Fix a primitive
element e1 in Γ. Let H be its orthogonal for φ and H ′ = H/Re1. Then φ(e1,Γ)
is a nonzero subgroup mZ of Z, with m ≥ 1. Let ed be an element in Γ with
φ(e1, ed) = m. Every element in x ∈ Γ can be written in a unique way as λxed+hx
with (λx, hx) ∈ R × H. Then φ(e1, x) = λxm belongs to mZ; this shows that
λx ∈ Z, and hence hx ∈ Γ as well. This shows that Γ = (Γ ∩H)⊕ Zed. Since e1

is primitive, we can write Γ∩H = Ze1⊕Γ′, where Γ′ is a lattice in a hyperplane
V ′ of H. We fix Lebesgue measures on V ′ and on (Re1 ⊕Red) so that the both
restrictions of φ to these subspaces has determinant 1. So the product measure
matches with the original Lebesgue measure on V . By induction, the covolume
c′ of Γ′ in V ′ is ≥ 1, and the covolume of Ze1 ⊕ Zed in the plane it spans is m.
So the covolume of Γ is c′m ≥ 1.

For the second result, we apply the hypothesis to the lattice s−1/2Γ, which
has covolume ≥ 1; its covolume is also s−d/2cov(Γ). This proves that cov(Γ) ≥
sd/2. �

Proof of Theorem 7.6. First define Λr as the lattice with basis rU , rV , rXi, r
2Yi

(1 ≤ i ≤ n), r2W , r3Z. Its covolume is r7+3n. Its systole is r. It is a subring, by
a straightforward verification. So the systolic growth is � r7+3n.
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We have just described the lower central series. Also, the center is reduced
to the line generated by Z and the second term in the ascending central series
is the codimension 2 subspace j generated by all basis vectors except U, V . The
centralizer c of j is 3-dimensional with basis (V,W,Z), and h = c + j is the
hyperplane generated by all basis vectors except U .

So we have the inclusions of solid ideals

{0}
Z
⊂ g3 W

⊂ g2 V
⊂ c

X1,...,Yn
⊂ h

U
⊂ g

The dilation u(r) is given by multiplication by r on the subspace with basis
(U, V,X1, . . . , Yn), by r2 on W and by r3 on Z. The nonzero brackets in g[r] are
thus given by

[U, V ]r = W, [U,W ]r = Z, [Xi, Yi]r = r−1Z, ∀1 ≤ i ≤ n.

Let a discrete cocompact subring Λr have systole ≥ r. Define Ξr = u(r)−1Λr.
So Ξr intersects each of these ideals in a lattice, and the projection modulo the
previous ideal, written in the canonical basis, gives generators αU , βV , δW , ηZ
(we choose the constant to be positive) and a lattice Γ in the space with basis
(X1, . . . , Yn), elements.

So Λr contains an element u of the form αU + x (with x a combination of the
other generators), and an element v of the form βV + tW + t′Z, and an element
w of the form δW + t′′Z. Then [u, v] = αβW + αtZ, and [u,w] = αδZ. Since
the intersection of Λr with the plane with basis (W,Z) has covolume δη and the
covolume of its subgroup generated by [u, v] and [u,w] is α2βδ, we get α2βδ ≥ δη,
or equivalently α2β ≥ η.

Lemma 6.4 implies that all of βδη, δη, η are ≥ 1. It does not say that αβδη ≥ 1
because we have one intermediate term in the filtration, but we can deduce it:

(αβδη)2 = (αβα)βδ2η2 ≥ ηβδ2η2 = (βδη)(δη)η ≥ 1.

On the other hand, we see that the standard symplectic form φ on the subspace
generated by X1, . . . , Yn (for which [Xi, Yi] = φ(Xi, Yi)Z) maps Γ × Γ into rηZ.
It follows from Lemma 7.7 that cov(Γ) ≥ (rη)n ≥ rn.

Therefore, the covolume of Ξr satisfies

cov(Ξr) = cov(Γ)αβδη ≥ rn.

Thus the systolic growth satisfies σ(r) ≥ rD+n. �

Remark 7.8. The above proof can be extended to a larger class of Lie alge-
bras, namely for n ≥ 0 and k ≥ 3, define g(k + 2n, k) with basis U1, . . . , Uk,
X1, Y1, . . . , Xn, Yn, and nonzero brackets [U1, Ui] = Ui+1 (2 ≤ i ≤ k−1), [Xi, Yi] =
Uk. Then its systolic growth is ' r 7→ rD+n(k−3). (For k = 5, the nilpotency
length is 4; this yields σ(r) ' rD+2n while Proposition 5.1 predicts σ(r) �
rD+2n+2).

If we write the dimension as d = 2n + k and write h = n(k − 3), we see that
h is maximal when n = (d − 3)/4, that is, for n integer, n = (d − 3 + e)/4
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with e an integer with |e| ≤ 2. Then for such n the computation provides

h = 1
8
((d − 3)2 − e2), with e2 ∈ {0, 1, 4} (e2 = 0 for d

4≡ 3, e2 = 1 for d even,

e2 = 4 for d
4≡ 1).

Also, if we choose λ = (1 +
√

5)/2 ∼ 1.618 . . . , then we see that for g(n, bλnc),
we have h = (α+O(1/n))d

2

6
, with α = 6λ

(2+λ)2
∼ 0.742 . . . . This shows that h can

behave as fast as the square of the dimension (we choose to write it as a factor

of d2

6
, since h ≤ d2

6
by Propositions 5.1 and 5.2).

Appendix A. Lattices and discrete cocompact subrings: back and
forth

We prove here Lemma 4.1. This lemma was mentioned to the author by Yves
Benoist. While it essentially follows from Malcev’s ideas, I could not find a
reference with this statement precisely written. The closest I am aware of are in
the books [Seg, Chap. 6] and [CoGr, §5.4]:

• [Seg, Chap. 6, Theorem 5] essentially says that every lattice Γ is trapped
between two lattices whose logarithms are additive subgroups, so that the
index between the two is bounded only in terms of the dimension of the
ambient Lie group.
• In [CoGr, §5.4], the main result in the direction of Lemma 4.1 is Proposi-

tion 5.4.8 of that book, which states that every lattice Γ has a finite index
subgroup Γ′ such that log Γ′ is a subring (and furthermore, log Γ is a finite
union of additive cosets of log Γ′). Unlike in [Seg], no uniform bound is
given.

These results are not enough to prove Lemma 4.1 for two reasons:

• they do not yield anything in the direction (1) of Lemma 4.1;
• in the direction (2), they provide partial statements. In [Seg] it only

yields subgroups whose logarithm is an additive lattice (but maybe not a
Lie subring), and in [CoGr] the uniformity not given.

Let us start with a general elementary fact on the covolume.

Proposition A.1. Let g be a real fd nilpotent Lie algebra. Endow it with a choice
a Lebesgue (= Haar) measure, and endow the corresponding simply connected Lie
group G with the push-forward of this measure by the exponential map. Then the
latter is a Haar measure on G. Moreover, for every lattice Γ such that log Γ is an
additive subgroup, the covolume of Γ in G equals the covolume of log Γ in g. In
particular, for any two lattices Γ ⊂ Γ′ such that log Γ and log Γ′ are both additive
subgroups, the index [Γ′ : Γ] equals the index [log Γ′ : log Γ].

Proof. If g is abelian, this clear. Otherwise, we argue by induction on dim g. Let
n be any term in the central series, distinct from g and {0} (e.g., the derived
subalgebra or the center). Fix any complement subspace v of n; endow them
with Lebesgue measures so that the product measure matches with the Lebesgue
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measure on g. Write N = exp n. Endow g/n with the Lebesgue measure image
of that of v, and G/N with its push-forward by the exponential. Denote the
projections as p : g→ g/n and π : G→ G/N .

Then π(Γ) is a lattice, whose logarithm is p(log Γ). By induction, the result
holds true in n and g/n. Thus, with self-explanatory notation, the covolume
satisfies

covG(Γ) = covN(N ∩ Γ)covG/N(π(Γ))

= covn(n ∩ log Γ)covg/n(p(log Γ)) = covg(log Γ). �

We now proceed to state a more precise and robust version of Lemma 4.1 and
then prove it.

Given a nilpotent Lie Q-algebra, we can endow it with a group law by setting
xy = log(exp(x) exp(y)), given by the Baker-Campbell-Hausdorff formula; we
still call it multiplication and denote it by · (or no sign). It is thus endowed with
the addition, the scalar multiplication, the Lie bracket, and the multiplication.
This convention is very convenient, although somewhat misleading, because 0
is the unit of the multiplication law, the multiplication is not distributive with
respect to the addition, and we have xn = nx for all n ∈ Z.

Let us write the Baker-Campbell-Hausdorff formula as

xy =
∑
i≥1

Bi(x, y) = (x+ y) +
1

2
[x, y] +

1

12
([x, [x, y]]− [y, [x, y]]) + . . . ,

with Bi homogeneous of degree i. This formula precisely makes sense in the pro-
nilpotent completion of the free Lie Q-algebra f on (x1, x2). Let mi be the least
common denominator of terms2 in Bi. Small values are given by

(m1,m2, . . . ) = (1, 2, 12, 24, 720, 1440, 30240 . . . ).

Definition A.2. In a Lie Q-algebra, we define a strong subring as an additive
subgroup stable, for all i ≥ 2, under the rescaled iterated commutator

(x1, . . . , xi) 7→ m−1
i [x1, [x2, . . . , [xi−1, xi] · · · ]].

For i = 2, this means the stability under (x, y) 7→ 1
2
[x, y]; in particular a strong

subring is a Lie subring. In case the nilpotent Lie algebras, it also follows that
a strong subring is closed under the group law defined by the Baker-Campbell-
Hausdorff formula. There is an obvious notion of strong subring generated by a
subset. (Note that the definition of strong subring also makes sense in a c-step

2The definition of mi is a bit sloppy, because “least common denominator of terms” refers to
some choice of basis. It can be made more rigorous as follows: let f =

⊕
i≥1 fi be the standard

grading of f, so that Bi ∈ fi. Let Λ =
⊕

i≥1 Λi be the Lie subring generated by (x1, x2), which

is a free Lie Z-algebra on (x1, x2). Here Λi is the additive subgroup generated by brackets of
length i in x1 and x2. Define mi as the smallest positive integer m such that Bi ∈ m−1Λi.
Now if Bi is written with respect to a Z-basis of Λi, then mi is indeed the smallest common
denominator of the coefficients of Bi, and indeed the Baker-Campbell-Hausdorff is usually
written with respect to such a basis (namely a Hall basis, see [Bou1, §II.2.11]).
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nilpotent Lie algebra over a ring of characteristic some power of any prime p > c,
because mi is coprime to p for all i < p.)

We will need the following simple lemma.

Lemma A.3. Let g be a nilpotent Lie Q-algebra. Then the strong subring gen-
erated by any finite subset is finitely generated as an additive group.

Proof. The basic idea is that when “iterating” the various rescaled brackets in
the definition of strong subring, we go deeper in the central series and only a
finite number of steps (thus involving bounded denominators) are necessary.

To make this rigorous, denote by u2, . . . , uc the above rescaled iterated brackets.
These are multilinear laws. Given any two multilinear law v, w on k, ` variables
and 1 ≤ i ≤ k, we obtain a new multilinear law, on k + ` − 1 variables, by
replacing, in v(x1, . . . , xk), xi with w(y1, . . . , yi). Note that if k, ` ≥ 2 then
k+ `+ 1 > max(k, `). Therefore if we compute all possible iterated substitutions
obtained starting from u2, . . . , uc, then we obtain only finitely multilinear laws on
≤ c variables, say v1, . . . , vq, say with vi of degree si ≥ 2. Then given any additive
subgroup A ⊂ g, the strong subring it generates is the image of the linear map

q⊕
i=1

A⊗si
⊕
vi−→ g.

If A is finitely generated, then all these tensor powers are finitely generated as
additive abelian groups, and this proves the result. (Note that we do not have to
care about u1 since m1 = 1; if we had m1 = 2, which would mean stability under
division by 2, the result and its proof would fail.)

Also note that if K is a field of characteristic zero and R a subring, the notion
of strong R-subring of a Lie algebra over K makes sense, and the lemma can
be adapted to this context with essentially no change in the proof (considering
tensor products over R). �

Lemma 4.1 is therefore a particular case of the following:

Lemma A.4. Let d be a non-negative integer. There exists a constant C(d) such
that for every real nilpotent Lie algebra of dimension ≤ d, for every Γ ⊂ G that
is either a discrete cocompact subring in g, or a lattice in the simply connected
nilpotent Lie group (g, ·), there exist strong subrings Γ1,Γ2 in g with Γ1 ⊂ Γ ⊂
Γ2 and such that the index [Γ2 : Γ1] (which is the same for both addition and
multiplication, by Proposition A.1) is finite and bounded above by C.

Proof. Rather than a direct approach, we will rather use a general trick consist-
ing in the idea that a non-quantitive statement for the free object mechanically
provides a uniform statement. The counterpart is that the constants will not be
explicit.

Let g(d) be the free (d − 1)-step nilpotent Lie Q-algebra on the generators
x1, . . . , xd. We also view it as a group through the Baker-Campbell-Hausdorff
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product. Then the multiplicative subgroup generated x1, . . . , xd is free (d − 1)-
step nilpotent on the given generators; we denote it by Γd; the Lie subalgebra
generated by x1, . . . , xd is denoted by Λd. Then (Λd,+) is a free abelian group
whose rank is the Q-dimension of g(d); in particular g(d)/Λd is a torsion group.

In g(d), the strong subring Ξd generated by {x1, . . . , xd} has a finitely generated
underlying additive group, by Lemma A.3. It follows that Λd has finite index in Ξd

for the additive law. Therefore, Ξd is discrete in the real completion g(d)⊗Q R,
which in turn implies that the index of Γd in Ξd, for the group law, is finite
(because Γd is a lattice for the group law).

From these two facts (one viewed in the Lie algebra side, one in the group
side), we obtain that there exists n = n(d) ≥ 1 such that for all x ∈ Ξd, nx ∈ Λd

and xn ∈ Γd. But since xn = nx, this just means that nΞd ⊂ Λd∩Γd; clearly nΞd

is also a strong subring; its index in Ξd as an additive subgroup is nd; its index
as a multiplicative subgroup is also nd, by Proposition A.1.

Now let g be an arbitrary real nilpotent Lie algebra, of dimension d ≥ 2; then
it is (d− 1)-step-nilpotent. First, let Γ be a lattice for the group law (recall that
this means that exp(Γ) is a lattice, but we keep our identification). Then Γ being
an iterated extension of d cyclic groups, it has a generating family (y1, . . . , yd) as
a group. We can then map the free (d− 1)-step nilpotent group into it mapping
xd 7→ yd, and this extends to a group homomorphism f : (g(d), ·) → (g, ·).
Then this is also a Lie algebra homomorphism g(d) → g. It follows that the
image of any strong subring is a strong subring. So f(nΞd) ⊂ Γ ⊂ f(Ξd), and
[f(nΞd) : f(Ξd)] ≤ n(d)d.

The same argument can be performed with discrete cocompact subrings (ex-
changing the roles of groups and Lie rings), completing the proof of the lemma.

�
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