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Abstract. We study the near action of the group PC of piecewise continu-
ous self-transformations of the circle. Elements of this group are only defined
modulo indeterminacy on a finite subset, which raises the question of realiz-
ability: a subgroup of PC is said to be realizable if it can be lifted to a group
of permutations of the circle.

We prove that every finitely generated abelian subgroup of PC is realizable.
We show that this is not true for arbitrary subgroups, by exhibiting a non-
realizable finitely generated subgroup of the group of interval exchanges with
flips.

The group of (oriented) interval exchanges is obviously realizable (choosing
the unique left-continuous representative). We show that it has only two real-
izations (up to conjugation by a finitely supported permutation): the left and
right-continuous ones.

1. Introduction

1.1. Context. We deal with various groups of piecewise continuous transforma-
tions in dimension 1. The best known is the group of piecewise translations, better
known as group of interval exchange transformations. Interval exchanges were
introduced by Keane [Ke]; they have mostly been studied in classical dynamics
(iteration of a single transformation). Its study as a group notably starts in the
determination by Arnoux-Fathi and Sah of its abelianization [Ar1]. This study
has been recently pursued, notably in work by C. Novak (e.g., [Nov09]), Dahmani-
Fujiwara-Guirardel [DFG, DFG2], and Boshernitzan [Bo], see also [Cor2]. Two
outstanding problems about this group is whether it admits non-abelian free sub-
groups, a question attributed to A. Katok, and whether it is amenable [Cor1].
Recent progress on this latter question is due to Juschenko-Monod [JM], subse-
quently improved by these two authors along with Matte Bon and de la Salle
[JMMS]. If we allow flips, we obtain a larger group, which is seldom studied, and
usually not precisely defined; it apparently first appears in the thesis [Ar1], where
it is shown to be simple. The questions of realizability, which we consider here,
do not seem to have been considered, notably because defining interval exchanges
with flips as a group is usually swept under the carpet.
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1.2. Set-up. Let S be the circle R/Z.

Definition 1.1. Let P̂C ./(S) be the group of permutations of S that are con-
tinuous outside a finite subset (it is indeed stable under inversion, by an easy
argument).

The group P̂C ./(S) includes the normal subgroup of finitely supported permu-
tations Sfin(S) of S.

Definition 1.2. We define PC ./(S) as the quotient group P̂C ./(S)/Sfin(S).

Thus, PC ./(S) is the group of all piecewise continuous permutations of S, up
to finite indeterminacy.

Definition 1.3. Let PC+(S) be its subgroup of piecewise orientation-preserving
transformations. Let PC−(S) be the subset of PC ./(S) consisting of those piecewise-
reversing transformations. Let PC±(S) ⊂ PC ./(S) be the disjoint union PC+(S)t
PC−(S).

Thus PC+(S) is a subgroup of index two in PC±(S); it first appears in [Ar2],
where it is shown to be simple. Note that in contrast to what happens in self-
homeomorphism groups, PC+(S) has infinite index in PC ./(S), which we have to
distinguish from PC±(S).

Definition 1.4. Let IET ./(S) be the subgroup of PC ./(S) consisting of piecewise
isometric elements (also called group of interval exchanges with flips). Define
IET+(S) = PC+(S) ∩ IET ./(S), the subgroup of piecewise translations, usually
called group of interval exchanges. Also define IET±(S) = PC±(S) ∩ IET ./(S).

Figure 1. Parameterizing the circle as an interval, examples of
graphs of elements of PC ./(S). The first belongs to IET+; the
second belongs to IET−, the third to IET ./ r IET±. The fourth is
a more “typical” element of PC ./(S). The value at breakpoints is
not prescribed, as we consider their group elements as defined up
to finite indeterminacy.

We denote by π the quotient group homomorphism P̂C ./(S)→ PC ./(S).
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Definition 1.5. We say that a subgroup Γ ⊂ PC ./(S) is realizable if it can be

lifted to P̂C ./(S), i.e., if there exists a subgroup Λ of P̂C ./(S) such that π|Λ is
bijective.

More generally, a piecewise continuous near action of a group Γ on S
means a homomorphism Γ→ PC ./(S). We call it realizable if it can lifted to a

homomorphism Γ→ P̂C ./(S).

Note that every subgroup of a realizable subgroup is realizable.

Example 1.6. Every finite subgroup of PC+(S) is realizable. For instance, every
element of order 2 has a lift of order 2. This easy fact is true in the broader context
of near actions, see Remark 2.3.

Example 1.7. The subgroup PC+(S) is realizable. Indeed, we can lift every
f ∈ PC ./(S) to its unique left-continuous representative, and in restriction to
PC+(S), this lift is bijective and taking this lift is a group homomorphism.

Note that the left-continuous representative of f is bijective if and only if
f ∈ PC±(S). However this does not make PC±(S) realizable: it is easy to find
in IET− a transformation of order 2 that has no lift of order 2 that is either
left-continuous or right-continuous (see Lemma 4.6).

That PC+(S) is realizable makes it (and its subgroups) easier to define, since
one can refer to piecewise continuous, left-continuous permutations of the cir-
cle. This artifact makes the definition shorter (since one does not have to mod
out finitely supported permutations), and often explains the restriction to the
piecewise orientation-preserving case, in many settings where this is not really
used.

1.3. Non-realizability and restriction results. The first main result of this
paper is a non-realizability theorem.

Theorem 1.8 (Theorem 4.7). The group PC ./(S) is not realizable. More pre-
cisely, IET± is not realizable, and even has a finitely generated subgroup that is
not realizable.

Actually, the result also holds, with some technical cost, with the stronger
conclusion “not stably realizable” (Theorem 4.17). The latter is a more natural
notion, see §2; rather than defining it in this introduction, let us pinpoint that it
is equivalent to the assertion that, for every nonempty open interval, the group of
interval exchanges with flips that induce the identity on the complement of I, is
not realizable. The latter can be viewed as the group of interval exchanges with
flips of I. So the failure of stable realizability means that even making use of
those additional points in the complement, does not allow to realize the action.

Our approach also provides, with further work, a result in the piecewise orient-
ation-preserving case. For a subgroup Γ of PC+(S), we denote by Γleft (respec-
tively Γright) the group of left-continuous (resp. right-continuous) representatives
of elements of Γ.
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Recall that the Q-rank of an abelian group A is the dimension of A⊗Z Q; for
a finitely generated abelian group A ' Zd × (finite), this is just d.

Theorem 1.9 (Theorem 4.11 and Corollary 4.13). Modulo conjugation by finitely
supported permutations, the only subgroups lifting Γ = IET+ are Γleft and Γright.
The same conclusion holds when Γ is:

• any subgroup of PC+(S) that includes IET+ (e.g., the piecewise affine
orientation-preserving subgroup);
• for any subgroup Λ of rotations of Q-rank ≥ 2, the subgroup IET+

Λ of
interval exchanges with singularities and translation lengths in Λ.

1.4. Realizability results. Realizability makes sense in a much more general
setting (near actions on sets), see §2. As already mentioned, finite groups are
always realizable, see Remark 2.3. This is also true for free subgroups of the
quotient by finitely supported permutations, obviously. On the other hand, this
is not true for general near actions of Z2, as a variety of examples in [Cor3] show.
More precisely, it is easy to find two permutations of a set that commute as near
permutations (i.e., their commutator is finitely supported), but they cannot be
perturbed (i.e., multiplied by finitely supported permutations) so that the result-
ing permutations commute. Nevertheless, we show here that such phenomena
cannot arise in the context of piecewise continuous near actions on the circle.

Theorem 1.10. Any finitely generated abelian subgroup of PC ./(S) is realizable.

The proof of Theorem 1.10 is not direct. It makes use the fact that the near
action on the circle can be viewed as a projection of a genuine action, namely
obtained by doubling all points (the Denjoy blow-up).

Remark 1.11. The near action of PC ./(S) is completable, in the sense that
there exists an action on a set X (some huge non-Hausdorff connected compact
1-dimensional manifold), in which S sits as a commensurated subset, so that the
induced near action on S is the given one. This observation comes from [Cor2].

1.5. Outline. In §2, we recall the language of near actions introduced in [Cor3],
and prove some preliminary results for which the 1-dimensional context does not
play any role. In §3, we conclude the proof of the positive results, on piecewise
continuous near actions of finitely generated abelian groups. In §4, we prove the
non-realizability results.

1.6. Open questions.

Question 1.12. Let Λ be a (virtually) infinite cyclic subgroup of S. Is the near
action of IET ./

Λ on S realizable? stably realizable?

Question 1.13. Is there a subgroup of PC ./(S) that is stably realizable but not
realizable?
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Question 1.14. Is every solvable subgroup of PC ./(S) realizable? stably real-
izable? Same question for a finitely generated subgroup, and/or assuming it is
included in IET ./(S).

Question 1.15. Does the near action of G = PC ./(S) (or IET ./) on S have a zero
Kapoudjian class? This vanishing would mean that G can be lifted to the quotient

of P̂C ./(S) by its subgroup of alternating finitely supported permutations. (See
[Cor3, §8.C] for more on the Kapoudjian class.)

Question 1.16. Is IET ./ realizable in the measurable setting (in the sense of

Mackey [Mack])? Namely, denote by Ĝ the group of permutations f of S such that
both f and f−1 are Lebesgue-measurable and such that f is measure-preserving.
Let G be its quotient by the subgroup of those f that are identity on a subset
of measure 1. Is the surjective homomorphism Ĝ → G split in restriction to
IET ./ ⊂ G?

Acknowledgement. I am very grateful to the referee for a careful reading and
pointing out serious mistakes in a first version.
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2. Preliminaries on general near actions

Convention (contain/include): on the one hand, the assertion “a ∈ X” is
written: “a belongs to X”, or “X contains a”; on the other hand “X ⊂ Y ” is
written “X is included in Y ”, or “Y includes X”.

2.1. Basic definitions and facts. By “cofinite subset” we mean “subset with
finite complement”. Essentially following Wagoner [Wa, §7] (see also [Cor3] for
a detailed historical account), a cofinite-partial bijection of a set X is a bijection
between two cofinite subsets of X. If we identify any two such cofinite-partial
bijections when they coincide on a cofinite subset, we obtain the near symmetric
group of X, denoted by S?(X). Its elements, namely cofinite-partial bijections
modulo cofinite coincidence, are called near permutations of X. There is a
canonical homomorphism from the group S(X) of permutations of X to S?(X).
Its kernel is the subgroup Sfin(X) of finitely supported permutations. Its image
S?

0(X) consists by definition of balanced near permutations and is called
the balanced symmetric group of X. Given a cofinite-partial bijection f :
X r F1 ' X r F2, the number |F2| − |F1| is called the index φX(f) of f . The
index map factors through a group homomorphism φX : S?(X) → Z, called
index homomorphism, whose kernel is precisely S?

0(X). If X is infinite, the
index homomorphism φX is surjective, so that the cokernel S?(X)/S?

0(X) is
infinite cyclic.

Definition 2.1 ([Cor3]). A near action of a group G on a set X is the datum
of a homomorphism α : G → S?(X); then X is called a near G-set. The near
action is said to be balanced if α is valued in S?

0(X), or equivalently if the index
homomorphism φX ◦ α ∈ Hom(G,Z) of the near action α is zero.

A near G-set X as above (or the near action of G on X) is said to be ?-faithful
if α is injective. It is said to be near free if for every g ∈ G r {1}, the set of
points fixed by g (which is well-defined modulo symmetric difference with finite
subsets) is finite.

For subsets U, V of a set X, we write U
?
= V and say that U and V are near

equal if U 4 V is finite. We write U ⊂? V and say that U is near included in
V if U r V is finite: thus U

?
= V if and only if both U ⊂? V and V ⊂? U . For

maps f, g : X → Y , we write f
?
= g if f and g coincide outside a finite subset:

this means that among subsets of X × Y , the graphs of f and g are near equal.
While the notion of invariant subset for a group action does not pass to near

actions, we have a notion of commensurated subset. Namely, given a near action
of G on X, a subset Y ⊂ X is G-commensurated if for every g ∈ G, we
have gY

?
= Y . (Note that gY is well defined modulo near equality.) Thus,

G-commensurated subsets are the same as near G-subactions.
A near G-set X is said to be 1-ended if X is infinite and its only commensu-

rated subsets are finite or have finite complement. That is, X is not decomposable
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as disjoint union of two infinite near G-subactions. A near G-set is said to be
finitely-ended if it had only finitely many commensurated subset modulo near
equality. This means that it decomposes as a finite disjoint union of 1-ended com-
mensurated subsets (which are well-defined modulo near equality), their number
is called the number of ends of the near G-set X.

Recall that a map between sets is said to be proper if it has finite fibers.
A map f : X → Y (with cofinite domain of definition) between near G-sets
(either assuming f to be proper, or Y to be a given G-set) is said to be near
G-equivariant if for every g ∈ G, the set of x ∈ X such that f(gx) = gf(x)
is cofinite in X. Note that we choose here, for given g, self-maps x 7→ gx and
y 7→ gy of X and Y ; the condition does not depend on these choices when
f is proper, or when the G-action on Y is fixed (with neither assumption the
notion of near equivariant map is ill-defined). The map f is said to be a near
isomorphism if there exists another such near G-equivariant map f ′ : Y → X
such that f ◦ f ′ ?

= IdY and f ′ ◦ f ?
= IdX ; in this case X and Y are said to be

near isomorphic near G-sets. If moreover f can be chosen to be bijective, we
say that X and Y are balanceably near isomorphic.

Definition 2.2. A near action of a group G on a set X is:

• realizable if the homomorphism G → S?(X) comes from a homomor-
phism G→ S(X);
• [finitely] stably realizable if there exists a [finite] set Y with trivial

near action such that the near action on X t Y is realizable;
• completable if there exists a near G-set Y such that the near action on
X t Y is realizable.

Obviously, realizable implies finitely stably realizable, which implies stably
realizable, which implies completable. Examples in [Cor3] show that none of the
converse implications holds, and that there exist non-completable near actions.
All these examples are taken with G = Z2, except for the difference between
stably realizable and finitely stably realizable: indeed it is established in [Cor3]
that these two notions are equivalent for finitely generated groups.

Remark 2.3. Every near action of a finite group is realizable [Cor3, Proposition
5.A.1]. For completeness let us sketch the argument. It is enough to check that
every finite subgroup F ⊂ S?(X) can be lifted. Since Hom(F,Z) = {0}, we have
F ⊂ S(X)/Sfin(X). Hence we can find a finitely generated subgroup F ′ ⊂ S(X)
projecting onto F , with kernel N of finite index. Since N is finitely generated and
acts by finitely supported permutations, the union Y of supports of its elements
is finite; it is also F ′-invariant. Changing the F ′-action to be trivial on Y , we
obtain another subgroup, which is a lift of F .

Let G be a finitely generated group and X a near G-set. Fix a finite generating
subset S of G, and lift each s ∈ S to cofinite-partial bijection x 7→ sx of X. The
corresponding near Schreier graph consists in joining x to sx for all s ∈ S.
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The near action is said to be of finite type if the near Schreier graph has finitely
many components. Routine arguments in [Cor3] show that this does not depend
on the choices.

2.2. Rigidity of 1-ended actions. The following rigidity results are used both
in §3 and §4. They are borrowed from [Cor3, §7]; we include most proofs for
completeness and for convenience.

We first recall, given an infinite finitely generated abelian group A, that the
1-ended commensurated subsets of A are, up to finite symmetric difference

• A itself if A has Q-rank ≥ 2;
• f−1(N) and f−1(−N) if A has Q-rank 1, where f is a homomorphism of
A onto Z.

Lemma 2.4. Let G be a group and Y a 1-ended commensurated subset (for the
left action of G on itself). Let f : Y → G be a near equivariant map, in the
sense that for every g, for all but finitely many h we have f(gh) = gf(h). Then
there exists a unique s ∈ G such that for all but finitely many g ∈ Y we have
f(g) = gs.

Proof. Uniqueness holds because Y is infinite. Let us prove the existence. Define
u(g) = g−1f(g). By assumption, for every g ∈ G, for all but finitely many h ∈ Y
we have u(gh) = u(h). If we check that u is constant outside a finite subset of Y ,
we obtain the conclusion. Otherwise, there exists a partition of G into two subsets
Z,Z ′ such that both u−1(Z) and u−1(Z ′) are infinite; since these form a partition
of Y into two infinite commensurated subsets, we contradict the assumption that
Y is 1-ended. �

Given two actions α, α′ of a group on a set, we say that they are finite pertur-
bations of each other if they induce the same near action. In other words, this
means that for every g, the permutations α(g) and α′(g) coincide on a cofinite
subset (depending on g).

Proposition 2.5. Let A be a finitely generated abelian group. Let X be an A-set,
and let X≥2 be the union of A-orbits of at least quadratic growth. Then any finite
perturbation of the action is conjugate, by a finitely supported permutation, to an
action that is unchanged on X≥2.

Proof. We call “orbits” those orbits of the original action α and “new orbits”
those of the perturbed action α′.

First assuming that the number n of G-orbits of at least quadratic growth is
finite, we argue by induction on n. The case n = 0 is trivial; assume n ≥ 1.
Let Y be an orbit of at least quadratic growth. Let B ⊂ A be point stabilizer
of Y , that is, the stabilizer of some/any element of Y . Then Y is a 1-ended
commensurated subset of at least quadratic growth (for either action), and hence
has finite symmetric difference with a new orbit Y ′, also of at least quadratic
growth, with point stabilizer B′; choose y ∈ Y ∩ Y ′. Since every element of B
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acts with finite support on Y ′ (for the original, and hence for the new action),
and since the new action of A/B′ is free on Y ′ and Y ′ is infinite, we have B ⊂ B′.
Arguing the other way round, we have B′ ⊂ B, and hence B = B′. Extend
the identity map of Y ∩ Y ′ to a map f : Y → Y ′. Then f is near equivariant
from the original to the new action. The map g 7→ α(g)y induces an equivariant
bijection u : A/B → Y , and similarly the map g 7→ α′(g)y induces an equivariant
(for the new action) bijection u : A/B → Y ′. Define f ′ = u′−1 ◦ f ◦ u. Then
f ′ is a near equivariant (proper) self-map of A/B. By Lemma 2.4, f ′ coincides
outside a finite subset with a translation g 7→ gh0. In particular, f ′ has index
zero, and hence f has index zero. This means that Y r Y ′ and Y ′ r Y have the
same cardinal. Hence, after conjugating the new action by a finitely supported
permutation, we can suppose that Y = Y ′.

Now Y = Y ′. Since for all but finitely many g ∈ A/B we have f ′(g) = gh0,
setting we have, for all but finitely g ∈ A/B, the equality u(g) = u′(gh0). Setting
y′ = α′(h0)y, this rewrites as: for all but finitely many g ∈ A/B, we have
α(g)y = α′(g)y′. We define a self-map w of Y by w(α(g)y) = α′(g)y′. So, w
is injective and equals the identity outside a finite subset, hence it is surjective.
Thus w is a finitely supported permutation. Then for all g ∈ G and x ∈ X,
choosing h ∈ G such that x = α(h)y, we have

w(α(g)x) = w(α(gh)y) = α′(gh)y′ = α′(g)w(x),

thus w−1 ◦ α′(g) ◦ w = α(g). Hence conjugating by w yields the original action
on Y . Now removing Y we can continue by induction.

Finally, when X has infinitely many orbits, the original and the new action
differ only on finitely many orbits, so the result follows from the case of an action
with finitely many orbits. �

The following is established in [Cor3, Theorem 7.C.1] and will be used in §4.
The case when G is a finitely generated abelian group of Q-rank ≥ 2 is covered
by Proposition 2.5 and is enough for most of the purposes, so we do not prove
the general case, which relies on the same ideas. Recall that a group G (not
necessarily finitely generated) is said to be 1-ended if it is a 1-ended G-set
(under the left action).

Proposition 2.6. Let G be a 1-ended group that is not locally finite, and X a
G-set. Then

(1) Suppose that G acts freely on X. Then any finite perturbation of the action
is conjugate, by a unique finitely supported permutation, to the original
action.

(2) Suppose instead that G acts freely on Y = X rXG (where XG is the set
of points fixed by all of G). Then any finite perturbation of the action
is conjugate, by a finitely supported permutation, to an action that is
unchanged on Y . �
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It is an old result of W. Scott and L. Sonneborn [ScS, Theorems 1 and 2] that an
abelian group A is 1-ended if and only if it satisfies one the following conditions:
A is uncountable, or A has Q-rank ≥ 2, or A is infinitely generated of Q-rank 1.
(The remaining abelian groups are countable locally finite or virtually cyclic.)

2.3. Facts on realizability for finitely generated abelian groups. The next
two propositions are borrowed from [Cor3]. They are used to prove Corollary 2.9,
which is used in §3. Again, we include the proofs for completeness.

Proposition 2.7. Let A be a finitely generated abelian group. Let X be a near
A-set. Equivalences:

• X is finitely stably realizable;
• X is completable, and the index homomorphism of the near A-subset XB

of B-fixed points is zero for every subgroup B of A.

Note that the A-commensurated subset XB is defined up to
?
=, and hence

whether it is balanced is a well-defined notion.

Proof. This is proved in [Cor3]; for completeness we include the proof. The
forward implication is clear; suppose that the condition holds. Complete X to
an A-set X t Y , so that X meets every orbit. Since X has finite boundary in
the Schreier graph, all but finitely many orbits are included in X. We can then
restrict to those orbits not including X, and thus assume that X has finite type.

So, suppose that X has finite type and satisfies the second condition. Since
every transitive A-set is finitely-ended, and X is completable, X is finitely-ended.

For each subgroup B of A such that A/B has Q-rank 1, the number of ho-
momorphisms of A/B onto Z is 2, and we choose one of the two as uB. Then
the classification of 1-ended completable near A-sets up to near isomorphism is
as follows: it consists of those EB = A/B when B ranges over subgroups of A
such that A/B has Q-rank ≥ 2, those E+

B = u−1
B (N) and E−B = u−1

B (−N) when
B ranges over subgroups of A such that A/B has Q-rank 1.

Let B be maximal among subgroups such that XB is infinite. Then XB satisfies
the balanced assumption: indeed, by maximality of B, for every subgroup B′ of
A, we have (XB)B

′ ?
= XB if B′ ⊆ B, and (XB)B

′ ?
= ∅ otherwise. Since both XB

and X satisfy the balanced assumption, so does X rXB. Hence, if X rXB is
infinite, we can argue by induction on the number of ends to deduce that X is
finitely stably realizable.

Now we assume that XB is cofinite in X. So, using the maximality of B, the
near A-set X is a completable near free near A/B-set of finite type. Hence, it is
near isomorphic to a commensurated subset of some free A/B-action with finitely
many orbits. If A/B has Q-rank ≥ 2, this implies that X is near isomorphic to
some disjoint union of copies of EB, and hence is stably realizable. If A/B has
Q-rank 1, this implies that X is near isomorphic to the disjoint union of k copies
of E+

B and ` copies of E−B . Note that the index homomorphism is additive under
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disjoint unions, and is opposite and nonzero for E+
B and E−B . That the index

homomorphism of X vanishes then implies that k = `. So X is near isomorphic
to the disjoint union of k copies of A/B, so is finitely stably realizable. �

Proposition 2.8. Let A be a finitely generated abelian group. A near A-set X is
finitely stably realizable but not realizable if and only if for some nonempty finite
set F , the disjoint union X t F is realizable as an action with only orbits of at
least quadratic growth.

Proof. ⇒ Suppose that X t F is realizable for some nonempty finite set F , with
F of minimal cardinal, and assume X not realizable, so F is not empty. Fix
a realization. Then it has no finite orbit, because this would contradict the
minimality of F . Also it has no orbit of linear growth: indeed, an orbit of linear
growth, say isomorphic to a quotient of A isomorphic to Z × K with K finite,
is balanceably isomorphic to itself minus |K| points. Again this contradicts the
minimality of F , and hence the realization has only orbits of at least quadratic
growth.

Conversely, for an A-set X with only orbits of at least quadratic growth, let
us show that X minus any nonempty finite set is not realizable. Equivalently, let
us show that every realization of the near action on X has no finite orbit. This
follows from Proposition 2.5 (with X = X≥2). �

Corollary 2.9. Let A be a finitely generated abelian group. Let X be a near
A-set. Suppose that for some n ≥ 1, the disjoint union nX of n copies of X is
realizable (resp. finitely stably realizable). Then so is X.

Proof. The assumption immediately implies that X is completable.
Then the result for finite stable realizability immediately follows from the cri-

terion of Proposition 2.7. Now assume that nX is realizable. Hence X is finitely
stably realizable. Assuming by contradiction that X is not realizable, there ex-
ists, by the forward implication in Lemma 2.8, a nonempty finite set F such that
X t F is realizable as an action with only orbits of quadratic growth. Hence
nX t nF has the same property. By the reverse implication in Lemma 2.8, we
deduce that nX is not realizable, a contradiction. �

Remark 2.10. In contrast, in [Cor3], examples of groups G are given for which
there exists a near G-set X that is not stably realizable, such that XtX is realiz-
able. Such groups can both be chosen to be finitely generated (some well-chosen
amalgam of two finite groups), or abelian (the quasi-cyclic group Z[1/2]/Z).

2.4. A realizability criterion. Applying results of the previous subsections,
we obtain the following results (which are not in [Cor3]), and are used in §3 to
obtain the realizability result.

Lemma 2.11. Let A be a finitely generated abelian group and X an A-set with
finitely many orbits. Let τ be a fixed-point-free permutation of X, of order 2.
Suppose that τ is near A-equivariant, and suppose that (∗) for every g ∈ A, the
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set of x ∈ X such that gx = τx is finite. Then there exist n ≥ 1 and subsets
X0, . . . , Xn of X such that we have the partition

X = X0 t τ(X0) tX1 t τ(X1) t · · · tXn t τ(Xn),

such that X0 is finite, and such that each Xi for i ≥ 1 is A-commensurated and
1-ended.

Proof. Decompose X as finite union of 1-ended subsets. By near equivariance of
τ , the permutation τ permutes these subsets up to finite symmetric difference.
Removing finite subsets, we can find m ≥ 0 and a partition X = Z0 t · · · t Zm
such that Z0 is finite, each Zi is 1-ended for m ≥ 1, and τ permutes the Zi. We
claim that τ(Zi) 6= Zi for each i ≥ 1.

First assume that Zi has at least quadratic growth. Then there exists a 1-ended
A-orbit Ax0 having finite symmetric difference with Zi; let B be the stabilizer of
x0. Define τ ′ : Ax0 → Ax0 coinciding with τ on τ−1(Ax0). Then τ ′ can be viewed
as a near equivariant self-map of A/B. Hence, by Lemma 2.4, it coincides outside
a finite subset with a translation. This translation cannot be trivial because τ is
fixed-point-free. Hence, for some s ∈ A r B, we have τ(x) = sx 6= x for all but
finitely many x ∈ Ax0. This contradicts (∗).

The other case is when Zi has linear growth. Then there exists x0 ∈ X, with
stabilizer B, such that A/B has Q-rank 1, and a homomorphism f from A/B
onto Z, such that, denoting A+ = f−1(N), Zi has finite symmetric difference
with A+x0. Again by Lemma 2.4, we see that τ coincides outside a finite subset
of Zi with a translation and get a contradiction.

We conclude by defining X0 ⊂ Z0 so that Z0 = X0 t τ(X0), defining I as a
maximal subset of {1, . . . ,m} such that

⋃
i∈I Zi is disjoint to its image by τ , and

enumerate the Zi for i ∈ I as X1, . . . , Xn. Since each Zi for i ≥ 1 is disjoint to
its image by τ , the Xi and their images by τ indeed cover X. �

Theorem 2.12. Let A be a finitely generated abelian group. Let X be an A-set,
and Y a near A-set. Let τ be a fixed-point-free near A-equivariant self-map of
X, with τ 2 = idX . Suppose (∗) that for every g ∈ A, the set of x ∈ X such that
gx = τ(x) is finite. Let f : X → Y be a surjective near equivariant map such
that for every x ∈ X we have f−1({f(x)}) = {x, τ(x)}. Then

(1) Y is a realizable near A-set;
(2) if X has finitely many A-orbits, then X is balanceably isomorphic, as near

A-set, to Y t Y .

Proof. The assertion (2) is immediate from Lemma 2.11: indeed, in restriction to
U = X0 t · · · tXn, f is near equivariant and bijective, and also in restriction to
τ(U).

Now let us deduce (1). Let X ′ be the union of all orbits Z such that f and τ
equivariant on both Z and τ(Z); so X ′ is τ -invariant. So f(X ′) is isomorphic as
near A-set to the quotient of an A-set, and hence is realizable.
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If X ′′ is the complement of X ′, then Y ′′ = f(X ′′) is the complement of f(X ′),
and X ′′ consists of finitely many A-orbits. Hence we have to prove that Y ′′ is
realizable. By (2), Y ′′tY ′′ is realizable. Finally by Corollary 2.9, Y ′′ is realizable,
and hence so is Y = Y ′′ t f(X ′). �

Remark 2.13. Here is a counterexample to the statement of Theorem 2.12 with
(∗) removed. Let K be the Klein group of order 4, and u, v two distinct elements
of order 2 in K, and F the subgroup generated by u. Let A be the group F ×Z,
and X = K×Z, which is thus a free A-set with two orbits. Define a permutation
of order 2 of X by σ(g, n) = (ug, n) for n < 0 and σ(g, n) = (vg, n) for n ≥ 0. So
σ commutes with the action of u and near commutes with the action of Z, in the
sense that the commutator of σ with the generator (g, n) 7→ (g, n+ 1) has finite
support. Hence, the quotient by the u-action is naturally a near A-set. It can be
identified to F × Z, where Z acts by shifting, while u acts by (g, n) 7→ (g, n) for
n < 0 and 7→ (ug, n) for n ≥ 0. This near action is not stably realizable (this is
the very first example in [Cor3]).

3. Realizability of piecewise continuous near actions of finitely
generated abelian groups

We now use the results of §2.4 (namely Theorem 2.12) to prove Theorem 1.10.

3.1. The “true” definition of PC ./(S). Let X be a Hausdorff topological
space. The group PC(X) of near self-homeomorphisms of X consists of those
elements of S?(X) that have a representative that is a homeomorphism between
two cofinite subsets.

Let P̂C0(X) be the subgroup of permutations f of X such that both f and
f−1 are continuous outside a finite subset. There is a canonical homomorphism

P̂C0(X) → PC(X); its image PC0(X) equals PC(X) ∩ S?
0(X), and its kernel

consists of finitely supported permutations of X.
A basis remark is that PC0(X) is a proper subgroup of PC(X) if and only if

there exist two finite subsets F, F ′ of X with |F | < |F ′| such that X r F and
X r F ′ are homeomorphic.

For instance, this holds whenX is infinite discrete, or whenX is a Cantor space.
Nevertheless, we have PC0(X) = PC(X) for X = S: indeed, S minus n points is
homeomorphic to S for n = 0 and to the disjoint union of n copies of R when
n ≥ 1, so its topological type retains n. Hence, PC(S) = PC0(S) = PC ./(S).

Remark 3.1. In [Cor2], it is proved that the near action of PC(X) on X is
completable as soon as X has no isolated point. This notably applies to X = S.

3.2. The Denjoy blow-up. Let S denote the circle R/Z. Let S± denote the
“Denjoy blow-up” of S at all points. As a set, it can simply be defined as the
Cartesian product S × {±1}, where we write x+ and x− for the elements (x, 1)
and (x,−1). For y = (x, ε) ∈ S±, we write ŷ = (x,−ε) and ȳ = x.
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It turns out that there are two natural compact Hausdorff topologies on this
blow-up. The first is the product topology. The second, called circular topology,
is the topology of the cyclic ordering, where, whenever x < y < z in S, we
prescribe x− < x+ < y− < y+ < z− < z+. (Here, in a cyclic ordering, by
x1 < x2 < · · · < xn we mean that xi < xj < xk for all 1 ≤ i < j < k ≤ n.) The
circular topology is compact Hausdorff, totally disconnected, but not metrizable
(since the set of clopen subsets is uncountable).

The interest is that the group PC ./(S) naturally acts on S±, using one-sided
limits in the obvious way, and this action preserves the circular topology. This
makes the projection map (the Denjoy blow-up map) S± → S, y 7→ ȳ, near
PC ./(S)-equivariant.

3.3. Proof of realizability. We need the following fact about the Denjoy blow-
up.

Proposition 3.2. For every g ∈ PC ./(S), the set of x ∈ S± such that g(x) = x̂
is finite.

Proof. If by contradiction it is infinite, it has an accumulation point; conjugating
by a suitable element of the isometry group O(2), we can suppose that this
accumulation point is 0+. Hence, there is an injective sequence (xn) tending to
0+ such that g(xn) = x̂n for every n. There exists ε ∈ ]0, 1[ such that g induces
a continuous (necessarily strictly monotone) function ḡ on ]0, ε[, valued in ]0, 1[.
Extracting, we can suppose that 0 < x̄n+1 < x̄n < ε for all n.

On the one hand, since g(xn) = x̂n for every n, ḡ is necessarily decreasing on
]0, ε[. On the other hand, since g(xn) = x̂n, we have ḡ(x̄n) = x̄n for all n, which
implies that ḡ is increasing on ]0, ε[. Contradiction. �

Theorem 3.3. Every finitely generated abelian subgroup A of PC ./(S) is realiz-
able (for its near action on S).

Proof. We use the Denjoy blow-up map S± → S. Here S± is an A-set, this map
has fibers {x, x̂} of cardinal 2 and is near equivariant as well as the involution
x 7→ x̂; moreover it satisfies the additional assumption (∗) of Theorem 2.12, by
Proposition 3.2. Hence, Theorem 2.12 applies and S is a realizable A-set. �

Remark 3.4. One step to the theorem was to show that A is stably realizable.
This step is much easier when A ⊂ IET ./, or more generally when the near action
of A is piecewise analytic. Indeed, in this case, the criterion of Proposition 2.7 can
be checked directly, as the set of fixed points of any finitely generated subgroup
is then a Boolean combination of intervals.

4. Non-realizability of groups of interval exchanges with flips

4.1. Non-realizability. Recall that the projection S± → S, mapping x+ and
x− to x, is denoted by z 7→ z̄.
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For a subgroup Λ of R/Z, let IET ./
Λ be the subgroup of IET ./ of elements with

discontinuities in Λ, and local isometries of the form x 7→ ±x + λ with λ ∈ Λ.
Define IET+

Λ = IET ./
Λ ∩ IET+.

In IET+, we have the subgroup of genuine rotations rt : x 7→ x+t (translations
of the group S = R/Z). We endow S with its geodesic distance.

Given any interval I in S (of measure in ]0, 1[), we have a corresponding sub-
group of partial rotations, acting trivially outside I, and acting as genuine
rotations on I when we “close it” by identifying endpoints of Ī.

Given f ∈ PC ./(S), define its essential support essupp(f) ⊂ S as the closure
of the set of x such that (f(x−), f(x+)) 6= (x−, x+). It is empty if and only if f

is the identity. When f ∈ IET ./ and f̃ is a lift, note that essupp(f) has finite

symmetric difference with {x : f̃(x) 6= x}.
For f ∈ PC ./(S), define sing(f) = {x ∈ S± : f(x̂) 6= f̂(x)}. It is finite, and

obviously invariant under x 7→ x̂; let sing(f) be its image in S. This is the set of
points at which every lift of f is discontinuous.

For f ∈ IET+(S), choose a representative g(x) = x + τg(x). Note that while
τg depends on the choice of g, the values τg(x

−) and τg(x
+) (in S±) only depend

on f . We write τ−f (x) = τg(x−) and τ+
f (x) = τg(x+) (these elements of S are

just the one-sided limits at x). Thus sing(f) = {x : τ−f (x) 6= τ+
f (x)}. Write

νf (x) = τ+
f (x)− τ−f (x), so sing(f) = {x : νf (x) 6= 0}.

Let E(f) ∈ ]0, 1/2] ∪ {∞} be the minimal distance between any two points
of the finite subset sing(f) (where E(f) = ∞ if sing(f) is empty, i.e., if f is a
rotation).

When we consider the action of PC ./(S) on subsets of S, it is only well-defined
modulo finite symmetric difference with finite subsets. We then talk of near
subset, near disjoint (= finite intersection), near partition, etc.

Lemma 4.1. For every f ∈ IET+ and t ∈ ]0, E(f)[, the “commutator” c =
f−1rtfr

−1
t permutes the near intervals [x, x + t], x ∈ sing(f), by translations,

without preserving any of them. These intervals are pairwise near disjoint, and
the essential support is

⊔
x∈sing(f)[x, x+ t].

Proof. In this proof, “generic” means “with finitely many exceptions”, and we
freely choose representatives.

If f is a rotation then c is the identity. Otherwise, f has at least two singulari-
ties. Let a, b be consecutive singularities of f . Then the representative of b−a in
]0, 1[ is≥ t. So we can view the interval [a, b] as concatenations of intervals [a, a+t]
and [a+t, b], and for generic x ∈ [a+t, b], we have f(x) = f(x−t)+t. For a generic
x ∈ [a+ t, b], we have c(x) = f−1rtf(x− t) = f−1rt(f(x)− t) = f−1(f(x)) = x.

For generic x ∈ [a, a+t], we have c(x) = f−1rtf(x−t) = f−1rt(x−t+s−f (a)) =

f−1(x + s−f (a)). Observe that f(a−) = a + τ−f (a) belongs to sing(f−1). Since

E(f) = E(f−1), this implies that for x ∈ ]a, a+ t[, x+ τ−f (a) meets no singularity
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of f−1. Hence c has no singularity in ]a, a+t[. In addition, for generic x ∈ [a, a+t],
we have f(x− t) 6= f(x)− t, and hence c(x) = f−1(t+f(x− t)) 6= f−1(f(x)) = x.

Thus the image by c of [a, a+ t] is (essentially) an interval of length t, included
in the union of the intervals [x, x + t], for x ∈ sing(f). Therefore, it is exactly
one of these intervals (and not [a, a+ t]). �

The diameter of a metric space is the supremum of distances between any two
points.

Lemma 4.2. Let Γ be a subgroup of IET+(S). Suppose that Γ includes a dense
subgroup of rotations, and, for some proper sub-interval, some dense subgroup of
the corresponding partial rotations. Then Γ contains non-identity elements whose
essential support has arbitrary small diameter.

Proof. Up to conjugating by a rotation, we can suppose that Γ includes a dense
subgroup of partial rotations, namely of the interval [0, ρ] for some ρ ∈ ]0, 1[.

Fix ε0 > 0 small enough (see below), and let us produce non-identity element
whose essential support has diameter ≤ 5ε0. We choose some ε ∈ ]0, ε0[ with the
two additional conditions:

• ε < min(ρ, 1− ρ)/5;
• defining the partial rotation f of [0, ρ], of length −2ε, the value of ε has

been chosen so that f ∈ Γ.

Hence sf generically equals ρ − 2ε on [0, 2ε], −2ε on [2ε, ρ], and 0 on [ρ, 1].
Choose η with 0 < η ≤ ε, such that rη ∈ Γ. Then the essential support of
c = f−1rηfr

−1
η is, by Lemma 4.1, equal to [0, η]∪[2ε, 2ε+η]∪[ρ, ρ+η]. Consider in

Γ a rotation of length λ ∈ ]3ε, 4ε[. Conjugate the given group of partial rotations
by this rotation to obtain a dense group of partial rotations on [λ, λ + ρ]. (By
the condition on ε, we have λ < ρ and λ + ρ < 1.) Then there exists q in
this dense group of rotations of [λ, λ + ρ] (essentially) mapping [ρ, ρ + η] into
]λ, 5ε[, say [λ′, λ′ + η] with 3ε < λ′ < 4ε. Then the essential support of q−1cq is
[0, η] ∪ [2ε, 2ε+ η] ∪ [λ′, λ′ + η], and thus has diameter ≤ 5ε ≤ 5ε0. �

Definition 4.3. We say that a subgroup of P̂C ./(S) is

• clean if its intersection with the group of finitely supported permutations
is trivial;
• hyper-clean if for every g in the subgroup, the graph of g (viewed as subset

of S× S) has no isolated point; equivalently if, at every point, g is either
left or right-continuous.

Lemma 4.4. Let Γ̃ be a clean subgroup of P̂C ./(S), and Γ its image in PC ./(S).
Suppose that Γ̃ includes a dense subgroup Λ̃ of rotations. Suppose that Γ admits
non-identity elements with essential support of arbitrary small diameter. Then Γ̃
is hyper-clean.



REALIZATIONS OF PIECEWISE CONTINUOUS GROUPS 17

Proof. For h ∈ ̂PC ./(S), define its interior support as the intersection of the
support {x : hx 6= x} with the set of continuity points of h. It is open, and
is included and cofinite in the h-invariant subset {x : hx 6= x}, and it is also
included and dense in the essential support of its image h̄ in PC ./(S).

In a first step, we show that Γ̃ is locally clean, in the sense that for each element
g, the support {x : gx 6= x} has no isolated point.

By contradiction, let x be an isolated non-fixed point of g. For some ε > 0,
all other points in ]x − ε, x + ε[ are fixed by g. There exists h0 ∈ Γ̃ whose
essential support has diameter < ε. Hence there exists some conjugate h of h0

by some element of Λ̃ such that both x and h(x) belong to the interior support
of h (indeed, letting I be the interior support of h0 and J = h−1

0 I ∩ I, which is
cofinite in I, it is enough to find s ∈ Λ̃ such that x ∈ sI and define h = sh0s

−1).
Hence the essential support of h is included in ]x− ε, x+ ε[; in particular, h̄ and
ḡ commute. Since Γ̃ is clean, it follows that h and g commute. Since g(x) 6= x,
it follows that g(h(x)) 6= h(x). But h(x) 6= x, and h(x) belongs to the interior
support, which is included in ]x − ε, x + ε[, hence h(x) is fixed by g. This is a
contradiction, concluding the first step.

Now let us prove that Γ̃ is hyper-clean. Suppose by contradiction that {x, g(x)}
is an isolated point in the graph of g. Up to post-compose g with a nontrivial
rotation, we can suppose that g(x) 6= x. So there exists ε > 0 such that none of
x, g(x+), g(x−) belongs to ]g(x)− 2ε, g(x) + 2ε[.

As in the proof of the first step (using the dense subgroup of rotations), let
h ∈ Γ̃ have essential support of diameter < ε, with both g(x) and h(g(x)) in the
interior support of h; we can also require that h(x) = x.

Then for t ∈ ]x − ε, x + ε[, t 6= x, we have t /∈ ]g(x) − ε, g(x) + ε[ and
g(t) /∈ ]g(x) − ε, g(x) + ε[. Hence, with finitely many exceptions on t, we have
g(h(t)) = g(t) and h(g(t)) = g(t). Also, we have g(h(x)) = g(x) and h(g(x)) 6=
g(x). Hence, g−1h−1gh has an isolated non-fixed point at x. This contradicts the
assumption that Γ̃ is locally clean. �

Definition 4.5. Call an element f of PC ./(S) a 132-flip if it satisfies: there are
three nonzero consecutive intervals I1, I2, I3 near partitioning S, such that

(1) f has no singularity in the interior of Ij for each j = 1, 2, 3;
(2) f(I1) = I1, f(I2) = I3, f(I3) = I2;.
(3) f : Ij → f(Ij) is orientation-reversing for j = 1 and orientation-preserving

for j = 2, 3;
(4) f 2 is the identity.

Say that f is a triple flip if f 2 is the identity, and there are three nonzero con-
secutive intervals I1, I2, I3 near partitioning S, such that f essentially preserves
Ij for each j, and is orientation-reversing on it.

Lemma 4.6. Let f ∈ PC ./(S) be a 132-flip, or a triple flip. Then f has no
hyper-clean lift squaring to the identity.
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Figure 2. Graphs of a 132-flip
and a triple flip: in each case there
are two hyper-clean lifts, choos-
ing either the endpoints denoted as
circles or dots.

Proof. For a 132-flip, conjugating by a rotation, we can suppose that for some
0 < a < b < 1, f preserves and is orientation-reversing on [0, a], exchanges [a, b]
and [b, 1] in an orientation-preserving way. If q is a hyper-clean lift of f , then,
viewing q as subset of S × S, we have (0, a) ∈ q ⇔ (b, a) /∈ q ⇔ (b, 0) ∈ q ⇔
(a, 0) /∈ q ⇔ (a, b) ∈ q ⇔ (0, b) /∈ q. Hence q acts on {0, a, b} as a 3-cycle, and in
particular q2 is not the identity.

The case of a triple flip is similar; again, we obtain that there are exactly two
hyper-clean lifts, both of order 6. This is illustrated in Figure 2. �

Theorem 4.7. Let Γ be a subgroup of PC ./(S). Suppose that

(1) Γ includes a subgroup Λ of rotations of Q-rank ≥ 2, or infinitely generated
and of Q-rank 1;

(2) Γ includes, for some proper nonzero interval, some dense subgroup of the
corresponding partial rotations;

(3) Γ contains an 132-flip or a triple flip (Definition 4.5).

Then Γ is not realizable.

Proof. By contradiction, let Γ̃ be a lift; then Γ̃ is clean. The assumption on Λ im-
plies that it is 1-ended and not locally finite. By Proposition 2.6(1), we can, after
conjugation, assume that Λ lifts as a subgroup of genuine rotations. By Lemma
4.2, Γ∩IET+ contains non-identity elements of arbitrary small essential diameter.
By Lemma 4.4, Γ̃ is hyper-clean. Finally Lemma 4.6 yields a contradiction. �

Corollary 4.8. IET ./ is not realizable (for its near action on S), as well as its
subgroup IET±. Moreover, the latter admits a non-realizable finitely generated
subgroup.

Proof. To fulfill the assumptions of Theorem 4.7, consider a pair (u, v) of rotations
generating a subgroup of R/Z of Q-rank 2; a partial rotation w generating a dense
subgroup in a proper interval, and a triple flip z ∈ IET± as in Lemma 4.6. Then
{u, v, w, z} generates a non-realizable subgroup, by Theorem 4.7. �

Corollary 4.9. Let Λ be a subgroup of R/Z, of Q-rank ≥ 2, or infinitely gen-
erated of Q-rank 1. Then IET ./

Λ is not realizable, and neither is its subgroup
IET±Λ = IET ./

Λ ∩ IET±. �

4.2. Restricted realizability.

Lemma 4.10. Let Λ be a subgroup of R/Z. Let Γ̃ be a hyper-clean subgroup of

ÎET+ and Γ its image in IET+. Suppose that
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• each translation length of every element of Γ is in Λ;
• each singularity of every element of Γ belongs to Λ;
• for each element of Λ, the corresponding rotation belongs to Γ̃.

Then either all elements of Γ̃ are left-continuous, or all are right-continuous.

Proof. Otherwise, there are two elements r, s in Γ̃ and points x, y such that r
is not left-continuous at x and s is not right-continuous at y. Using that x, y
belong to Λ and that the corresponding rotations are in Γ̃, we can conjugate so
as to choose x, y = 0. Moreover, using that translation lengths are in Λ and are
achieved by rotations in Γ̃, we can post-compose to ensure that r(0) = s(0) = 0.

So there exist nonzero α, β ∈ R/Z and ε > 0 such that r is the identity on
[0, ε], s is the identity on [−ε, 0], r(t) = t + α on [−ε, 0[ and s(t) = t + β on
]0, ε]. Hence s ◦ r(t) = s(t) for t ∈ [0, ε] (namely t+ β for t > 0 and 0 for t = 0),
and thus s ◦ r is not right-continuous at 0. Hence s ◦ r is left-continuous at 0.
Hence s◦ r(t) = t = s(t) for small enough negative t, and hence r(t) = t for small
negative t, a contradiction. �

For Γ ≤ PC+(S), denote by Γleft (respectively Γright) the group of left-continuous
(resp. right-continuous) representatives of elements of Γ.

Theorem 4.11. Let Γ̃ be a clean subgroup of ÎET+ and Γ its image in IET+.
Suppose that

(1) the group of rotations Λ in Γ achieves all translation lengths of Γ;
(2) Λ has Q-rank ≥ 2, or is infinitely generated of Q-rank ≥ 1;
(3) each singularity of every element of Γ belongs to Λ;
(4) for some proper sub-interval, Γ includes a dense subgroup of partial rota-

tions.

Then Γ̃ is conjugate, by a (unique) finitely supported permutation, to either Γleft

or Γright.

Proof. Using the Q-rank assumption, by Proposition 2.6(1), we can conjugate by
a finitely supported permutation, to ensure that rotations indeed act by rotations.
In this case, we will prove that Γ̃ is then equal to either Γleft or Γright.

By the assumption of existence of both a dense subgroup of rotations and a
dense partial subgroup of partial rotations, Lemma 4.2 implies that Γ admits
elements of arbitrary small essential diameter. In turn, again using a dense
subgroup of rotations, and the existence of elements of arbitrary small essential
diameter, Lemma 4.4 ensures that Γ̃ is hyper-clean. Since Γ̃ is hyper-clean and
all its translations length are achieved by rotations, we apply Lemma 4.10 to
ensure that all elements of Γ̃ are, say, left-continuous (the right-continuous case
is equivalent, as we can conjugate by a reflection). �

Corollary 4.12. Suppose that Λ has Q-rank ≥ 2, or is infinitely generated of

Q-rank 1. Then IET+
Λ has only two lifts to ÎET+ up to conjugation by finitely

supported permutations, namely the left-continuous and the right-continuous lift.



20 YVES CORNULIER

Proof. We have to check that the assumptions of Theorem 4.11 are fulfilled. The
group of translations lengths in IET+

Λ and the group of rotations of IET+
Λ are

both equal to Λ. Also, for every x < x0 ∈ ]0, 1[ representing elements of Λ,
the corresponding partial rotation (exchanging [0, x[ and [x, x0[ belongs to IET+

Λ ;
hence they achieve (x0 fixed, x varying) a dense subgroup of partial rotations
(here we only use that Λ is dense). �

Corollary 4.13. Let Γ be a subgroup of PC+(S) including IET+ (e.g., PC+(S),
or its piecewise analytic subgroup). Then Γ has, up to conjugation by a (unique)
finitely supported permutation, only the two lifts Γleft and Γright.

Proof. The uniqueness is clear. Let Γ̃ be a lift. By Theorem 4.11, we can suppose
(up to conjugate by a finitely supported permutation and possibly by a reflection,
that in restriction to IET+, we have the left-continuous lift. By Lemma 4.4, Γ̃ is
hyper-clean.

Let g be an element of Γ̃ and x ∈ S. We claim that g is continuous at x. Since

g ∈ P̂C+(S), there exists an interval exchange h such that h(x−) = g(x−) and
h(x+) = g(x+). We can view h as an element of Γ̃, and thus h is left-continuous,

so h(x) = h(x−). We have h−1g(x−) = x− and h−1g(x+) = x+. Since Γ̃ is hyper-

clean, we deduce that h−1g(x) = x. So g(x) = h(x) = h(x−) = g(x−), showing
that g is left-continuous at x. �

Remark 4.14. Let Λ be a nontrivial proper subgroup of R/Z, and let Γ be the
subgroup of IET+ consisting of those elements all of whose translations lengths
are in Λ (but with no restriction on singularities). Partition R/Z into two non-
empty Λ-invariant subsets. For every g ∈ Γ, we can choose the unique lift g̃ of g
that is left-continuous on X and right-continuous on Y . Then g 7→ g̃ is a group
homomorphism, defining a lift contradicting the conclusion of Theorem 4.11.

Assuming that Λ has Q-rank ≥ 2, or is infinitely generated of Q-rank ≥ 1,
all assumptions of Theorem 4.11, except that on singularities, are fulfilled. This
shows the importance of that hypothesis. We thank the referee for suggesting
this example, pointing out that this hypothesis was missing in stating Lemma
4.10 and Theorem 4.11 in the previous versions.

4.3. Stable non-realizability. Let X be a set. Let P̂C ./(S t X,S) be the
subgroup of permutations of S t X that are identity on a cofinite subset of X,
and that induce elements of PC ./(S) on S. So there is a canonical projection

P̂C ./(StX,S)→ PC ./(S), whose kernel Sfin(StX) consists of finitely supported

permutations of S tX. We say that a subgroup Γ of P̂C ./(S tX,S) is clean if
it has trivial intersection with Sfin(S tX).

For f ∈ P̂C ./(S t X,S), we call essential support of f the closure of the

set of x ∈ S such that f(x) /∈
{
f(x+), f(x−)

}
. (Recall that y 7→ ȳ denotes the

projection S± → S.)
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Here is an adaptation of Lemma 4.4.

Lemma 4.15. Let Γ̃ be a clean subgroup of P̂C ./(S t X,S), and Γ its image
in PC ./(S). Suppose that Γ̃ includes a dense subgroup Λ̃ of rotations acting as
the identity on X. Suppose that Γ admits non-identity elements with essential
support of arbitrary small diameter. Then

(1) for every g ∈ Γ̃ and x ∈ S, g(x) belongs to
{
g(x+), g(x−)

}
∪X.

(2) for every g ∈ Γ̃, the subset {x ∈ S : gx 6= x} has no isolated point.

Proof. (1) This is an adaptation of the proof of Lemma 4.4 and we skip details;
note that when X is empty this is precisely the same statement. The first step
consists in proving that for x ∈ S if g(x−) = g(x+) = x, then g(x) ∈ {x} ∪ X.
The second step assumes that g(x) ∈ S and g(x) /∈ {g(x−), g(x+)} and reaches a
contradiction.

(2) Suppose by contradiction that there exists x ∈ S such that f(x′) = x′ for all
x′ 6= x close enough to x, but f(x) 6= x. By (1), we have f(x) ∈ X. Let r ∈ Λ̃ be
a small enough non-trivial rotation and x′ 6= x close enough to x (“close enough”
may depend on r). Then r−1f−1rf(x′) = x′, while r−1f−1rf(x) = r−1f−1f(x) =
r−1x 6= x. Since r−1x ∈ S, this contradicts (1). �

Say that an element g of PC ./(S) has small support if there exists a rotation
r such that rS ∩ S = ∅, where S is the essential support of g.

Lemma 4.16. Let Γ̃ be a clean subgroup of P̂C ./(S tX,S) such that for every
g ∈ Γ̃, the subset {x ∈ S : gx 6= x} has no isolated point. Let Γ be its projection
to PC ./(S).

Suppose that Γ̃ includes a dense subgroup Λ̃ of rotations (acting as the identity

on X). Let f ∈ Γ be an element with small support, and f̃ its lift in Γ̃. Then X

is f̃ -invariant.

Proof. Let T ⊂ S be the essential support of f , and let T ′ = {x ∈ StX : f(x) 6=
x} be the support of f̃ (so T ∩X is finite). By the assumption on isolated points,
we have T ′ ∩ S ⊂ T .

There exists a non-empty open interval of rotations mapping T to a disjoint
subset; fix one, say r̃, in Λ̃. Let r denote its image in Γ. Hence r̃(T ′)∩T ′ is equal
to T ′ ∩X, which is finite.

Note that r̃(T ′) is the support of r̃f̃ r̃−1. Since r and rfr−1 have essentially

disjoint support, they commute, and hence f̃ and r̃f̃ r̃−1 commute. Thus T ′ ∩X
is f̃ -invariant, and hence X is f̃ -invariant. �

Theorem 4.17. The near action of IET± (and hence of IET ./) on S is not stably
realizable. Moreover,

(1) there exists a finitely generated subgroup of IET± whose near action on S
is not stably realizable;
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(2) for every subgroup Λ of R/Z that has Q-rank ≥ 2, or infinitely generated
of Q-rank 1, the near action of IET±Λ (and hence of IET ./

Λ ) on S is not
stably realizable.

Proof. For two essentially disjoint intervals I, J of the same nonzero size, let
ϕ(I, J) be the element of order 2 in IET+ exchanging I and J by an orientation-
preserving isometry.

Consider a ∈
]

1
8
, 1

4

[
and b = 1 − 4a, so 0 < b < 1

2
and 4a + b = 1. Define

u, v ∈ IET+ by u = ϕ([0, a], [2a + b, 3a + b]) and v = ϕ([a, 2a], [3a + b, 1]). Let
w be a partial rotation on the interval [0, 2a], of infinite order. Let s be the
orientation-reversing isometry flipping all [0, 1].

Figure 3. Graphs of u, v, w and s.

Let Γ be a subgroup of IET ./ including a dense subgroup Λ of rotations, either
of Q-rank ≥ 2, or infinitely generated of Q-rank 1. Furthermore we assume that
u, v, w and s all belong to Γ. Let us show that the near action of Γ on S is not
stably realizable.

Arguing by contradiction, we assume it is realizable on S tX for some set X,
and denote by Γ̃ a lift. Let Λ be the group of rotations in Γ. After conjugation by a
finitely supported permutation, we can assume, by Proposition 2.6(1), that the lift
Λ̃ acts by rotations on S (so it acts on X by finitely supported permutations). Fix
an element r of infinite order in Λ. Since srs−1 = r−1, we also have s̃r̃s̃−1 = r̃−1.
Hence s̃ normalizes 〈r̃〉, and thus s̃ preserves the union of all infinite 〈r̃〉-orbits,
which is exactly S.

By Lemma 4.16 (which applies using Lemma 4.15(2)), the elements ũ, ṽ, w̃
also preserve S. Let Γ1 be generated by {u, v, w, s} ∪ Λ. Then Γ̃1 preserves S,
so X plays no longer any role: indeed since Γ is clean, the action of Γ̃1 on S is
faithful. Since w is a partial rotation (on [1− 2c, 1]) of infinite order, Lemma 4.2
ensures that Γ has non-identity elements with essential support of arbitrary small

diameter. Then Theorem 4.4 implies that Γ̃1, viewed as subgroup of P̂C±(S), is
hyper-clean. The product suv ∈ Γ1 is a triple flip on S, but has no hyper-clean
lift squaring to the identity (Lemma 4.6). We reach a contradiction.

Since Λ can be chosen 2-generated, we obtain by construction a 6-generator
subgroup that is not stably realizable. Moreover, if we restrict to a given Λ as in
the theorem, a and then w can be chosen to belong to IET±Λ . �
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