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1. Introduction

The purpose of this survey is to describe how locally compact groups can be
studied as geometric objects. We will emphasize the main ideas and skip or just
sketch most proofs, often referring the reader to to our much more detailed book
[CH–14].

It is now classical to view any finitely generated group G as a geometric object.
If S is a finite generating set, the Cayley graph Γ(G,S) is the graph whose vertex
set is G, and whose edges are the pairs (g, gs) where (g, s) ranges over G× S. Note
that this can be viewed as an oriented and labeled graph, possibly with self-loops
(if 1 ∈ S), but this does not play any role in the sequel. Since S generates G, this
graph is connected, and therefore there is a well-defined metric on the vertex set G,
for which the distance dS(g, h) between g, h ∈ G is the number `S(g−1h) defined as
the smallest k such that g−1h can be written as a product of k elements in S±1. This
metric, called the word metric (with respect to S), enjoys the following properties:

(1) it is left-invariant, i.e. the left action of G on itself is by isometries;
(2) it is proper, in the sense that bounded subsets are finite;
(3) it satisfies the following geodesicity property: for all integers n and g, h ∈ G

such that dS(g, h) = n, there exist g0, g1, . . . , gn ∈ G such that dS(gi−1, gi) =
1 for all i = 1, . . . , n and (g0, gn) = (g, h).

The main drawback of this metric is that it depends on the choice of a finite
generating set S; in particular, a metric property of this metric need not be intrinsic
to G. Nevertheless, if S ′ is another finite generating set, an easy induction shows
that, for some constants c, c′ > 0, we have

cdS′ ≤ dS ≤ c′dS′ .

In other words, the identity (G, dS)→ (G, dS′) is a bilipschitz map.
Word metrics on finitely generated groups have proved useful on several occasions,

for example in [Dehn–11], [Švar–55, Miln–68], and [Grom–81, Grom–84, Grom–93].
It is natural to wonder how this concept generalizes to a broader setting.

Let us first discuss a generalization to discrete groups, beyond finitely generated
ones. If we consider the word metric with respect to a generating subset S, then
obviously S is bounded; if we require the properness of the metric, S is necessarily
finite, so, in a sense, the word metric is only suitable for finitely generated groups.
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Beyond the case of word metrics, it is natural to consider left-invariant proper met-
rics. For instance, for a group G with a finite generating set S and a subgroup
H ⊂ G, the restriction of dS to H is a left-invariant proper metric on H. This is
not, in general, a word metric on H. Actually, by a theorem of Higman-Neumann-
Neumann [HiNN–49], every countable group is isomorphic to a subgroup of a finitely
generated group, and thus admits a left-invariant proper metric by the above con-
struction. Conversely, it is clear that the existence of a proper metric implies the
countability of the group. The uniqueness up to bilipschitz maps fails for infinite
groups, since when d is a proper left-invariant metric on G then so is

√
d. However,

if G is a discrete group with two proper left-invariant metrics d, d′, there exist non-
decreasing functions Φ−,Φ+ from the set of nonnegative numbers to itself, tending
to +∞ at +∞, such that Φ− ◦ d′ ≤ d ≤ Φ+ ◦ d′. This is interpreted by saying that
the identity (G, d)→ (G, d′) is a coarse equivalence.

A further generalization is to consider topological groups, especially locally com-
pact groups. Given a topological group G, we consider metrics (or pseudo-metrics);
we do not consider the topology defined by these metrics and only refer to the given
topology on G. It is natural to require that compact subsets are bounded (noting
that this is automatic when the metric or pseudo-metric is continuous). The proper-
ness assumption is that bounded subsets have a compact closure. A convenient
setting is to assume the topological group to be locally compact (and in particular,
Hausdorff, by definition); note that this includes discrete groups as an important
particular case.

To avoid local topological issues, we allow pseudo-metrics.
In §2, we introduce some general metric notions, including coarsely Lipschitz maps

and coarse equivalences. In §3, we define the coarse language in the context of lo-
cally compact groups, and we characterize σ-compact locally compact groups in a
metric way. In §4, we introduce the coarse and large-scale geodesic notions, which
allow to characterize compactly generated locally compact groups in a metric way.
In §5, we introduce coarsely ultrametric spaces, which provide a coarse characteriza-
tion of locally elliptic locally compact groups, which generalize locally finite groups
from the discrete setting. In §6, we introduce the notion of coarse properness for
metric spaces, which allows to define in a coarse setting the notion of growth and
of amenability. In §7, we introduce coarsely simply connected metric spaces and
use them to characterize metrically compactly presented groups, which generalize
finitely presented groups in the setting of locally compact groups. In the last two
sections, we illustrate compact presentability: in §8, we describe the Bieri-Strebel
Theorem, which provides constraints for surjective homomorphisms of compactly
presented locally groups onto Z, and §9 provides further examples.

2. Metric categories

We denote by R+ the set of nonnegative real numbers. The standard metric d is
defined on R+ by d(x, y) = |y − x|.

The objects we will consider are pseudo-metric spaces, that is, pairs (X, d) where
d is a symmetric function X × X → R+, satisfying the triangle inequality. By a
common abuse of notation, a pair (X, d) will often be identified with the underlying
set X.

Definition 2.1. A map f : X → Y between pseudo-metric spaces is
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• coarsely Lipschitz if there exists a nondecreasing map Φ+ : R+ → R+

such that d(f(x), f(x′)) ≤ Φ+(d(x, x′)) for all x, x′ ∈ X; we say that f is
Φ+-coarse;
• large-scale Lipschitz if it is Φ+-coarse for some affine function Φ+.

Two maps f, f ′ : X → Y are close, written f ∼ f ′, if supx∈X d(f(x), f ′(x)) < ∞.
Equivalence classes of this equivalence relation are called closeness classes.

For instance, the map fa : R+ → R+ mapping x to xa (a > 0) is coarse if and only
if it is large-scale Lipschitz, if and only if a ≤ 1. If (X, d) is an arbitrary unbounded

metric space, then the identity map (X, d)→ (X,
√
d) is large-scale Lipschitz (hence

coarse), while its inverse is coarse but not large-scale Lipschitz.
It is clear that, if f is coarse (respectively large-scale Lipschitz) and f ∼ f ′, then

f ′ satisfies the same property.

Definition 2.2. The metric coarse category (resp. large-scale category) is the
category whose objects are pseudo-metric spaces and arrows are closeness classes of
coarsely Lipschitz maps (resp. of large-scale Lipschitz maps).

Definition 2.3. Let f : X → Y be a map between pseudo-metric spaces.

• The map f is essentially surjective if supy∈Y d(y, f(X)) <∞.

• The map f is coarsely expansive if there exists a non-decreasing function1

Φ− : R+ → R+ tending to infinity at infinity, such that d(f(x), f(x′)) ≥
Φ−(d(x, x′)) for all x, x′ ∈ X; we say that f is Φ−-coarsely expansive.
• The map f is large-scale expansive if it is Φ-coarsely expansive for some

affine function Φ.
• The map f is a coarse equivalence if it is coarse, coarsely expansive and

essentially surjective.
• The map f is a quasi-isometry if it is large-scale Lipschitz, large-scale

expansive and essentially surjective.
• Two metric spaces X, Y are coarsely equivalent (resp. quasi-isometric)

if there exists a coarse equivalence (resp. quasi-isometry) X → Y .

Proposition 2.4. Let f : X → Y be a map between pseudo-metric spaces.

(1) f induces an isomorphism in the metric coarse category if and only if f is a
coarse equivalence;

(2) f induces an isomorphism in the large-scale category if and only if f is a
quasi-isometry.

In particular, to be coarsely equivalent (resp. quasi-isometric) is an equivalence re-
lation between pseudo-metric spaces.

Example 2.5. (1) Let X be a pseudo-metric space and let X̂ be its Hausdorf-
fization, namely the metric space obtained from X by identifying points at

distance 0. Then the canonical projection X → X̂ is a quasi-isometry (and
hence a coarse equivalence). Thus, in the metric coarse category and in the
large-scale category, the full subcategories where objects are metric spaces
are essential.

(2) Let X be a metric space and X its completion. Then the canonical injection
X → X is a quasi-isometry (it is indeed an isometry onto a dense subset).

1One could equally consider functions Φ− : R+ → R+∪{∞}. This would not change the theory.
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(3) Let X be a pseudo-metric space and let Y ⊂ X be a subset maximal for the
property that any two points in Y have distance ≥ 1. Then the isometric
injection Y ⊂ X is essentially surjective and thus is a quasi-isometry. Thus
every metric space is quasi-isometric to a discrete one.

(4) To be bounded is invariant under coarse equivalence, and all non empty
bounded pseudo-metric spaces are quasi-isometric.

3. Coarse category of locally compact groups

3.1. The abstract coarse category.

Definition 3.1. Let f : G → H be a map between locally compact groups (not
necessarily a homomorphism or continuous). We say that f is a coarse map if, for
every compact subset K ⊂ G, there exists a compact subset L ⊂ H such that, for
all g, g′ ∈ G, we have g−1g′ ∈ K ⇒ f(g)−1f(g′) ∈ L.

Let f ′ : G → H be another map. We say that f and f ′ are close if the set
{h ∈ H : h = f(g)−1f ′(g) for some g ∈ G} has a compact closure. Equivalence
classes of this equivalence relation are called closeness classes.

For instance, any continuous homomorphism between locally compact groups is a
coarse map. If we have a semidirect product of locally compact groups G = H oK
with K compact, then the mapping hk 7→ h, for (h, k) ∈ H × K, is close to the
identity of G (but is in general not a homomorphism).

Definition 3.2. The coarse category of locally compact groups is the category
in which objects are locally compact groups and arrows are closeness classes of coarse
maps.

Definition 3.3. IfG,H are locally compact groups, a map f : G→ H is essentially
surjective if there exists a compact subset L ⊂ H such that H = f(G)L := {f(g)l :
g ∈ G, l ∈ L}.

The map f : G → H is coarsely expansive if for every compact subset L ⊂ H
there exists a compact subset K ⊂ G such that for all g, g′ ∈ G we have g−1g′ /∈
K ⇒ f(g)−1f(g′) /∈ L.

When locally compact groups are treated as metric objects, this terminology could
be in conflict with the metric notions of §2; nevertheless Proposition 3.9 will show
that these are equivalent notions.

Proposition 3.4. A map f : G → H between locally compact groups induces an
isomorphism in the coarse category if and only if f is a coarse map, is coarsely
expansive, and is essentially surjective.

An important example is the case of continuous homomorphisms.

Proposition 3.5. Let f : G→ H be a continuous homomorphism of locally compact
groups. Then f is a coarse map. It is coarsely expansive if and only if it is proper.
It is essentially surjective if and only if H/f(G) is compact. In particular, it induces
an isomorphism in the coarse category if and only it is proper and has a cocompact
image.

Recall that a continuous map between Hausdorff topological spaces is by definition
proper if the inverse image of every compact subset is compact. If a continuous
homomorphism G→ H is proper, then it has a compact kernel and a closed image.
The converse is true if G is σ-compact.
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3.2. Locally compact groups as pseudo-metric spaces. The abstract coarse
theory can be expressed using the language of pseudo-metric spaces, under a minor
assumption on the locally compact groups, namely when they are σ-compact, that
is, are countable unions of compact subsets.

Definition 3.6. Let G be a locally compact group. An adapted pseudo-metric
on G is a pseudo-metric which is

• left-invariant,
• locally bounded (compact subsets are bounded);
• proper (bounded subsets have a compact closure).

Theorem 3.7. A locally compact group admits an adapted pseudo-metric if and
only if it is σ-compact (i.e. is a countable union of compact subsets).

Proof (sketch). One direction is clear. Conversely, suppose that G is σ-compact
and write G =

⋃
Kn with Kn a compact subset, contained in the interior of Kn+1.

Consider the metric graph with G as set of vertices and an edge (g, gs) of length
n for all n and every (g, s) ∈ G × Kn. Then this graph is connected (since there
is at least one edge between any two vertices), the graph metric on the set G of
vertices is left-invariant, and each compact subset of G is bounded, being contained
in some Kn. Moreover, bounded subsets have a compact closure: indeed, for every
n ≥ 1 the n-ball around 1 is contained in the union of the Kn1 . . . Knk

, where k ≥ 1
and (n1, . . . , nk) ranges over the k-tuples of positive integers with sum n. Thus G
admits an adapted pseudo-metric (indeed a metric, since any two distinct points are
at distance ≥ 1). �

Proposition 3.8. Let G be a locally compact group. For any two adapted pseudo-
metrics d, d′ on G, the identity map of pseudo-metric spaces (G, d) → (G, d′) is a
coarse equivalence.

If G is a σ-compact locally compact group, it admits an adapted pseudo-metric d
by Theorem 3.7, and this allows to view (G, d) as a well-defined object in the metric
coarse category.

The following proposition shows that, for σ-compact locally compact groups, on
which the definitions of §2 and §3.1 both make sense, the definitions are consistent.

Proposition 3.9. If (G, d) and (G′, d′) are locally compact groups with adapted
pseudo-metrics, a map f : G→ G′ is a coarse map of locally compact groups (in the
sense of §3.1) if and only if is a coarsely Lipschitz map of pseudo-metric spaces (in
the sense of §2). The same holds for coarsely expansive maps, essentially surjective
maps, coarse equivalences, and closeness.

Also, being σ-compact is a coarse invariant among locally compact groups.

Proposition 3.10. If G and H are coarsely equivalent locally compact groups and
G is σ-compact then so is H.

4. Geodesic metric notions and compactly generated groups

4.1. Coarse connectedness and geodesic notions. We turn back to the metric
setting, with in the scope the goal of characterizing, in the coarse setting, compactly
generated locally compact groups among σ-compact locally compact groups.
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Definition 4.1. A pseudo-metric space X is coarsely connected if there exists
c > 0 such that the equivalence relation generated by “being at distance ≤ c”
identifies all points in X. That is, for any two points x, y ∈ X, there exist n and
x = x0, x1, . . . , xn = y in X with sup1≤i≤n d(xi−1, xi) ≤ c.

The pseudo-metric space X is coarsely geodesic if there exists a nondecreasing
function Φ : R+ → R and c > 0 such that, for any two points x, y ∈ X, there exist
n ≤ Φ(d(x, y)) and x = x0, x1, . . . , xn = y in X with sup1≤i≤n d(xi−1, xi) ≤ c. It is
large-scale geodesic if the above (Φ, c) can be chosen with Φ an affine function.

A basic observation is that being coarsely connected or coarsely geodesic are coarse
invariants; for instance, if there is a coarse equivalence between a coarsely geodesic
pseudo-metric space and another pseudo-metric space, then the latter is coarsely
geodesic as well.

Similarly, being large-scale geodesic is a quasi-isometry invariant. However, it is
not a coarse invariant: if (X, d) is an unbounded large-scale geodesic metric space,

then it is coarsely equivalent to (X,
√
d), but the latter is not large-scale geodesic. It

can actually be checked that a pseudo-metric space is coarsely geodesic if and only
if it is coarsely equivalent to a large-scale geodesic metric space.

We saw in §2 examples of coarsely Lipschitz maps that are not large-scale Lips-
chitz. Nonetheless, we have the following useful proposition.

Theorem 4.2. Let f : X → Y be a map between pseudo-metric spaces. Assume
that X is large-scale geodesic and that f is a coarsely Lipschitz map. Then f is
large-scale Lipschitz.

Corollary 4.3. Let f : X → Y be a coarse equivalence between large-scale geodesic
pseudo-metric spaces. Then f is a quasi-isometry.

4.2. Compactly generated locally compact groups. By definition, a locally
compact group is compactly generated if it is generated, as a group, by a compact
subset. For instance, for a discrete group it means being finitely generated.

Theorem 4.4. Let G be a σ-compact locally compact group and d an adapted pseudo-
metric on G. Then G is compactly generated if and only if (G, d) is coarsely geodesic,
if and only if it is coarsely connected.

Moreover, when this holds, there exists and adapted pseudo-metric d′ on G such
that (G, d′) is large-scale geodesic.

Sketch of proof. If (G, d) is coarsely connected and c is the constant given in Defi-
nition 4.1, then a simple verification shows that the c-ball centred at 1 in G has a
compact closure, and generates G.

Conversely, if G is compactly generated, then the word metric d′ with respect
to a given compactly generated subset is adapted and (G, d′) is coarsely geodesic.
Since it is coarsely equivalent to (G, d), by Proposition 3.8, and since being coarsely
geodesic is a coarse invariant, we deduce that (G, d) is coarsely geodesic as well. �

Combining this with Proposition 3.5, we obtain a geometric proof of the following
corollary.

Corollary 4.5. Let f : G→ H be a continuous proper homomorphism with cocom-
pact image between locally compact groups. Then G is compactly generated if and
only if H is compactly generated.
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Also, with Corollary 4.3 we obtain

Corollary 4.6. Between compactly generated locally compact groups, every coarse
equivalence is a quasi-isometry.

In particular, the classification of σ-compact locally compact groups up to coarse
equivalence extends the classification of compactly generated locally compact groups
up to quasi-isometry.

Definition 4.7. A pseudo-metric d on a compactly generated locally compact group
is geodesically adapted if it is equivalent to the word length d′ with respect to
some/any compact generating subset, in the sense that the identity map (G, d) →
(G, d′) is a quasi-isometry.

Analogously with Proposition 3.8, we have:

Proposition 4.8. Let G be a compactly generated locally compact group. For any
two geodesically adapted pseudo-metrics d, d′ on G, the identity map of pseudo-metric
spaces (G, d)→ (G, d′) is a quasi-isometry.

Example 4.9. If G is a connected Lie group, we have two natural families of geodesi-
cally adapted pseudo-metrics:

• the metrics associated to left-invariant Riemannian metrics on G;
• the words metric associated to compact generating subsets of G (observe

that by compactness, any compact subset with non empty interior generates
G).

Then the identity map of G for any two of these metrics is a quasi-isometry, by
Proposition 4.8.

5. Coarsely ultrametric spaces and locally elliptic locally
compact groups

Definition 5.1. A pseudo-metric space is coarsely ultrametric if, for every r ≥ 0,
the equivalence relation generated by the relation “being at distance ≤ r” has orbits
of bounded diameter.

This is a coarse invariant. Indeed, a simple verification shows the following:

Proposition 5.2. A pseudo-metric space is coarsely ultrametric if and only if it is
coarsely equivalent to an ultrametric space.

Note that an immediate consequence of the definition is that, if a pseudo-metric
space is both coarsely ultrametric and coarsely geodesic, then it is bounded. More
generally, every coarsely Lipschitz map from a coarsely geodesic pseudo-metric space
to a coarsely ultrametric pseudo-metric space has a bounded image.

Definition 5.3. A locally compact group is locally elliptic if every compact subset
is contained in a compact subgroup.

Note that such a locally compact group has a compact identity component. Dis-
crete locally elliptic locally compact groups are better known as locally finite groups.

Proposition 5.4. If G is a σ-compact locally compact group and d an adapted
pseudo-metric, then G is locally elliptic if and only if (G, d) is coarsely ultrametric.

Among locally compact groups, the class of locally elliptic groups is closed under
coarse equivalence.
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The verifications of the first claim is straightforward. In the σ-cmpact case, the
second claim folllows from the first one.

6. Coarse properness, growth, and amenability

6.1. The metric notions.

Definition 6.1. The uniform growth function of a quasi-metric space (X, d) is
the function mapping r ≥ 0 to the supremum bX(r) of the cardinalities of all subsets
of diameter ≤ r. A quasi-metric space is uniformly locally finite (ULF) if the
function bX(·) takes finite values.

Among non-decreasing functions R+ → R+, write f � g if there exist constants
c, c′, c′′ > 0 such that f(r) ≤ cg(c′r) + c′′ for all r > 0. Say that f and g are
asymptotically equivalent, written f ' g, if f � g � f .

Lemma 6.2. If two ULF metric spaces are quasi-isometric, they have asymptotically
equivalent growth functions.

This allows to extend the notion of growth (up to asymptotic equivalence) to a
broader setting.

Definition 6.3. A pseudo-metric space X is uniformly coarsely proper2 if there
exists a nondecreasing function Ψ : R+ → R+ and r0 > 0 such that, for every r ≥ r0,
every subset of X of diameter ≤ r is covered by at most Ψ(r) subsets of diameter
≤ r0.

Note that being uniformly coarsely proper is a coarse invariant of metric spaces.
More generally, if X → Y is a coarse embedding and if Y is uniformly coarsely
proper, then so is X; in the case of an isometric embedding, the function Ψ of
Definition 6.3 can be chosen to be the same for X as for Y .

Proposition 6.4. A pseudo-metric space is uniformly coarsely proper if and only if
it is quasi-isometric to a ULF metric space.

Sketch of proof. Let us only comment the forward implication. Assume that X is
uniformly coarsely proper, with (Ψ, r0) as in the definition. Using Zorn’s lemma,
there exists a maximal subset Y in which any two distinct points have distance
≥ 2r0. The isometric inclusion Y ⊂ X is a quasi-isometry; indeed any point in X
is at distance ≤ 2r0 of at least one point in Y . Then in Y , for every r ≥ r0, any
subset of diameter ≤ r is covered by ≤ Ψ(r) subsets of diameter ≤ r0, and these are
singletons. �

Definition 6.5. If X is a uniformly coarsely proper metric space, the asymptotic
equivalence class of the growth of a ULF metric space Y quasi-isometric to X is
called the growth class of X (it does not depend on Y , by Lemma 6.2).

In a metric space X, for Y ⊂ X and r ≥ 0, define BX(Y, r) as the set of points at
distance ≤ r to Y .

Definition 6.6. A ULF metric space is called amenable if for any ε > 0 and r > 0,
there exists a nonempty finite subset F ⊂ X such that #(BX(F, r))/#(F ) ≤ 1 + ε.

2Uniformly coarsely proper is often called “of bounded geometry”.
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Proposition 6.7. Let X, Y be coarsely equivalent ULF metric spaces. Then X is
amenable if and only if Y is amenable.

Proof. It is enough to show that, if Y is amenable, then so is X. We can assume
that X and Y are non empty.

Let f : X → Y and g : Y → X be coarsely Lipschitz maps and c > 0 a
constant be such that supx∈X dX(g(f(x)), x) ≤ c and supy∈X dY (f(g(y)), y) ≤ c. Let
Φ : R+ → R+ be a non-decreasing function such that dY (f(x), f(x′)) ≤ Φ(dX(x, x′))
for all x, x′ ∈ X. There exist k, ` > 0 such that #(f−1(y)) ≤ k for all y ∈ Y and
#(g−1(x)) ≤ ` for all x ∈ X.

Fix r, ε > 0; we can suppose r ≥ c. Let F ⊂ Y be a non empty finite subset such
that

#(BY (F,Φ(r + c)))/#(F ) ≤ 1 +
ε

k`
.

Define F ′ = {x ∈ X | dY (f(x), F ) ≤ c}. Then F ′ contains g(F ), so that #(F ′) ≥
1
`
#(F ).
Let x ∈ X be such that 0 < dX(x, F ′) ≤ r. Then c < dY (f(x), F ) ≤ Φ(r) + c,

that is f(x) ∈ BY (F,Φ(r) + c) r F . Since the cardinal of BY (F,Φ(r) + c) r F is at
most ε#(F )/k`, the cardinal of {x ∈ X | 0 < dX(x, F ′) ≤ r} is at most ε#(F )/`,
and a fortiori at most ε#(F ′). It follows that the cardinal of BX(F ′, r) is at most
(1 + ε)#(F ′). �

In view of Proposition 6.7, the following definition is valid.

Definition 6.8. A uniformly coarsely proper metric space X is called amenable if
it is quasi-isometric to an amenable ULF metric space, or equivalently if every ULF
metric space coarsely equivalent to X is amenable.

Example 6.9. IfX is a nonempty ULF metric space and lim infn→∞ bX(n+1)/bX(n) =
1, then X is amenable.

If X is a non empty coarsely uniformly proper metric space of subexponential
growth, then X is amenable.

6.2. The case of locally compact groups.

Theorem 6.10. Let G be a σ-compact locally compact group and d an adapted
pseudo-metric (Definition 3.6). Then (G, d) is uniformly coarsely proper.

In particular, the notion of metric amenability makes sense for any σ-compact
locally compact group. The notion of growth (up to asymptotic equivalence) makes
sense for any compactly generated locally compact group, by considering the growth
of (G, d) for a geodesically adapted pseudo-metric d on G, in the sense of Definition
4.7.

It can also be shown that this notion of growth is equivalent to that involving the
Haar measures of balls in the group.

Definition 6.11. A σ-compact locally compact group G is metrically amenable
if (G, d) is amenable.

This is closely related, but not equivalent, to the notion of amenability. Recall
that a locally compact group G, endowed with a left Haar measure λ, is amenable
if, for every compact subset S and every ε > 0, there exists a measurable subset F
of finite nonzero measure such that λ(SF ) ≤ (1 + ε)λ(F ).
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Besides, recall that a locally compact group G is unimodular if the action of G
on itself by conjugation preserves some (and hence every) left Haar measure.

Proposition 6.12. A σ-compact, locally compact group is metrically amenable if
and only if it is amenable and unimodular.

On the proof. Let us say that a locally compact group is right-amenable if, for
every compact subset S and every ε > 0, there exists a measurable subset F of
finite nonzero measure such that λ(FS) ≤ (1 + ε)λ(F ). Note that, in comparison
with amenability, SF has been replaced by FS, while we still have a left Haar
measure. The subset FS can be thought of as a metric thickening of F , and a
routine verification shows that a σ-compact locally compact group is metrically
amenable if and only if it is right-amenable. Now on the one hand, for a unimodular
group, it is clear that amenability and right-amenability are equivalent properties.
On the other hand, if a locally compact G is not unimodular, if s is an element with
∆(s) > 1, so that λ(Fs) = ∆(s)λ(F ), the condition of right-amenability fails for
S = {s}. �

Corollary 6.13. To be amenable and unimodular is a coarse invariant among locally
compact groups. In particular, to be amenable is a coarse invariant among discrete
groups.

Note that this is not true when unimodularity is dropped. Indeed, there are many
cocompact closed inclusions of groups H ⊂ G with H amenable (necessarily non-
unimodular), and G non-amenable: fix n ≥ 2 and let K be a nondiscrete locally
compact field, e.g. K = R:

• G = GLn(K), H = Tn(K), the subgroup of upper triangular matrices;
• G = GLn(K) n Kn (the group of affine transformations), H = Tn(K) n Kn

(here G is also non-unimodular).

7. Compactly presented groups

7.1. Coarsely simply connected metric spaces. Let X be a pseudo-metric
space, c a positive real number, and k is a positive integer. The Rips complex
Ripskc (X) is the simplicial complex whose set of vertices is X, and a subset Y ⊂ X
forms a simplex if its cardinal is ≤ k+ 1 and its points are pairwise at distance ≤ c.
The k-simplices are endowed with the metric induced by the standard `∞-norm on
Rk+1.

For instance, the pseudo-metric space X is coarsely connected (Definition 4.1) if
and only if Rips1

c(X) is connected for some c (then Ripskc′(X) is connected for all
c′ ≥ c and k ≥ 1).

Definition 7.1. The pseudo-metric space X is coarsely simply connected if
there exist c ≥ 0 and c′ ≥ c such that Rips1

c(X) is connected and every loop in
Rips1

c(X) is homotopically trivial in Rips2
c′(X).

It is possible to interpret the latter condition by a certain discrete connectedness
property, along with the requirement that every discrete path in X has a discrete
homotopy to the trivial loop. The precise statement is technical and we refer to
[CH–14].

Proposition 7.2. To be coarsely simply connected is a coarse invariant of pseudo-
metric spaces.
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7.2. Compactly presented groups.

Definition 7.3. A bounded presentation is a presentation of the form 〈S | R〉,
where S is an arbitrary set and R ⊂ FS (where FS is the free group over S) is a set
of words of bounded length with respect to S.

A locally compact group G is compactly presented if there exists an isomor-
phism of a boundedly presented group 〈S | R〉 onto G such that the image of S is a
compact generating subset of G.

In other words, G has a presentation by a compact subset of generators and
relators of bounded length.

Example 7.4. A discrete group is compactly presented if and only if it is finitely
presented.

Recall that, if S is a generating subset of a group, the Cayley graph G(G,S) is the
graph whose set of vertices is G and for which (g, h) is an edge whenever g−1h ∈ S.
Observe that G(G,S) is Rips1

1(X) when (X, d) = (G, dS).
Standard homotopy arguments show the following:

Proposition 7.5. Let G be a compactly generated locally compact group; consider
its Cayley graph G(G,S) with respect to some compact generating subset S.

Then G is compactly presented if and only if π1(G(G,S)) is generated by loops of
bounded size, in other words if and only if G(G,S) can be filled in a G-invariant way
by gons of bounded size, so that the resulting 2-complex is simply connected.

Here, “loops of bounded size” more precisely means loops of the form γcγ−1, for
paths γ starting from 1, and loops c of bounded diameter, based at the end of γ.

Proposition 7.6. Let G be a σ-compact locally compact group and d an adapted
pseudo-metric on G. Then G is compactly presented if and only if (G, d) is coarsely
simply connected. In particular, to be compactly presented is invariant under coarse
equivalence among locally compact groups.

Standard facts about finitely presented groups carry over to compactly presented
groups.

Proposition 7.7. Let G be a locally compact group, N a closed normal subgroup
and Q = G/N .

(1) If G is compactly presented and N is compactly generated qua normal sub-
group, then Q is compactly presented;

(2) if N and Q are compactly presented then so is G;
(3) if G is compactly generated and Q is compactly presented, then N is compactly

generated qua normal subgroup.

There are no free groups in the context of locally compact groups. Nevertheless,
we have the following:

Proposition 7.8. Every compactly generated locally compact group Q is isomorphic
to the quotient of some compactly presented locally compact group G by a discrete
normal subgroup N .

Note that, by Proposition 7.7, G is compactly presented if and only if N is finitely
generated as a normal subgroup.

In the case of totally disconnected groups, this can be refined.
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Definition 7.9. A tree-like locally compact group is a locally compact group ad-
mitting a proper cocompact action on some tree of bounded valency.

If the group is assumed to be compactly generated, it can be shown that “cocom-
pact” can be removed from the definition. Note that a finitely generated group is
tree-like if and only if it is virtually free.

For the next theorem, we refer to [CH–14, Theorem 8.A.20].

Theorem 7.10. Every compactly generated, totally disconnected (or more generally,
which a compact unit component) locally compact group is isomorphic to the quotient
of some tree-like locally group by some discrete normal subgroup.

8. The Bieri-Strebel Theorem

Theorem 8.1. Let G = G∞ be a compactly generated locally compact group with a
continuous homomorphism π = π∞ of G onto Z. Then there exists

• a sequence (Gn)n≥0 of locally compact groups, with surjective continuous ho-
momorphisms πn : Gn → Z,
• surjective continuous homomorphisms ϕn,m : Gm → Gn with discrete kernel,

for n ≤ m ≤ ∞,

such that

• the ϕn,m are compatible with each other (ϕn,m ◦ϕm,` for all ` ≤ m ≤ n ≤ ∞)
and compatible with the projections (πm = πn ◦ ϕn,m for all m ≤ n ≤ ∞),
• Gn splits as an HNN-extension over some compactly generated open subgroup

of Ker(πn), for all n <∞.

This theorem is an approximation theorem. Note that, when Ker(π) is compactly
generated, it is an empty statement, since we can choose Gn = G for all n. However,
it provides useful information when this is not part of the assumptions; when G is
compactly presented, then ϕ∞,n has to be an isomorphism for some n < ∞, which
provides:

Corollary 8.2. Let G be a compactly presented locally compact group along with
a homomorphism π of G onto Z. Then G splits as an HNN-extension over some
compactly generated open subgroup of Ker(π).

An HNN-extension involves one base group H and two subgroups H1, H2 of H
along with an isomorphism between H1 and H2. When it is non-ascending (that is,
H1 6= H 6= H2), it contains a discrete non-abelian free subgroup.

Corollary 8.3. Let G = NoZ be a compactly presented locally compact group, with
Z acting through powers of some topological group automorphism α of N . Assume
that G has no non-abelian discrete free subgroup. Then there exists β ∈ {α, α−1}
and a compactly generated open subgroup H of N such that β(H) ⊂ H and N =⋃
n≥0 β

−n(H).

9. Examples

Let us give various sources of examples.

Proposition 9.1. If G is a locally compact group and G/G◦ is compact, then G is
compactly presented.
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In the situation of Proposition 9.1, G can be shown to admit a proper transitive
continuous action by isometries on some Riemannian manifold homeomorphic to
some Euclidean space.

Proposition 9.2. Let H be a compactly presented locally compact group and f a con-
tinuous endomorphism of H with open image. Then the ascending HNN-extension
associated to (H, f) is compactly presented.

A generalization of the previous proposition is the following:

Proposition 9.3. Consider a locally compact group with a topological semidirect
product decomposition G = N o Zk, such that some element α of Zk and some
compactly presented open subgroup H of N satisfy α(H) ⊂ H and

⋃
n≥0 α

−n(H) =
N . Then G is compactly presented.

Example 9.4. Let N1, N2 be totally disconnected non-compact locally compact
groups with contracting topological group automorphisms α1, α2 (contracting means
that limn→+∞ α

n
i (g) = 1 for every g ∈ Ni). For instance, we can choose Ni = Qpi

for primes p1, p2 and αi the multiplication by pni
i for some positive integer ni.

Consider the automorphism of N1×N2 given by α = (α1, α
−1
2 ). Then the semidi-

rect product (N1 ×N2) oα Z is not compactly presented.

Example 9.5. Let K1,K2 be ultrametric nondiscrete locally compact fields. Fix
λ1 ∈ K∗1 and λ2 ∈ K∗2. Consider the semidirect product G = (K1 ×K2)(λ1,λ2) o Z.
Then

• If either λ1 or λ2 is equal to 1, then G is not compactly generated.
• if |λ1| < 1 < |λ2| or |λ2| < 1 < |λ1|, then G is compactly generated but not

compactly presented (as a particular case of Example 9.4)
• if |λ1| and |λ2| are both < 1 or > 1, then G is compactly presented (by

Proposition 8.3).

Example 9.6. Consider distinct primes p, q and, for i = 1, 2, the semidirect product
Γi = Z[1/pq]oni

Z, where Z acts by multiplication by ni, with n1 = pq and n2 = p/q.
Then both Γ1 and Γ2 are finitely generated. The group Γi is a cocompact lattice in
the locally compact group Gi = (R×Qp ×Qq) oni

Z.
It follows from Example 9.5 that G1/R is compactly presented and G2/R is not

compactly presented. Since R itself is compactly presented, it follows from Theorem
7.7 that G1 is compactly presented and G2 is not compactly presented. By Proposi-
tion 3.5, the inclusion of Γi into Gi is a coarse equivalence. By Proposition 7.6, we
deduce that Γ1 is finitely presented while Γ2 is not.

Example 9.7. If G is a reductive K-group, for some non-discrete locally compact
field K, then G = G(K) is compactly presented. Indeed, when K is Archimedean
then G has finitely many components and Proposition 9.1 applies; otherwise G ad-
mits some closed cocompact (solvable) subgroup satisfying the hypotheses of Propo-
sition 9.3.

Example 9.8. Every compactly generated nilpotent locally compact group is com-
pactly presented. Indeed, it can be shown that such a group always admits a proper
homomorphism with cocompact image into a Lie group with finitely many connected
components.
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Université Paris-Sud
91405 Orsay, France
yves.cornulier@math.u-psud.fr

P. H.: Section de mathématiques
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