LIE ALGEBRAS

YVES CORNULIER

1. ALGEBRAS

By scalar ring, we mean an associative, unital, commutative ring. By default
we do not assume rings/algebras to be associative. In most of these lectures,
the scalar ring will be assumed to be a field, often of characteristic zero and/or
algebraically closed.

We fix a scalar ring R. Let A be an R-algebra (that is, an R-module en-
dowed with an R-bilinear product A x A — A, often denoted (a,b) — ab). Ho-
momorphisms between R-algebras are R-module homomorphisms that are also
multiplicative homomorphisms. Subalgebras are R-submodules stable under the
product. A 2-sided ideal (or 2-sided R-ideal) I is an R-submodule such that
x € I,y € A implies that both xy and yx € I. The quotient A/I then canoni-
cally inherits a product structure. If S is a scalar R-algebra (that is, an R-algebra
that is a scalar ring), then S ®g A is naturally an S-algebra; this is called “ex-
tension of scalars”.

An R-derivation (or derivation, if R can be omitted) of A is a R-module en-
domorphism f of A satisfying f(ab) = f(a)b+ af(b). For x,y € A, we write
L,(y) = Ry(x) = zy; thus L,, R, are R-module endomorphisms of A.

The algebra A is said to be

(1) associative if L,, = L, L, for all x,y € A, or equivalently if L, R, = R, L,
for all z,y € A. As a formula, this means that z(yz) = (zy)z for all
x,y,z € A,

(2) (left) Leibniz if L,, = L, L, — L, L, for all z,y € A, or equivalently if L,
is a derivation for every x. As a formula, this reads as the “Leibniz-Loday
identity” (zy)z — x(yz) + y(xz) = 0 for all z,y,z € A.

(3) alternating if zz = 0 for all z € A;

(4) skew-symmetric if xy + yx = 0 for all z,y € A; (thus alternating implies
skew-symmetric and the converse holds if 2 is invertible in A)

(5) Lie if it is both alternating and Leibniz. (For an alternating algebra,
the Leibniz-Loday identity can be rewritten as Jac(z,y,z) = 0, where
Jac(z,y,z) = x(yz) + y(zx) + z(zy); this is known as Jacobi identity.
Note that in an alternating algebra, the trilinear map Jac is alternating,
i.e., vanishes whenever two variables are equal.)
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All these conditions are stable under taking subalgebras and quotients. They
are also stable under taking extensions of scalars' (for all multilinear conditions
this is straightforward; for the alternating condition this easily follows, first using
that alternating implies skew-symmetric).

If A is associative, the product defined as commutator bracket [a,b] = ab — ba
is Lie. For this reason, it is custom to denote the product in a Lie algebra with
brackets (rather than with a dot or no symbol).

For a Lie (or more generally skew-symmetric) algebra, as in the commutative
case, we just talk of “ideals” rather than 2-sided ideals.

If A is Leibniz (e.g., Lie) and if B is an R-subalgebra, the 2-sided normalizer
N4 (B) is defined as the set of = such that xtBU Bz C B (for Lie algebra, we omit
“2-sided”). Then B is a 2-sided ideal of its 2-sided normalizer N4(B) (exercise).

Let V' be an R-module. Let glz(V) be the set of R-module endomorphisms
of V. This is an associative R-algebra, and hence is a Lie R-algebra for the
corresponding commutator bracket. Many important Lie algebras are naturally
constructed as subalgebras of the latter.

Let A be an R-algebra. Then the set of R-derivations of A is a Lie subalgebra
of glz(A) (exercise: check it), denoted Derg(A).

Let h,n be Lie R-algebras and j : h — Derg(n) an R-algebra homomorphism.
The semidirect product n x; b is defined as follows: as an R-module, this is the
direct sum n @ §. The product is defined as

[(n1, h1), (2, ha)] = ([n1, na] + j(ha)ng = j(ha)na, [, ha)).

Given a Lie R-algebra g and R-submodules n, §, the Lie algebra g decomposes
as semidirect product n x b if and only if n is an ideal and g = n®h as R-module.
Here j maps h € b to the restriction (Lp)|y.

If I,J are R-submodules of A, we denote by I.J the R-submodule generated
by {zy : (z,y) € I x J}.

Given an algebra A, one defines A" = A, and, by induction, A" = 7., ATA*.
Here BC is the submodule generated by be for (b, ¢) € Bx C. Then A’ is a 2-sided
ideal, and A = A' D A% D A% O .... The sequence (A%);> is called the lower
central series. The algebra A is said to be nilpotent if A" = {0} for some i > 0;
in this case, it is called i-step nilpotent; the nilpotency class of A is the smallest
1 for which this holds.

In the case of a Leibniz algebra g (and hence of a Lie algebra), one has g' =
gg' ! for all 4 > 2 (exercise), which simplifies the definition of the lower central
series.

Exercice: for n > 0, consider the alternating algebra whose underlying R-
module has a basis (z,y1,...,yn), and brackets [z, y;] = yi11, 1 < i < n. (others
being zero, except those following by skew-symmetry). Check that it is a Lie

IFor fields of prime characteristic p, check that the condition (Va, 2P = z), does not pass to
extensions of scalars.
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algebra, whose nilpotency class is equal to n as soon as R # {0}. (It is known as
standard filiform Lie algebra of class n over R.)

Given a Leibniz algebra, one defines g(® = g and gt = g®g®. These are
2-sided ideals (exercise), forming the derived series. The Leibniz algebra g is said
to be solvable if g = {0} for some i; it is then called i-step solvable; the smallest
such i is called derived length (or solvability length) of g. We have g C g (with
equality for ¢ = 0, 1); in particular, nilpotent implies solvable. When the product
is zero (that is, g is 1-step nilpotent, that is, 1-step solvable), g is called abelian.
We say that g is perfect if g = g (= g?).

Exercise: If g is solvable, its only perfect subalgebra is {0}. Conversely, as-
suming that g is finite-dimensional over a field, show that if the only perfect
subalgebra is {0}, then g is solvable.

Exercise: 1) Let I, J be solvable ideals in a Lie algebra; show that I 4 J is a
solvable ideal. 2) Find a Lie algebra with two abelian ideals I, J such that I + J
is not abelian. 3) (harder) Let I, J be 2-sided ideals in an algebra A. Show that
(I + J)k+=1 c I* + J* for all k,¢ > 1. Deduce that if I, J are nilpotent, then so
is I 4 J.

A representation of a Lie R-algebra g in an R-module V' is an R-algebra homo-
morphism p(g) — glz(V), the latter being endowed with its commutator bracket.
Endowed with such a homomorphism, V' is called a g-module. By definition g-
submodules are R-submodules that are stable under p(g). The quotient by a
g-submodule is naturally a module as well.

A g-module V is said to be simple if it is nonzero and its only submodules are
{0} and V; in this case the representation is said to be irreducible.

The mapping g — Derg(g), mapping x to L,, is a representation of g in inself,
called adjoint representation. Its kernel is the center 3(g) = {z € g : zy =
yx,Vy € g}. Submodules of the adjoint representations are precisely ideals of g.

An algebra A is said to be simple if its product is not zero?, and its only 2-sided
ideals are {0} and A.

2. SMALL DIMENSION

Now we assume that the ground scalar ring R is a field, now denoted K.

One can tackle the task of classifying Lie algebras of each given dimension,
possibly restricting to some subclass, or with restrictions on K.

In each given dimension, abelian Lie algebras form one isomorphy class. In
dimension 0,1, these are the only ones. In dimension 2, there is only one other,
which we denote b: it can be described with the basis (x,s) with the bracket
being given by [s,z] = = (by this we mean the other bracket follow from Lie

2Thus a 1-dimensional space over a field, endowed with the zero bracket, is not considered
as a simple Lie algebra. This is just a convention. It plays a role analogous to cyclic groups of
prime order in finite group theory, which, in contrast, are considered as simple groups.
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algebra axioms: [s,s] = [z,z] =0, [z, s] = —z). We will often use, when 0 # 2 in
K, the basis (h,z) of b with h = 2s; thus [h, 2] = 2z.

Exercise: show that indeed every 2-dimensional non-abelian Lie K-algebra is
isomorphic to b.

Note that b is solvable with derived length 2, and not nilpotent.

Exercise: 1) Show that every 3-dimensional Lie algebra is either solvable or
simple.

2) Show that every solvable 3-dimensional Lie algebra possesses an abelian ideal
(first find a nonzero abelian ideal and discuss according to its dimension). Deduce
that it is isomorphic to a semidirect product gy = K2 x s K, where M € gl,(K),
and the notation meaning that the homomorphism K — Der(K?) = gl,(K) is
given by t — tA; two such Lie algebras gy, ga, are isomorphic if and only if
KM, and KM, are conjugate by some element of GLs(K). Deduce a list when
K = C, and when K = R.

3) Let g be a 3-dimensional Lie algebra in which L, is nilpotent for every .
Show that g is nilpotent.

4) Assume that K is algebraically closed. Let g be simple and 3-dimensional.
Deduce that there exist a 2-dimensional subalgebra, namely s, x such that [s, x| =
x and x # 0.

5) Assuming in addition that K is not of characteristic 2, deduce that there
exists y # 0 such that [s,y] = —y, with (s, x,y) a basis, and in turn deduce that
y can be chosen so that [z,y] = s.

Exercise: Fix a field K. 1) Let Alg, be the space of bilinear laws on K3,
and Alt,, C Alg, its subspace of alternating bilinear laws. Check that these are
subspaces of the space of all maps K? — K, of dimension n? and n?(n — 1)/2
respectively.

2) Let Lie, be the subset of Alt,, consisting of the Lie algebra laws, i.e., those
skew-linear maps B : K? — K satisfying J(B) = 0, where J(B) is the alternating
trilinear form (z,y,2) — B(x, B(y,z)) + B(y, B(z,z)) + B(z, B(x,y)). Check
that the inclusion Lie, C Alt, is an equality for n < 2 and is a proper inclusion
for all n > 3.

3) Show that Alt,, is not stable under addition, for all n > 3.

4) Let u,, be the largest dimension of a subspace contained in Lie,, (note that
it depends a priori on K, which is fixed). Show that liminfw,/n® > 0. (Hint:
for n = 2m even, write K™ = V; @ V5 with dim(V;) = dim(V3) = m, and describe
the set of Lie algebra laws B satisfying B(V1, V1) C Vo and B(K", V,) = {0}.)

Note that the set of isomorphism classes of n-dimensional Lie algebras can be
identified to the quotient GL, (K)\Lie,. Informally speaking®, this shows that
Lie,, has cubic dimension (i.e., bounded above and below by cubic polynomials),
and so is the quotient, since the dimension of GL,,(K) is quadratic.

3This can be restated more rigorously using the language of algebraic geometry.
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3. REPRESENTATIONS OF sly

We fix a ground field K.

Let V' be vector space over K, and f a linear endomorphism. If ¢ € K, define
Vi = Vi(f) = U, Ker(f — t)*: this is the characteristic subspace of f associated
to t. The V; generate their direct sum. By definition, f is K-trigonalizable
if and only if @, ., Vi = V; this holds when V' is finite-dimensional and K is
algebraically closed; this is called the characteristic decomposition of V' with
respect to f.

Let us pass to the 2-dimensional Lie algebra b, with its basis (h,z), with
[h,x] = 2x; we assume here that 2 # 0 in K (this is somewhat an artificial
restriction here, but it will be convenient in the sequel).

Proposition 3.1. Consider a b-module (V, p) (that is, given by a homomorphism
of Lie K-algebras p: b — gl(V')). Write H = p(h), X = p(z). We have

X (Ker((H — t)*)) C Ker((H — (t +2))").

In particular, we have

XV C Vo, vVt € K.

Proof. The relation [h, x] = 22 implies HX — X H = 2X, which can be rewritten
as (H —2)X = X H, and thus for every t € K we have (H —2—1)X = X(H —1t).
By an immediate induction, we deduce (H —2 —t)*X = X (H —t)* for all k > 0.
The formula follows. O

This already has useful consequences:

Corollary 3.2. Let (V,p) be a finite-dimensional b-module; if K has charac-
teristic p > 0, assume in addition that p # 2 and dim(V') < p. Then p(z) is
nilpotent.

Proof. Write d = dim(V') and X = p(z). For every t € K, the d + 1 elements
t,t 4+ 2,...,t + 2d are pairwise distinct in K, and therefore there exists one
of them, say t + 2k, such that Vi = {0}. Since X'*?*V, C Vo, we deduce
that X'™2*V; = {0}; so X**24V, = {0}. Hence, assuming V = @ V;, we have
Xt+2d =0.

This concludes when K is algebraically closed; the general case follows by
considering V ®x L as a representation of b @, L for an algebraically closed

extension L of K. 0

Now let us pass to sly(K) with 2 # 0 in K. We choose a basis (h,z,y) with
[h,x] = 2z, |h,y] = —2y, and [z,y] = h. Originally, this corresponds to the
matrices

L (10 (01 (00
“\o 1) \oo)Y " \1 o)

but this matrix interpretation plays no role here. Given a sly(K)-module (V p),
we always denote H = p(h), X = p(x), Y = p(y).
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Lemma 3.3. For every sly(K)-module, we have [X,Y"] =nY" Y(H—n+1) for
alln > 0.

The proof is an exercise by induction.

Given an sly(K)-module (V, p), also denote V; = V;(h) for t € K. By Propo-
sition (3.1), XV; C Vi4o for all t. Also, since (—h,y) can play the same role as
(h,z) and V;(—H) = V_;, we have YV, C V,_, for all ¢t.

Proposition 3.4. For every finite-dimensional sly(K)-module (V, p), with K of
characteristic zero (or, when K has characteristic p > 2, of dimension < p), we
have V;, = {0} for everyt & Z1x, and H is K-trigonalizable, with V = @4, Vi:

Proof. By contradiction, suppose that V; # {0} with ¢ ¢ Z1g. Consider W =
D, .cz Vi+on; this is a nonzero submodule; passing to W we can suppose that
V' = W; hence, since 0 ¢ t + Z1k, we have H — k invertible on V', for all k € Z.
By Corollary 3.2, Y is nilpotent.

Let k > 1 be minimal such that Y* = 0. The relation 0 = [X,Y*] = kY*~1(H -
k + 1) holds in W; since H — k + 1 is invertible, we deduce that Y*~1 = 0 and
get a contradiction.

When K is algebraically closed, the result follows. In general, we consider an
algebraically closed extension L of K, and denote V;, =V ®k L, so H extends to
an operator Hy on V. By the algebraically closed case, the only eigenvalues of
Hj, are in Z1g, and hence, we have, for some k, the equality HIiISk(HL —i)k =0.

Hence, by restriction, [[;<,(H —i)* = 0. This means that V =3, V;. O
For n € N(={0,1,2,...}), write J, = {n,n—2,..., —n} C Z; this subset has

n + 1 elements. Define V' as a vector space over K with basis (e,)nez, and V[n]
the (n + 1)-dimensional subspace with basis (e;);c,. Define

He; =ie;,  Xye; = i 2_ Z€z‘+2, Yo.e; = & ; 16172-
These define linear endomorphisms of V. By a straightforward computation,
we have [H, X, ] = 2X,, [H,Y,] = —2Y,, and [X,,,Y,] = H. Therefore, p, :

(h,z,y) — (H,X,,Y,) defines a representation of the Lie algebra sly(K) on V.
Observe that V[n] is a submodule for p,; we now systematically endow V[n| with
the structure of sly(K)-module defined by p,,.

Exercise Let A be the polynomial K-algebra K{z,y|, and write A[n] for its
(n + 1)-dimensional subspace of homogeneous polynomials of degree n. Define
the linear endomorphisms of A: X = L,0, and Y = L,0,. Check that these
are derivations of A, preserving A[n] for all n. Check that the Lie subalgebra
of Der(A) generated by X,Y is isomorphic to sly(K) (for some isomorphism
mapping X to X and Y to Y), and that the representation of sly(K) on A[n] is
isomorphic to Vn|.

Lemma 3.5. Fiz n € N. Suppose that K has characteristic zero, or, if K has
characteristic p > 0, that n < p. Then V[n] is a simple sly(K)-module.
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Proof. 1t is nonzero. The characteristic assumption implies the nonvanishing of
the coefficients ”Ti’ except ”T“ for i = —n and % for i = n. Thus X,, maps Ke;
onto Ke; o for alli € J,~{n}, and Y,, maps Ke; onto Ke; 5 for alli € J,~{—n}.
In particular, the kernel of the nilpotent endomorphism X,, is reduced to Ke,.
Let W be a nonzero submodule, and v € W ~\ {0}. Let k£ > 0 be maximal such
that w := X*v # 0. Then w € Ker(X,) = Ke,. So e, € W. Applying Y,

repeatedly, we deduce that e; € W for all i € J,,. So W = V[n|. O

Lemma 3.6. Let V' be a sly(K)-module. Let v be an eigenvector for H, in the
kernel of X. Write w; = Y'v. Then the family (w;)i>o linearly generates a
submodule W of V.

If K has characteristic zero, or characteristic p and dim(V) < p, then its
nonzero elements form a basis of W, and the kernel of X on W is 1-dimensional,
reduced to Kv. In particular, if V is a simple sly(K)-module, then the kernel of
both X andY is 1-dimensional, dim(V,,) < 1 for all n, and H is diagonalizable.

Proof. Say that Hv = tv. The relation (H + 2 —4)Y = Y(H — i) implies that
Huw; = (t — 2i)w; for all i. The formula [X,Y?] = iY""'(H — i + 1) of Lemma
3.3, applied to v, yields Xw; = i(t — i 4+ 1)w;_; for all ¢ > 0. Since Yw; = w;,1,
Xwy = 0, we deduce that the given family generates a sly (K )-submodule.

In characteristic zero, the elements w; belong to distinct eigenspaces, and hence
its nonzero elements form a free family. In characteristic p, d = dim(W) < p is
finite, and the freeness of the family of nonzero elements in (wy, ..., w,) implies
that w; = 0 for some i < d, hence wy = 0, and hence (wy, ..., w4_1) is a basis for
W. Thend(t—d+1)=0in K,sot=d—1in K, and i(t —i+1) # 0 in K for
1 <i<d-—1, so the kernel of X on W is reduced to Kwv.

If in addition V is simple, then by the previous paragraph, there is a nonzero
submodule on which the kernel of X has dimension 1, and hence by simplicity,
this is V' and the kernel of X has dimension 1. Changing the roles of (H, X,Y)
and (—H,Y, X), we deduce that the kernel of Y also has dimension 1. Moreover,
since (wp, ..., wq—1) is a basis and belong to distinct subspaces V,,, we deduce
that dim(V,,) <1 for all n; in particular H is diagonalizable. O

Theorem 3.7. Every simple sly(K)-module V' (of dimension < p when K has
positive characteristic p) is isomorphic to V[n] for n = dim(V') — 1.

Proof. There exists n € Z such that V,, # {0} and V,, 41 = {0}; if K has char-
acteristic p > 0, we choose n € {0,...,p — 1}. Choose v, € V,, ~ {0}. Define
Up—oi = Y, € V,_g; let & > 0 be the maximal i such that v,_o; # 0. By
Lemma 3.6, (v, Up—2, ..., Un_2k) is & basis of a submodule, and therefore of V' by
simplicity.

In particular, we see that all non-zero V; are 1-dimensional. The dimension of V'
is therefore equal to k+ 1, and the trace of H is therefore equal to Zfzo(n —2i) =
(k+1)n—k(k+1)=(k+1)(n—k) (in K). Since the trace of H = [X,Y] is zero
(in K), in characteristic zero, we deduce that k = n. In positive characteristic p,
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we deduce that p divides (k+ 1)(n — k) in Z. We get the same conclusion k = n
as follows: since 0 < k+ 1 = dim(V) < p (in Z), we see that p divides n — k;
then we see that n — k belong to {—p+1,...,p— 1}, and hence we conclude that
k = n. Accordingly, (v;);cy, is a basis of V.

For i € J,, we have Hv; = iv;. Write Xv; = a;v;.0 and Yv; = bjv;_o, with
a, =b_, = 0; set b, 1o = a,_o = 0 for convenience. Then the relation [X,Y]| = H
yields the relation (in K)

ai—2b; — a;biro =1, 1€ Jy;
note that this holds for any basis (v;);cs, with v; € V;, not only the specific one
constructed above. Writing ¢; = a;b;1 0, it yields ¢;_o — ¢; = ¢, which implies, by
a simple backwards 2-step induction,

o . 9
(31) aibi+2 =C; = (n2 Z) (n+;+ ) s Vi € Jn

By Lemma 3.6, Ker(Y") is reduced to Kv_,,. Thus Yv; # 0 for alli € J,~{—n}.
Similarly, Xv; # 0 for all ¢ € J, ~{n}. We now, after choosing e,, = v,, iteratively
define, for i € J, (with J, indexed in decreasing order), the element e; 5 by
Ye, = "T“ei_g for all i € J, ~ {—n}. Write Xe; = ale; .o, for i € J, ~ {n}. Then
(3.1) holds with b;;» replaced with “*22 and a; by aj, which yields a] = %* for
all i € J,,. Thus V' is isomorphic to V[n]. UJ

Corollary 3.8. Let g be a Lie algebra and V' a finite-dimensional, faithful g-
module (V. p) (faithful means that the p is injective). Suppose that g contains a
subalgebra isomorphic to sly(K). Suppose that K has characteristic 0. Then the
form B, :gxg— K, (g1, 92) — Trace(p(z)p(y)) is nonzero.

Proof. Restricting, we can suppose that g = sly(K).

For n > 0, we have t,, := Byjn(h,h) = > ,c; i*. So t, € N for all n, and
tn, > 0 whenever n > 0 (it equals w but we do not need this here). There
exist submodules 0 C V! C V2 C --- C V¥ =V such that V/Vi~! is irreducible
for all 4, say isomorphic to V[n;]. So By (h,h) = . t,, > 0, and is positive as
soon as n; > 0 for some ¢. The remaining case is when all n; are zero. In this
case, all V,,, are 1-dimensional, and this yields a homomorphism of sly(K) into
the Lie algebra of strictly upper triangular matrices; the latter is nilpotent and
its only perfect subalgebra is {0}. Thus the representation is zero and cannot be
faithful, a contradiction. O

Corollary 3.9. Let (V,p) be a finite-dimensional sly(K)-module (of dimension
< p in case of positive characteristic p). Then V is irreducible if and only if

ad(h) has only simple eigenvalues, and any two distinct eigenvalues have their
difference in 27.

Proof. For each n, V[n] has these properties. Conversely, if V' is not irreducible,
then it has a submodule W such that, for some m,n, Vim| is isomorphic to a
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submodule of W and V[n] is isomorphic to a submodule of V/W. If both m and
n are even (resp. odd), then it follows that 0 (resp. 1) is a double eigenvalue of
ad(h). Otherwise, both 0 and 1 are eigenvalues of ad(h). O

Proposition 3.10. Let g be a Lie algebra. Let C be class of (isomorphism classes

of ) finite-dimensional g-modules. Let C be the class of finite-dimensional g-
modules all of whose irreducible subquotients belong to C. Equivalent statements:

(1) any extension of g-modules, 0 — U — V 5 W — 0 with U, W € C, splits:
there exists a g-module homomorphism i : W — V' such that p oi = idy .

(2) any finite-dimensional g-module in C is sum of its irreducible submodules;

(8) any finite-dimensional g-module in C is a direct sum of irreducible sub-
modules.

Proof. The implication (2)=-(3) holds for each given finite-dimensional g-module
V. consider a submodule W of maximal dimension that splits as a direct sum
of irreducible submodules; the assumption implies, if V' # W, that there is an
irreducible submodule W’ not contained in W; then W and W’ generate their
direct sum and we contradict the maximality of W.

Assuming (3), in the setting of (1), there exists an irreducible submodule P
not contained in U. By simplicity of U, its intersection with U is zero, and by
simplicity of W, its image is all of W. So V = U @& P. Then p restricts to a
bijection P — W, whose inverse yields the desired splitting.

Suppose (1) and let us prove (2). Let V be a counterexample of minimal
dimension. Clearly, V' # {0}, and hence contains a simple submodule U. By
induction, V/U is a sum of simple submodules V;/U. Then by (1), we can write
Vi, = U @ P, with P, a submodule. Hence V is sum of U and all P;. ]

Theorem 3.11. Let K be a field of characteristic zero. Every finite-dimensional
representation of sly(K) is a direct sum of irreducible representations.

Proof. By Proposition 3.10, we have to prove that for module V' and submodule
U such that both U and V/U are irreducible, the corresponding exact sequence
splits, that is, there exists a submodule W such that V' = U & W. Equivalently,
we have to prove that the set of submodules of V' is not reduced to {{0},U, V'}.

By Theorem 3.7, we can suppose that U is isomorphic to V[n] and W to V[m],
with n,m # 0.

We conclude in two ways according to whether m = n. First suppose that
m # n. Then since dim(V,,;2) = dim(V},,) — 1, there exists a nonzero element
v in Ker(X) N V,,. Then by Lemma 3.6, there is k¥ > 0 and a submodule W of
V such that W = @, W,,_g with dim(WW;) < 1 for all 4, dim(W¥,,) = 1 and
dim(W,,+2) = 0. None of {0}, U and V satisfies these conditions and we are
done.

Now suppose that m = n. So, by Theorem 3.7, U and V/U are isomorphic
sly(K)-modules. Choosing an isomorphism V/U — U, composed with the ob-
vious maps V. — V/U — U C V, yields a nonzero endomorphism ¢ of the
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sly(K)-module V, such that t* = 0. Write A = K][t]/(t*) (as a vector space, it
has the basis (1,t¢)). Thus, X,Y,Z commute with ¢, and hence are A-module
endomorphisms of V. We have Im(t) = Ker(t) = U, and in particular, each V;,
for ¢ € J,, is a free A-module of rank 1, generated by any element of V; \ U;.
Choose v, € V,, N\ U,. Define v,_9; = Yiv,, for i < n. Working in V/U,
by Lemma 3.6, we obtain that v; is nonzero in V/U for each i € J,, that is,
v; € V; N\ U;. Therefore (v;);c, is a basis of the free A-module V' of rank n + 1.
Also Hv,, = (n+ At)v,, for some X € K. Using that [H,Y] = —2Y, we deduce
that Hv; = (i + At)v; for all i. We now use that the trace of H = [X, Y], viewed
as matrix over A, vanishes. This traceis ) ;. ; (i+At) = A(n+1)t. Hence A = 0.
Thus Hv = dv for all i € V; and all ¢ € J,: H is diagonalizable (as K-linear
endomorphism). In particular, v, is an eigenvector of H; we deduce (Lemma 3.6)
that the K-linear subspace spanned by v; is a sly(K)-submodule of V| and it is
a direct summand of U. O

4. INVARIANT FORMS

Let A be an R-algebra and M an R-module. An R-bilinear map f: AxA — M
is said to be invariant if f(ab,c) = f(a,bc) for all a, b, c.

If g is a Lie algebra over a field K and p a finite-dimensional representation,
then the form B, : (z,y) — Trace(p(x)p(y)) is a symmetric invariant bilinear
form. It is called trace form associated to p. When p = ad is the adjoint
representation (defined by ad(z)(y) = [z, y], this is called the Killing form of the
finite-dimensional Lie algebra g.

A Lie algebra g over a field K is said to be semisimple if it is finite-dimensional
and its Killing form is non-degenerate.

Proposition 4.1. Let A be a finite-dimensional K-algebra. Suppose that it ad-
mits a non-degenerate symmetric invariant bilinear form f, and possesses no ideal
J such that J* = {0}. Then A decomposes as a finite direct product ]}, A; of
simple K -algebras (orthogonal to each other for f, and each being non-degenerate
for f). The A; are precisely the minimal nonzero 2-sided ideals of A.

Proof. Let I be a minimal nonzero ideal. Let J be the orthogonal of I. The
invariance of f implies that J is a 2-sided ideal (exercise: check it). For z € I,
y € Jand z € A, we have f(zy,z) = f(z,yz) = 0 since z € I and yz € J. Using
non-degeneracy, we deduce that zy = 0. That is, IJ = 0; similarly JI = 0.

So I'NJ is also a 2-sided ideal. Hence it is equal to either {0} or I. If INJ =1,
that is, I C J, the property IJ = 0 implies I? = {0}, which is excluded by the
assumptions. Hence, I NJ = {0}. Since dim(/) = codim(J), we deduce that
I ® J = A (linearly); since IJ = JI = 0, this is a product decomposition.

Since f is non-degenerate in restriction to both I, .J, we can pursue by induction
until we have a decomposition A = []_; 4; in which A4; # {0} and the only 2-
sided ideals of A contained in A4; are A; and {0} (and the A;, being non-degenerate
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for f and orthogonal to each other for f). Since 2-sided ideals of A; are also 2-
sided ideals in A and since A? # 0 by assumption, this implies that A; is simple.

Let I be a nonzero 2-sided ideal. So there exists ¢ such that the projection of
I on A; is nonzero, say contains some element x. The set of 2’ € A; such that
2’A; = A;x’ = 0 is a 2-sided ideal squaring to zero, an hence we deduce that
either xA; or A;x is nonzero. Hence either IA; or A;I is nonzero. Since A; is
simple, we deduce that A; C I. O

Exercice: in the above setting, show that A possesses exactly 2" ideals. In
addition, show that each 2-sided ideal of A, viewed as Z-algebra, is a 2-sided
ideal (i.e., is a K-subspace). (Beware that in general, in non-unital K-algebras,
there might be ideals as Z-algebra that are not K-subspaces.)

Proposition 4.2. Let g be a finite-dimensional Lie algebra. Then every nilpotent
1deal 1s contained in the kernel of the Killing form.

Proof. For € I, ad(x) maps g into I, maps I into I?, etc. For y € g, ad(x)
maps each of g, I, I?, etc, into itself. Therefore ad(x)ad(y) maps g into I, maps
I into I?, etc, and thus is nilpotent and has trace zero. This means that x and y
are orthogonal for the Killing form. Since this holds for every y € g, we deduce
that x belongs to the kernel of the Killing form. OJ

Combining the previous two propositions, we deduce:

Corollary 4.3. (K arbitrary field) Every semisimple Lie K-algebra is a finite
direct product of simple Lie K -algebras.

Proposition 4.4. Let g be a semisimple Lie algebra over a field K. Then every
derivation D of g is inner, i.e., of the form ad(x) for some x.

Proof. Let D be a derivation, and define b as the semidirect product g xp K. Let
By, resp. By be the Killing forms. Let I be the orthogonal of the ideal g in b; as
the orthogonal of an ideal, it is an ideal, and since g has codimension 1, I has
dimension > 1. Since g is an ideal, we have (By)|4xy = By. Hence I Ng = {0}.
Hence [ is 1-dimensional, and hence h = g x I, so [ is central. Write, in b,
D =g+ 2z with g € g and z € I. Since [ is central, we have ad(D) = ad(g),
which, in restriction to g, means that D equals the inner derivation ad(g). 0]

FEzercise: 1) Let g be a Lie algebra with center reduced to {0} and such that
every derivation of g is inner. Show that for every Lie algebra h containing g as
an ideal, b is direct product of g and its centralizer {x € §: [z, g] = {0} }.

(Note: By the previous two propositions 4.4, this assumption is satisfied by
semisimple Lie algebras.) 2) Show that 2-dimensional nonabelian Lie algebras
satisfy this assumption.

Exercise: say that a Lie algebra g is radical-free if it admits no nonzero solvable
ideal. Let g be a Lie algebra and D a derivation. Show that the semidirect product
g X p K is radical-free if and only if D is not an inner derivation.
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Remark: if g is a finite-dimensional Lie algebra with trivial radical and D is
a non-inner derivation, then the corresponding semidirect product g xp K is a
radical-free Lie algebra, but is not perfect. We see later that this cannot occur
in characteristic zero (Corollary 6.4).

5. REPRESENTATION OF SOLVABLE AND NILPOTENT LIE ALGEBRAS

Let g be a Lie algebra over a field K. For o € Hom(g, K), write V]a] as K
endowed with the representation p(g)v = a(g)v: this is an irreducible represen-
tation. It is straightforward that any representation in the 1-dimensional space
K has this form.

Lemma 5.1. Let K be an algebraically closed field. Let g be a Lie algebra with
a faithful finite-dimensional g-module (V,p). If K has positive characteristic p,
suppose in addition that dim(V') < p. Then [g, g] contains no 1-dimensional ideal

of g.

Proof. Otherwise, let a be such an ideal. We discuss according to whether a is
central and in both cases, we reach a contradiction.

If a is not central, then for some x we have [z, y] = y. By Corollary 3.2 (where
we use the dimension restriction in positive characteristic), p(y) is nilpotent. Let
E be the kernel of p(y); the relation p(z)p(y) — p(y)p(x) = B(x)p(y) implies
that p(z)E C E for every x € g. So E is a submodule, nonzero since p(y) is
nilpotent. By irreducibility, V' = E. So p(y) = 0, contradicting the faithfulness
of the representation.

Now suppose that a is central in g. Let ¢ be an eigenvalue of p(y). Since y is
central, Ker(p(y) —t) is a g-submodule of V', and hence equals V. So the trace of
p(y) is equal to tdim (V). Since x — Tracep(x) is a homomorphism, it vanishes
on y, and hence tdim(V) = 0 in K. Since 0 < dim(V) < p, we deduce that
t=0. O

Theorem 5.2. Let K be an algebraically closed field of characteristic zero. Let
g be a solvable Lie algebra and (V,p) a finite-dimensional g-module.

(1) If V' is irreducible then V is isomorphic, as a g-module, to V|a] for some
a.

(2) For any function a : g — K, denote Vo, = (,, U,50 Ker(p(g) — a(g))"-
Then V,, = {0} whenever a ¢ Hom(g, K) (Hom denoting Lie K-algebra
homomorphisms); the V,, generate their direct sum @aeHom(g’K) Vo CV.

(3) If g is nilpotent, V = @aeHom(%K) V... Moreover, V,, is a g-submodule for
every « (regardless that K is algebraically closed);

Proof. Let I be the kernel of the representation p; it has finite codimension & in

g.
If g is abelian, then it is standard linear algebra that V = @V, that all V,

are submodules, and that the common eigenspace E, = [, , Ker(p(g) — a(g))
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is nonzero as soon as V, # {0}. The condition E, # {0} clearly implies that
a € Hom(g, K); thus V' = €D, cpom(g i) Vo- 1f V is irreducible, since P E, is a
nonzero submodule, it is equal to V', and irreducibility implies that V = E, for
some «. Since the action is scalar, V = FE, is 1-dimensional, and we deduce that
V' is isomorphic to V[a] as g-module. This proves all the assertions when g/I is
abelian, and in particular when £ < 1.

The result predicts that, when V is irreducible, g/I is abelian. So, consider, by
a contradiction, a counterexample with &£ > 2 minimal. Write h = g/I. Let a be
a nonzero abelian ideal contained in the derived subalgebra [h, h]; we can suppose
that it has minimal dimension. So a is an irreducible h-module for the adjoint rep-
resentation, and actually an irreducible (h/a)-module. Therefore, by minimality
of k, we have dim(a) = 1. Using Lemma 5.1 now yields a contradiction.

Let us prove the second assertion. Using that irreducible representations are
1-dimensional, there exist g-submodules {0} = Vo C V3 C -+ C V, = V such
that V;/V;_; is 1-dimensional, and isomorphic to V[«;] for some o; € Hom(g, K).
Suppose that V,, # {0}, and let ¢ be minimal such that V,, C V;. Then ¢ > 1, and
the projection of V,, on V;/V;_; is nonzero. Since, for every g € g, p(g9) — a(g) is
nilpotent on V,, and p(g) — ;(g) is nilpotent on V;/V;_1, we deduce that o;(g) =
a(g). So a = a4, and thus o € Hom(g, K).

Next, suppose by contradiction that the sum is not direct: so there exists «a
and a finite subset I of Hom(g, K) \ {a}, such that Vo,N)_ 4, Vs # {0}. Since K
is infinite, there exists g € g such that a(g) # S(g) for every g € I. Then, if V/
is the characteristic subspace of p(g) with respect to t € K, we have V3 C VBI( 9)
for all g; since V7 » N > 5¢; Vi, = {0}, we deduce that Vo N3 25, Vs = {0}, a
contradiction.

Now suppose that g is nilpotent and let us prove the last assertion; consider a
counterexample of minimal dimension d; then d > 2 since the case of dimension
1 is noticed above.

Let W C V be a simple submodule, thus of dimension 1 by the above, and iso-
morphic to V[3] for some § € Hom(g, K). Then (V/W) = D,,cnom(g.x)(V/W)a
and (V/W), is a submodule of V/W.

Fix a such that (V/W), is nonzero. First case: (V/W), # V/W (i.e., V/W
has at least two weights). Let U(a) be the inverse image of (V/W), in V; this
is a g-submodule. Then by induction U(«) is sum of common characteristic
subspaces, and applying this to all a;, we deduce that V' is generated by common
characteristic subspaces, proving the decomposition. Moreover, V,, C U(«), and
is therefore a g-submodule, again by induction. So V' is not a counterexample.
Thus, we have shown that for a counterexample of minimal dimension, for every
irreducible submodule W C V', we have (V/W), = V/W for some «a.

For every v € V and g € g, we have (p(g) — a(g))3™V) =1y € W. If a = 3, we
deduce that (p(g) — a(g))®™ )y = 0, and hence V = V,, and is a submodule, so
we have a contradiction.
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It remains to consider the case when o # (. Consider an irreducible g-
submodule of V/W thus 1-dimensional, and let T be its inverse image in V.
Thus T is 2-dimensional. Choosing a basis (e1, es) of T' with e; € W, the repre-
sentation in 7' can be written as

s (BE)Q) U(g)) .

a(g)

Its image cannot be the whole algebra of upper triangular matrices, because
the latter is not nilpotent. Therefore, its image has dimension < 2. Since any
nilpotent Lie algebra of dimension < 2 is abelian, we deduce that the image is
abelian. Therefore, the abelian case applies, and we deduce that T' = T,, © Tj.
We use the uniqueness of the weight of the quotient V/T,. Since the image of
T} in this quotient is nonzero, we have V/T,, = (V/T,)s. Modding out by T', we
deduce that V/T = (V/T),. But as a quotient of V/W, we have V/T = (V/T)3.
Therefore, if V' # T', we deduce a@ = 3, a contradiction. So V =T =V, @& V3,
which is not a counterexample and again we have a final contradiction. 0

Exercise: exhibit one case, with g solvable (and K algebraically closed), for
which V # @, Va.

Corollary 5.3. Let K be a field of characteristic zero. For every finite-dimensional
solvable Lie algebra g, the derived subalgebra [g, g| is nilpotent.

Proof. First suppose that K is algebraically closed. Consider the adjoint repre-
sentation. Its kernel is the center 3 of g; write 3’ = 3N [g, g]. Since irreducible
representations have dimension 1 by the theorem, one can embed g/3 into the
Lie algebra of upper triangular matrices of size dim(g). Its derived subalgebra is
nilpotent. This shows that [g, g]/3 is nilpotent. Since 3 is central, this implies
that [g, g] is nilpotent.

When K is arbitrary, fix an algebraically closed extension; then g®y L satisfies
the property, which passes to its Lie K-subalgebra g. U

Corollary 5.4. Let K be a field of characteristic zero. Let g be a solvable Lie
algebra and (V, p) a finite-dimensional g-module.

(1) The V, generate their direct sum;

(2) if g is nilpotent, then the V,, are g-submodules;

(3) if p(g) is nilpotent for every g € g, then V.= Vy. If moreover V is
irreducible, then it is 1-dimensional and isomorphic to V|0].

Proof. Let L be an algebraically closed extension of K. Define g* : g ®x L and
VI =V @y L. We have V, = VLN V. Hence these generate their direct sum,
and, when g is nilpotent, are submodules.
Now suppose that p(g) is nilpotent for every g € g. We have V' = @, cpomgt 1) (V5 )a-
Fix « such that (V%), # {0}. For every g € g, a(g) is an eigenvalue of p(g),
but the latter is nilpotent (this is inherited from V to V*). Hence a(g) = 0
for all ¢ € g. Note that g M-linearly spans g”, and hence a = 0. So V¥ =
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(V). So Vo = (VE)yNV = V. Let W be an irreducible L-subspace of VL.
Then W is 1-dimensional, and hence elements of W belong to the intersection
Nyeq Ker(p(g)ye). Since all p(g) are matrices over K, this intersection is also
nonzero at the level of V. Hence [, Ker(p(g)yz) # {0}. If V is irreducible, we
deduce that it is 1-dimensional and with null action, i.e., isomorphic to V[0]. O

Corollary 5.5 (Engel’s theorem). Let K be a field of characteristic zero. Let g
be a finite-dimensional Lie algebra such that ad(z) is nilpotent for every x € g.
Then g is nilpotent.

Proof. We first assert that g is solvable. Let g be a counterexample of minimal
dimension. Let h be a maximal solvable subalgebra of g, so h # g. Under the
adjoint action, we view g as an h-module. Then g/h contains an irreducible
h-submodule m/h. By Corollary 5.4(3), m/h has dimension 1 and has a null
action, which implies [h, m] C h. In particular, m is contained in the normalizer
nof h. As m/h is a 1-dimensional subalgebra, and hence m is a subalgebra with
[m, m] C h. So m is solvable, and this contradicts the maximality of b.

So g is solvable. Let {0} = gl c gl ¢ ...g/¥ be submodules (under the
adjoint representation) such that each successive quotient is irreducible. By
Corollary 5.4(3), each gl!/gi=1 is I-dimensional, with null action. Choosing
a compatible basis, we can therefore express all ad(z), x € g, as strictly upper
triangular matrices. So g is nilpotent. U

Remark: Engel’s theorem holds over arbitrary fields; see [J, Chap. I1.2].

Lemma 5.6. Let R be a scalar ring. Let A be an algebra (with product denoted
by [-,-]) and D an R-linear derivation of A. Then for allt,u € R, z,y € A, and

n € N we have
n

=t =0l =3 ()0~ 0¥, (0~ )

k=0

Proof. By induction on n; the case n = 0 is clear. Suppose that n > 1 and that
the formula is proved for n — 1. Then

(D —t—u)"(zy) =(D —t —u)(D —t — )" (zy)

—(D —t—u) ni (" . 1) (D — t)*z, (D — w)" "y,

k=0

Use that (D —t — u)[(D — t)kz, (D — u)""17*y] is equal to
(D =), (D —u)" "y + (D = )z, (D — u)""yl,

and then (as in the proof of the classical binomial expansion) change the variable
k + 1 to k in the left-hand term, use the formula (";1) + (Zj) = (Z) to obtain
the desired formula. (Exercise: fill in details.)
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Theorem 5.7. Let K be a field of characteristic zero. Let by be a nilpotent Lie K -
algebra. Let A be a finite-dimensional K -algebra (with product denoted as [-,-]),
and p : g = Der(A) a K-algebra homomorphism. Let A D B ,cpom(g i) Aa be the

characteristic decomposition of A. Then this is an algebra grading: [Aa, Ag] C
Auip for all a, f € Hom(h, K).

Proof. Write d = dim(A). Fix «,f € Hom(h,K). For z € A,, y € Az and
g € b, we have z € Ker(p(g) — a(g))? and y € Ker(p(g) — B(g))%. Then the
formula of Lemma 5.6, for t = a(g) and u = (h), shows that [z,y] belongs to
the kernel of (p(g) —a(g) — (g))??. Since this holds for all g € b, we deduce that
[z, y] € Aatp. O

6. CARTAN SUBALGEBRAS

Let g be a Lie algebra. A Cartan subalgebra is a nilpotent subalgebra, equal
to its normalizer.

Assume that we work over an infinite ground field K. Let g be a finite-
dimensional Lie algebra. For = € g, write go(z) = Ker(ad(z)¥™®) the character-
istic subspace of ad(z) with respect to the eigenvalue zero (“null-characteristic
subspace of ad(z)”). We say that x € g is a regular element if dim go(z) is
minimal, that is, equals min,e, dim(go(y)). The existence of regular elements is
obvious.

Exercise: show that in the space of matrices, having a centralizer of dimension
> k is a Zariski-closed condition (i.e., can be defined as zero set of a certain
set of polynomials). Deduce that the set of regular elements is a (nonempty)
Zariski-open subset of g.

Theorem 6.1. Let K be an infinite field. Let g be a finite-dimensional Lie K-
algebra. Then for every reqular element x € g, the null-characteristic subspace
go(x) of ad(x) is a Cartan subalgebra of g.

Proof. First suppose that K is algebraically closed. Fix x € g. Write g =
D,cx 9, the characteristic decomposition with respect to ad(x). So go = go(z).
Write g, = EB#O g:+. By Theorem 5.7 (with (Kx,g) playing the role of (g, A)),
(9¢)tex is a grading of g, and in particular, go is a subalgebra and [go, g.] C g..

We first check (for arbitrary x € g) that gq is equal to its own normalizer n.
Since = € go, n is ad(x) invariant, and hence n is a graded subspace of g. Thus,
if, by contradiction, n # gg, there exists ¢t # 0 such that n, # {0}. Since n,
is ad(z)-invariant, there exists an eigenvector, so there exists y € n, \ {0} such
that [x,y] = ty. So ad(y)(t~'z) = —y; this contradicts the assumption that y
normalizes go.

Now we check that gy is nilpotent. By Corollary 5.5 (Engel’s Theorem) it
is enough to show that ad(y) is nilpotent for every y € go. Assume otherwise.
For y € go, write N, = ad(y)|y, and T, = ad(y)|,.. Then N, is nilpotent, T,
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is invertible. We have to show that NN, is nilpotent. Assume, by contradiction,
otherwise.

The set of s € K such that T, + sT}, = T,4, is invertible is the complement
of a finite subset F,. Also, the set Fy of s € K such that N, + sN, is nilpotent
is finite: otherwise N, + sN, is nilpotent for all s, namely (N, + N,)? = 0 for all
s, with d = dim(g); expanding and taking the term of degree d yields N; =0,a
contradiction. So, for s ¢ Fy U F, and z = x + sy, we have NN, not nilpotent and
T, is invertible. Thus, dim go(z) < dim go(z), contradicting that = is regular. O

We henceforth assume that K has characteristic zero.

We say that b is a split (or K-split) Cartan subalgebra if the adjoint represen-
tation of h on g can be made upper triangular in some basis. We say that g is a
split (or K-split) Lie algebra if it admits a split Cartan subalgebra (beware that
this does not always mean that all Cartan subalgebras are split). If § is a split
Cartan subalgebra, we have g = @aeHom(h’K) go- We call this a Cartan grading
of g.

Let g be endowed with a Cartan grading.

Lemma 6.2. For all o, 3 € Hom(go, K) such that gg # {0}, we have fg, 4_.] €
Q<Oé‘[gavgfa})'

Proof. Write ggizqa = €D,,cz 98+na- This is a goize-submodule of g. For = € g,
Y € g_qn, write z = [z,y|; both ad(z) and ad(y) preserve gpizn, and hence
their commutator ad(z), restricted to g%l has trace zero. Computing this trace
componentwise, we obtain the equality

0= 3 (dim 95400 (8 + na)(2),

which can be rewritten as

dim(ggs+za)B(2) = — (anim gﬁ+mx> a(z);

nez

by linearity the latter equality holds for all z € [g,, §_o]. Since the characteristic

is zero and gz # {0}, this dimension is nonzero in K, and we deduce that in
Znez n dlm(gﬁfna) |:|
dim(gﬁ+Za) ’

restriction to [ga, §—a] we have § = g with g =

Proposition 6.3. Let g be a finite-dimensional Lie algebra over a field K of
characteristic zero. Then the kernel of the Killing form is a solvable ideal.

Proof. If I is the kernel of the Killing form and L is an extension of K, the kernel
of the Killing form of the Lie L-algebra g ®x L is equal to I ®x L. Hence, we
can suppose that K is algebraically closed, and we fix a Cartan grading on g.

We start proving the following claim: if g is a nonzero perfect finite-dimensional
Lie algebra over K, then its Killing form B is not zero.
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Assume by contradiction that B = 0. Since g is perfect, we have gy = go N
[9,9] = >_,[00:9-a]. Fix 2 € [ga, 9-a]. Then

B(z,z) = Trace(ad(2)?) = Zdim(g@ﬁ(z)?
B

By Lemma 6.2, we have §(z) = ga pa(z) for some ¢, 5 € Q. So

0=B(z2) = Y dim(gs)¢2 sa(2)"
B

Hence, for every § such that gz # {0}, every a and every z € [g,, §—o] we have
B(2) = qapa(z) = 0. Since go = > _[8a, §-a), we deduce that §(z) = 0 for all
z € go, 1.e.,, gg # {0} implies § = 0. This means that g = go is nilpotent, a
contradiction with g being perfect and nonzero.

The claim being proved, let us prove the proposition. Let I be the kernel of
the Killing form, (1) its derived series, and J = (0, 1. Then J is a perfect
ideal. If by contradiction J # {0}, then by the previous fact, its Killing form is
nonzero. It is straightforward that the Killing form of an ideal is the restriction
of the Killing form of the larger algebra, and hence the Killing form of g does
not vanish on J x J. This contradicts the assumption that .J is contained in the
kernel of the Killing form. Hence J = {0}, which means that [ is solvable. [

In characteristic zero, we therefore have a converse to Proposition 4.2.

Corollary 6.4. Let K be a field of characteristic zero, and g a finite-dimensional
Lie K-algebra. Equivalent properties:
(1) g is semisimple (i.e., has a non-degenerate Killing form);
(2) g has no nonzero abelian ideal (or the same with “abelian” replaced with
“solvable”, or “nilpotent”)
(3) g is isomorphic to a finite direct product of simple K -algebras.

Proof. If we have a nonzero solvable ideal, its derived series consists of ideals
(exercise) and hence its last nonzero term is a nonzero abelian ideal. So the 3
differents readings of (2) are equivalent (with K arbitrary).

For an arbitrary field, (1)=(3) is the contents of Proposition 4.1 respectively
(with K arbitrary). Also, (3)=-(1) is immediate: if we have a nonzero solvable
ideal, its projection to some simple factor is a nonzero solvable ideal, and hence
the simple factor is solvable, which is not possible.

Finally, (2)=-(1) is the implication making this a corollary: suppose that g has
no nonzero solvable ideal. By the proposition, the kernel of the Killing form is
solvable, and hence is zero; hence the Killing form is non-degenerate. U

Given an algebra g graded in an abelian group A and B a bilinear form on g,
we say that B is concentrated in degree zero if B(g.,gs5) = {0} for all o, 5 € A
such that oo + 8 # 0.

Proposition 6.5. Let g be a finite-dimensional Lie K-algebra.
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(1) if g is endowed with a grading in a torsion-free abelian group, the Killing
form of g is concentrated in degree 0;

(2) if g is endowed with a Cartan grading, then every invariant symmetric
bilinear form B is concentrated in degree 0.

Proof. For x € g, and y € gg with a + 8 # 0, ad(x)ad(y) shifts the degree by
a+ 3, and hence is nilpotent, since the grading abelian group is torsion-free. This
establishes the first assertion.

For the second assertion, assume the contrary: consider zyp € ga, Yo € 95,
such that B(zg,y0) # 0. Fix any h € b such that (a + f)(h) # 0. Define
z, = (ad(h) — a(h))"zy and y, = (ad(h) — B(h)I)"yo. Then z, and y, are
zero for n large enough. So, there exists n,m > 0 such that B(z,,y,) # 0
and B(z,11,Ym) = B(zp, Yms1) = 0. Since z,41 = [h, x,] — a(h)z, the relation
B(Zpt1,Ym) reads as B([h, xn],yn) = a(h)B(zn, y,). Similarly, B(z,, [h,y,]) =
B(h)B(n,ys). The invariance of B implies that these two numbers are opposite,
so (a+ B)(h)B(x,,y,) = 0; since this is nonzero, we have a contradiction. [

Proposition 6.6. Let g be a finite-dimensional Lie K-algebra with a Cartan
grading (g.). Let ® = {a € Hom(go, K) : ga # {0}} be the set of roots. Then
K = ,eco Ker(a) is contained in the kernel of the Killing form.

Proof. For x,y € gy, and B the Killing form, we have
B(z,y) = Tr(ad(z)ad(y)) = ) _ dim(ga)a(z)a(y).

In particular, if = € K, we have B(x,y) = 0. Since we also have B(go, go) = {0}
for o # 0 (by Proposition 6.5), we deduce that x belongs to the kernel of the
Killing form. U

Let g be endowed with a Cartan grading. Let B be an invariant, non-degenerate
symmetric bilinear form on g. By Proposition 6.5 it is non-degenerate on gg, and
hence for every a € g there exists a unique h.” € g such that B(h.®,-) = a on
go.* When B is the Killing form (-, -) (thus assumed non-degenerate, i.e., g is split
semisimple, we write it as h/, (the prime is there because it will be convenient in
the sequence to renormalize it and define h, = WfT&)h:l; at the moment we do

not even know that the denominator does not vanish).

Proposition 6.7. Let g be as above. Then hP € [ga,9_o] for all a such that
go # {0}. More precisely, for every I1-dimensional go-submodule Kz of g., we
have [g_o, Kz] = KhB.

Proof. Let x be a common ggy-eigenvector in g,. For any y € g_, and z € go, we
have

B(z, [w,y]) = B([z,2],y) = B(a(2)x,y) = B(2,hg)B(w,y) = B(z, B(z, y)h;)

“In the lectures, this definition as well as the next proposition will be stated in the case of
semisimple Lie algebras and Killing form, at the beginning of the next chapter.
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hence (using non-degeneracy on gg) for all y € g_, we have [z,y] = (z,y)h5.
Choosing y such that (x,y) = 1 (using that B(-,-) yields a duality between g,
and g_,), we obtain the result. O

7. STRUCTURE OF SEMISIMPLE LIE ALGEBRAS

We now consider a semisimple Lie algebra g over a field of characteristic zero
endowed with a Cartan grading, and its Killing form (-,-). Call & = {a €
Hom(go, K) : go # {0}} the set of roots, and ®* = & \ {0}. The dimension of
go is called the rank® of g (it does not depend on the choice of Cartan grading,
since by definition all Cartan subalgebras have the same dimension).

By either assertion of Proposition 6.7, the Killing form is concentrated in degree
zero, 80 (ga, 85) = {0} whenever a+ 3 # 0, and the Killing form induces a duality
between g, and g_, for all . Recall that h/, is the element of gy characterized
by the property (h.,h) = «(h) for all h € gy (so hl, = —h" ., and is nonzero for
a #0).

Proposition 7.1. The Cartan subalgebra gy is abelian and linearly generated by
the hl, when o ranges over ®*.

Proof. By Proposition 6.6, (.- Ker(a) is contained in the kernel of the Killing
form, which is {0}. Since this intersection contains [go, go], it follows that go is
abelian. This intersection is also the orthogonal of the subspace spanned by the
he«, and hence this subspace is all of go. 0

Proposition 7.2. We have (h!,h.) # 0 for every o € ®* (so the “coroot”
he = mh; is well-defined).

Proof. By Proposition 6.7, hl, € [ga, -] By Lemma 6.2, we can write, for every
p e @, f(hl) = qsa(hl) for every 3, for some rational gg. If by contradiction
(h.,,h!) = 0, then this number being equal to a(h,), we deduce G(h!,) = 0 for
all B € ®. Since (3.4 Ker(8) = {0} by Proposition 6.6, we deduce h;, = 0, and
hence a = 0. 0

Proposition 7.3. For every nonzero root a € ®*, we have dim(g,) = 1, while
dim(gna) = 0 for every n € N>s.

Proof. By Proposition 6.7, there exists © € g, and y € g_,, such that h, = [z, ],
and such that Ky is a 1-dimensional go-submodule of g_,; thus [Kz, Ky|] =
(80, Ky| = Khy. Write M = (@nzl gm) @& Kh, ® Ky.

SWhen g is not semisimple, we can still call dim(go) the Cartan rank of g, although it
does maybe not deserve to be called “rank”. We can call effective rank of g the dimension of
00/ Naco Ker(a), that is, the dimension of the linear span of ® in gg; it is at most equal to the
Cartan rank, with equality for semisimple Lie algebras (and not only them). For nilpotent Lie
algebras, the Cartan rank equals the dimension while the effective rank is zero.
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Hence M is stable under both ad(z) and ad(y), and hence their commutator
ad(h,) has trace zero on M. This trace can be computed as

<_1 +) ndim(gm)> (has ha).

n>1

Since K has characteristic zero and given that (h,,hs) # 0 (Proposition 7.2),

this can be zero only if dim(g,) = 1 and dim(gn,) = 0 for all n > 2. O
Corollary 7.4. For each oo € ®* and f € © and © € gg, we have [h,, x| =
%x; in particular for x € g, we have [h,, x] = 2x. O
Corollary 7.5. For every nonzero root o € ®*, we have [go,§-o] = Kho. In

particular, 5o = §_o0 ® Kha ® go 18 isomorphic to sly(K), with an isomorphism
mapping hy to h.

Proof. The first assertion follows from Propositions 6.7 and 7.3. For the second,
choose nonzero elements = € g, and y € g_,; by the first assertion, [z,y] is a
nonzero scalar multiple of h,, so we can renormalize y to assume that it equals
he. By Corollary 7.4, we have [hq, 2] = 2z and [ha, y] = —[h_a,y] = —2y. O

Theorem 7.6. (Only in this theorem, g is not assumed semisimple; K still has
characteristic zero.) Let a finite-dimensional Lie algebra g be endowed with a
Cartan grading. Then g is semisimple if and only if it satisfies the three following
conditions:

(1) Naeo- Ker(a) = {0}

(2) Va € *, dim(g,) = 1;

(3) Va € %, O‘|[ga,gfa] 7& 0.

Proof. That g semisimple satisfies these conditions has already been checked.
Suppose they are satisfied. Let n be the kernel of the Killing form. Being nor-
malized by go, n is a graded ideal. It follows from the last two assumptions that
for « € ®*, g, is contained in copy of sly(K). Hence n C go; in particular,
[n, 8] C ga; since n is an ideal, it follows that n centralizes g, for every «, and

hence n C (,cq- Ker(a). By the first assumption, we deduce n = {0}. O

Given «, 8 € ®*, define m, 3 = m,n,p = n by the requirement that ka +
is a root for all k € {—m,...,n}, and not for k = —m — 1,n + 1, and define
Va8 = Dj__,, Okatps- This is a s,-submodule of g.

By Proposition 7.3, ka + 8 # 0 for every k € Z, so dim(gia+5) = 1 for all
integer k in [—m, n|, again by Proposition 7.3.

Proposition 7.7. Let o, § be nonzero roots such that o + (8 is also a nonzero
root. Then [gu, 85] = Gats-

Proof. Choose a nonzero x € g,. Since o + 3 is a root, we have n = nyg > 1.
The eigenvalues of ad(hq)ls, ,, with multiplicity, are (ka4 3)(hq) for —mq s <
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k < nqp. Since ka(h,) = 2k, we deduce that these eigenvalues are distinct and
their difference lie in 2Z. Therefore, by Corollary 3.9, v, g is an irreducible s,-
module; in particular, the kernel of ad(x)|,, , is 1-dimensional and reduced to

Ona+p- Hence ad(x) is injective on gg, and thus [ga, 95] = Ga+s- O
Proposition 7.8. Given o, B € ®*, with o # £5; write m = mqy 3 and n = n, .
Then

(N, )

by —

Proof. For h € gy, the trace of ad(h) on v, 5 is

(o) S k4 (hh) S 1= (m4n+1) (%(h,h@n%h,h’ﬁ))

k=—m k=—m

Since v, is a s,-submodule, this trace vanishes for h = h/. The formula
follows. O

This first allows to improve the second part of Proposition 7.3.
Proposition 7.9. [fa € &*, t € K and ta € O, thent € {—1,0,1}.

Proof. Write = ta and suppose t ¢ {—1,0,1}. We apply Proposition 7.8;
the existence of m,n follows from the assumption on g. The formula reads as
2t=m —n,sot € %Z. Switching the role of o and /3, we also deduce 1/t € %Z.
So t € {£1/2,£2}. The case t = £2 is excluded by Proposition 7.3, and so is
the ¢ = +1/2 by switching a and S. O

Proposition 7.10. For all nonzero roots a, 3, we have (h,,, hj) € Q (and hence
(ha,hg) € Q as well).

Proof. By Proposition 7.8, it is enough to show that (h.,hl) € Q. This is by
definition equal to

Tr(ad(hf)?) = > (hi,, hy)*.
B
Hence
1 (B, h)?
<h/ h/>_§<h/ h/>2€Q' O

o) o o) o

Lemma 7.11. Let V' be a finite-dimensional vector space over K (here, an arbi-
trary field) with a non-degenerate bilinear form (-,-), and I a subset of V, linear
spanning V', such that (x,y) € F for all x,y € V and some subfield F of V.
Then, for any basis J of V as a K-linear space, I is contained in the F'-linear
span of J.
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Proof. First suppose that J is an orthogonal basis. Then for every € I, we have

T=3 s gzziy and the result holds. In general, write J = (e1, ..., ex); then we

can orthogonalize, namely find, for all ¢, €, with e, — e; in the F-linear span of
{ej :j < i}, with J' = {e] : 1 <14 < k} an orthonormal basis as well, and it still
holds that (z,y) € F for all z € TU J'. So every x € I belongs to the F-linear
span of J', which coincides with the F-linear span of J. U

For any subfield F of K, write g} the K-linear span of ® (where ® is identified
to {hl,: a € ®}). By Lemma 7.11, we have dimp(g{’) = dimg(go).

In a field F, say that t € F is positive, written t > 0, if ¢ is a sum of a
nonempty finite number of nonzero squares. A real field is a field in which 0 is
not positive. We say that a bilinear form B, on a vector space over a real field is
definite positive if B(z,z) > 0 for all z # 0.

Proposition 7.12. For every subfield F' of K which is a real field, the Killing
form is positive-definite on the F-linear span of ®. More generally, for every
subfield F' of K, field extension F' of F' such that F' is a real field, the extension
of the Killing form to gOF' = gl' @ F' is definite-positive.

Proof. Fix a basis J of gy contained in ®, and consider an element of g/, which
can be, by Lemma 7.11, in the form v = ZyeJ tyy with t, € F'. We have

(v,v) = Z tyt.(y,2) = Z t,t.Tr(ad(y)ad(2))

(y,z)ejz (y,Z)EJ2
2
B Z fyts Zoz(y)oz(z) - Z <Z tyo‘(?J)) = Za(v)2;
(y,2)es? o a yeJ e

If v # 0, there exists v such that a(v) # 0 and hence, since S(v) = >_ (8,y) € F
for all 5, we deduce that (v,v) > 0, and the Killing form is therefore positive-
definite.

The same proof applies to the generalized statement. 0

When K = C, we usually consider F' = R in this statement; when K is
arbitrary, one usually consider F' = Q and F’ = R, and we view ® as a subset of
the Euclidean space g&, although the latter is no longer considered as a subset
of g.

For nonzero elements «, 3 € gft, define 6,3 = arccos (%) € [0,7], the
angle between « and f.

Proposition 7.13. For any «, € ®* with ||| > ||a|, («, B) <0, we have one
of the following:

(a) Onp =m/2 (that is, (o, ) =0)

(0) bap=7/3, I8l = llafl; @+ 5 € @

(¢) bap = /4, 1Bl = V2lal; a+ 8,20+ B € D
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(d) ba =7/6, 18] = V3llal; @+ 5,20 + 8,30 + 8,30 + 25 € ®;

(6) QCY,,B =0,a= _B

In particular, if they are not orthogonal, we have ||B||* = toplll|* with tas €
{1,2,3}.

Proof. Write ¢ = —cos(6,3) € [0,1]. The cases ¢ = 0 and ¢ = 1 yield respec-
tively (a) and (e); in the latter case, we use Proposition 7.9 to deduce oo = —p.
Otherwise, 0 < ¢ < 1.

We first Proposition 7.9, which implies that éa”g > 0 (equivalently, ¢ < 1), and,

to start with, the consequence of Proposition 7.8, namely that s := 2?;‘%) eZ

and t = 2% € 7Z. Indeed, this can be rewritten as s = 20% € 7Z and

t = 26% € Z. Multiplying, this yields st = 4c®> € Z; since 0 < ¢ < 1 is a
cosine, we deduce st = 4¢* € {1,2,3}. Since ||3|| > |||, we deduce that t > s,
and hence s = 1. So ||8]|/||a|| = 2¢ = V4 € {1,V/2,4/3}, so the corresponding
value of ¢ is 1/2, 1/v/2, v/3/2 respectively, corresponding to the given values of
the angles given in Cases (b), (c), (d) respectively.

Now use more precisely Proposition 7.8, which says that ¢ = n — m, where
ka+ g€ @ forall k€ {1,...,n}, and m > 0. So n > t. In the above items, the
value of t is respectively 0, 1, 2, 3, and the additional assertion follows in each case,
except, in the last case, 3+ 2. But denoting ' = — 5 —3a’ and o = —f3 —2a/,
we have ||3'|| = v/3||/||, (¢/, 8) < 0, and hence applying the result to this pair,
we deduce that 3¢/ + 3/ = 3a + 2 belongs to ®. O

8. ROOT SYSTEMS

Definition 8.1. Let E be a Euclidean space. A root system is a finite subset ®
of F satisfying 0 € &, & = —P, and satisfying the conclusion of Proposition 7.13.

For FF C E, we write F* = F'~ {0}. We call a subset F' of F irreducible if
it is not reduced to {0}, and cannot be written as F; U Fy, with (Fy, Fy) = {0},
Fr + F* 4 F}.

We write this section separately, because it is pure Euclidean geometry.

Definition 8.2. Let E be a Euclidean space and F' a subset of E, with FF = —F.
We say that B C F' is a fundamental basis of F if
e B is linearly independent;
e we have F* = (XBN F)U —(XB N F), where ¥B is the subsemigroup
generated by B (the set of nonempty sums of elements of B)
o (z,y) <0 forall z,y € B.

Lemma 8.3. Let E be a Fuclidean space. Let F' be root system in E, or more
generally a finite subset of E such that

o ['=—F;

e for all z,y € F such that (x,y) <0, we have x +y € F.
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Let £ be a linear form on E, such that ¢ does not vanish on F ~ {0}. Write
Fulf) ={z € F: l(z) >0} and FL[0] = FL[l) \ (Fy[(] + Fy[(]). Then Fi[(] is
a fundamental basis of F and F.[(] = FN\X(F ). (In particular, F\[(] and
FL[(] determine each other.) Moreover, every fundamental basis of F has this

form. (for some ().

Proof. Enumerating elements of F as xy, ...,z with {(z1) < l(x2) < ..., by an
immediate induction, we see that x; belongs to the Z-span of F}r Since F' = —F
and ¢ does not vanish on F' \ {0}, the complement of F' \ {0} is —F ~ {0}.

Suppose by contradiction that =,y € F} with (z,y) > 0. Then (—z,y) < 0,
and —x,y € F',so —x+y € F, and hence x —y € F as well. Up to switch  and
y, we can suppose that {(z —y) > 0, so x = (z — y) + y does not belong to F}, a
contradiction.

Consider, by contradiction, a nontrivial combination between elements of F}r
Gathering coefficients of the same sign, write it as wy = wy, where wy =
Y seu tz®, with U,V disjoint subsets of F!, U nonempty, and ¢, > 0 for all
x € UUV. In particular, ¢/(wy) > 0, and hence wy # 0. So 0 < (wy,wy) =
(wy, wy) <0, a contradiction. Hence FY} is a free family.

The inclusion X(F}) N F C F, is clear. Conversely, by construction if z €
Fy \X(F}) with £(x) minimal, then z ¢ F}, so we can write z = y + z with
y,z € Fy so {(y),£(z) < {(x) and thus by minimality, one has y,z € X(F}).
Hence z also belongs to X(F}), a contradiction.

Finally, let B be a fundamental basis; choose ¢ with ¢ = 1 on B. Then the
corresponding F}r (determined by ¢) contains B, and since it is a basis of the
span of F' as well as B, we deduce that F}L = B. 0

Definition 8.4. A spread system in F is a subset B of E~\.{0} such that the angle
between any two distinct elements of B belongs to {m/2,27/3,37/4,57/6}. It is
called a normed spread system if, in addition, it satisfies the norm compatibility
of root systems: if «, § € B are distinct and non-orthogonal, and ||5|| > ||a|| and
the angle between them is 27/3, resp. 37/4, resp. 57/6, then ||| = ||c|, resp.

181 = v2l|a|, resp. [|8]l = V3la].

By Lemma 8.3, for very root system ® (and choice of linear form ¢ not vanishing
on ®*), the subset @, called set of fundamental roots (relative to ), is a linearly
independent normed spread system.

Definition 8.5. The (non-oriented) Dynkin diagram of a spread system P is the
graph whose set of vertices is P, with an edge between any two non-orthogonal
roots:

e labeled by 3, or denoted as a simple edge, if the angle is 27/3;
e labeled by 4, or denoted as a double edge, if the angle is 37/4;
e labeled by 6, or denoted as a triple edge, if the angle is 57 /6.
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Given a normed spread system, its (oriented) Dynkin diagram consists in endow-
ing each edge labeled by 4 or 6, using an arrow from the largest to the smallest
vector (to memorize the convention, think of the arrow as a > sign!).

Defini