THE SPACE OF SUBGROUPS OF AN ABELIAN GROUP

YVES DE CORNULIER, LUC GUYOT, AND WOLFGANG PITSCH

ABSTRACT. We carry out the Cantor-Bendixson analysis of the space of all
subgroups of any countable abelian group and we deduce a complete classifi-
cation of such spaces up to homeomorphism.

INTRODUCTION

Let G denote a discrete group. The set N'(G) of all normal subgroups of G has
a natural topology, called the Chabauty topology. It is the setting of interesting
interplay between topological phenomena and algebraic properties of the group
G. Introduced by Chabauty in [Chab50], it reappeared in the work of Gromov
[Gro81] and Grigorchuk [Gri84], where it proved to be a useful tool to understand
asymptotic properties of discrete groups, see for instance [CGO05] for further ap-
plications. More precisely, consider the set of subsets of GG, viewed as the product
2¢ endowed with the product (Tychonov) topology. The subset N(G) is eas-
ily seen to be closed. By construction, this is a compact, totally disconnected
Hausdorff topological space, that is, a Boolean space. If GG is countable, then it
is metrisable. For this topology, a net (V;) of normal subgroups converges to N
if and only if for every g € N (resp. g ¢ N), eventually g € N; (resp. g ¢ N;).

In general, very little is known on the global structure of N (G) for a given
a group G, however see [Cham00, CGPO07], which especially deal with the case
when G is free of finite rank. In this article we treat the case where the group G
is abelian (not necessarily finitely generated) and we preferably write A in place
of G. We obviously have N(A) = S(A), the space of subgroups of A. This is
not unrelated to finitely generated groups: indeed, if A is any countable abelian
group, then A embeds into the center of a finitely generated group G, giving an
obvious embedding of S(A) into N'(G). The classification of the spaces S(A) for
an abelian group A turns out to be much more tractable than both of its natural
and difficult generalisations, namely the classification of either general Boolean
spaces or general abelian groups, see for instance [Pie70] and [Tho0O1] concerning
these problems. Indeed, we are able to provide a complete description of the
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spaces S(A) in terms of natural, and computable, invariants of the countable
abelian group A.

A topological space X is called perfect if it has no isolated point, and, at the
other extreme, scattered if any non-empty subset has an isolated point. As an
union of perfect subsets is perfect, every topological space has a unique largest
perfect subset, called its condensation part and denoted by COND(X), which is
empty if and only if X is scattered. The subset X — COND(X) is the largest
scattered open subset, and is called the scattered part of X.

If A is an abelian group, its torsion elements form a subgroup denoted by T'4.
Recall that an element of A is called divisible if it belongs to nA for all non-zero
integers n. The set of divisible elements in A form a subgroup denoted by Div(A)
and it is easy to check that it always has a direct complement in A. Given a prime
p, we define Cpee = Z[1/p]/Z; this is called a quasi-cyclic group. An abelian group
is called Artinian if every non-increasing sequence of subgroups stabilises; every
such group is isomorphic to a direct sum A = @?:1 Cpee @ F for some finite
subgroup F'; the finite index subgroup @?:1 Cpee coincides with Div(A). An
abelian group A is called minimaxz if it has a finitely generated subgroup Z with
A/Z Artinian. Such a subgroup Z is called a lattice in A.

Proposition A (Corollaries 2.1.2 and 2.1.3). Let A be an abelian group. Then
S(A) is non-perfect (i.e. contains an isolated point) if and only if A is minimaz.
In particular,

e if A is countable and not minimaz, then S(A) is a Cantor space;
e if A is uncountable, then S(A) is perfect.

When the abelian group A is uncountable, we do not have any classification
result for the perfect space S(A), except the following, which shows that the
cardinality of A can be read out of the topology of S(A).

Proposition B (see Paragraph 2.2). Suppose that the abelian group A has un-
countable cardinal . Then S(A) contains a subset homeomorphic to 2¢. Accord-
ingly, o is the least cardinality of a basis for the topology of S(A). In particular,
if A is uncountable, then S(A) is not metrisable.

Our main result is the determination of the homeomorphism type of S(A) when
A is a countable abelian group. Proposition A settles the case of non-minimax
ones.

Recall that the rank of an abelian group A, denoted r(A), is the largest cardinal
of a Z-free family in A; this is also the Q-dimension of the vector space A ®z Q.
If A is minimax, then r(A) < co. We also have to introduce the notion of critical
prime of a minimax abelian group, which plays a crucial role here. If A is a
minimax abelian group and p a prime, we define ¢,(A) as the largest integer k so
that A maps onto C}’;oo. Given a lattice Z in A, this is also the greatest integer k
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so that C}. embeds into A/Z. The sum

h(A) =r(A)+ Y 6,(4)

p prime

is finite and called the height of A. When A is not minimax, we set h(A) = oco. A
prime p is called critical for A if ¢,(A) > 2. The set of critical, respectively non-
critical, primes for A is denoted by cr(A), resp. ncr(A). The minimax abelian
group A is called critical if cr(A) # (). Finally, if A is a minimax abelian group,
Div(A) is contained in T4 as a subgroup of finite index; the number of subgroups
of the finite group T4 /Div(A) is denoted by n(A).

Let [n] denote the set {0,...,n — 1} with n elements, and w = J,[n]. Let
D denote the topological space w U {oc} consisting of the discrete sequence of
points (n),>o converging to the limit oo, which is homeomorphic to the subset
{1/n|n > 1} U {0} of R. For any integer m, the space D™ is scattered, since
D is scattered and the class of scattered spaces is closed under finite cartesian
products.

Theorem C (Th.4.5.1). Let A be a non-critical minimaz abelian group, and
write h = h(A), n = n(A). Then the space S(A) is countable, and homeomorphic
to D" x [n].

All the cases occur (for h > 0 and n > 1), for instance the abelian group
A =7Z"'® Z/2"1Z has h(A) = h and n(A) = n, and as a finitely generated
group, it is minimax and non-critical.

Let us now deal with critical minimax abelian groups. Again, we have to
introduce some more definitions. Let A be a minimax abelian group and let V'
be a set of primes. First define

tv(A) =D L,(A).

peV

Let Zy C Q denote the ring of rationals whose denominator is divisible by no
p € V. Let Uy(A) < A be the intersection of kernels of group homomorphisms
A — Zy. Set ay(A) = r(Uy(A)) and vy (A) = r(A/Uy(A)). Note that A/Uy (A)
embeds into Z7V° Y.

On the other hand, let W be a “dusty Cantor space”; namely a compact
metrisable space consisting of the union of a Cantor space with an open dense
countable discrete set. It is a consequence of Pierce’s theorem (Theorem 1.3.3)
that W is thus uniquely defined up to homeomorphism. For instance, W may be
chosen as the union of the triadic Cantor set (which is the image of {0,2}N in R
by the injective continuous map u — Y - u(n)37""1) and the set of centers of all
intervals in the complement, namely the set of reals of the form Y - v(n)3™"" 1,
where v(n) is a sequence such that for some ny > 0, v(n) € {0,2} for all n < ny
and v(n) =1 for all n > ny.



4 YVES DE CORNULIER, LUC GUYOT, AND WOLFGANG PITSCH

Theorem D (Theorem 4.5.1). Let A be a critical minimax abelian group. Then
S(A) is uncountable, and homeomorphic to D7 x W, where o = o(A) is defined
as follows

O_(A) = F)/ncr(A)(A> + gncr(A)(A>
h(A) = (acr(ay(A) + ler(ay(A)).

Again, all the cases occur: the minimax group (Cy=)® x Z7 is critical, has
o0(A) = o. Even better, for a minimax group A with given h(A), if S(A) is
uncountable, then 0 < o(A) < h(A) — 2, and all these cases occur, taking A =
(Coee)"™7 x Z7, we have h(A) = h and o(A) = o provided 0 < o < h — 2.

From the conjonction of Theorems C and D, we get the following corollaries.

Corollary E (Boyer [Boy56]). Let A be an abelian group. Then S(A) is countable
if and only if A is a non-critical minimazx group.

Note that the harder implication, namely the forward one, follows from Theo-
rem C.

Corollary F (see Lemma 1.3.6). Let A, B be countable abelian groups. The
spaces S(A) and S(B) are homeomorphic if and only if one of the following
holds:
(i) h(A) = h(B) = oo;
(17) both A and B are minimax and non-critical, h(A) = h(B), and n(A) =
n(B);
(17i) both A and B are minimaz and critical, and o(A) = o(B).

Next, we answer the question “where” does a given subgroup S of A lie in
S(A).

Let X be a topological space. Let XM be its derived subspace, that is the set
of its accumulation points, i.e. non-isolated points. Define by induction X = X ©
and X+ = (XD If 2 € X — X+ we say that the Cantor-Bendixson
rank! of z in X is n and we write it CBx(z) = n. Note that CoND(X) C
X® for all n. If X is a metrisable Boolean space, it can be checked that the
Cantor-Bendixson rank of x in X is the integer n if and only if there exists a
homeomorphism of a neighbourhood of x (which can be chosen clopen) to D"
mapping = to (0o,...,00). If there is some n such that CBx(x) < n whenever
CBx () is defined 2, we also define for any x € X, its extended Cantor-Bendizson
rank as

CBx(z) = inf sup{CBx(y)|y € V,CBx(y) < oo},

IWe are avoiding the use of ordinals in this introduction. See Paragraph 1.1 for the extension
of the Cantor-Bendixson as an ordinal-valued function defined on all the scattered part of X.

2This is the case if X = S (A) with A an arbitrary abelian group, as a consequence of
Proposition A and Theorems C and D.
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where the infimum ranges over all neighbourhoods of z. This extends the function
CBx (assuming sup ) = —c0).
For a minimax abelian group A and a prime p, define

tip(A) = L,(A/Ta) and 7,(A) = €,(Ta);
and, for a set of primes V,

kv (A) =) rky(A) and v (A) = Y 7, (A).

p

If S < A, define
dA(S) = Tncr(A) (A/S) + Rncr(A) (A/S) + Encr(A) (S)
= 0(A) = (Taer (A/5) + Yner(4) (A) = Yner(a) (A/5))

Theorem G (Theorem 4.5.1). Let A be a minimax abelian group and let S < A.
We have

(1) S is in the scattered part of S(A) if and only if
Ker(4)(A/S) = Ler(a)(S) = 0;
(77) the extended Cantor-Bendizson rank of S in S(A) is da(S).
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The outline of the article is as follows. In Section 1, we establish some topolog-
ical preliminaries, notably a characterisation of the extended Cantor-Bendixson
function by semi-continuity and hereditary properties (Paragraph 1.2) and a topo-
logical characterisation of the spaces involved in Theorems C and D (Paragraph
1.3). The short Section 2 is devoted to general abelian groups, and we prove
Propositions A and B there. Sections 3 and 4 are devoted to the study of S(A)
when A is a a minimax group. Section 3 contains enough to prove Theorem C,
while both sections are necessary to obtain Theorems D and G.

Sections 3 and 4 contain a number of preliminary results, pertaining to the
topology of commensurability classes in S(A) for an abelian minimax group A,
which can be of independent interest.
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1. TOPOLOGICAL PRELIMINARIES

1.1. Cantor-Bendixson analysis. Let X = X be a topological space. If
XM ig its derived subspace, one can define by transfinite induction X(® as the
derived subspace of ﬂﬁ ca X (). This is a decreasing family of closed subsets of

X, and the first o such that X(® is perfect is called the Cantor-Bendixson rank
of X and denoted ¢B(X). The advantage of this ordinal-valued definition is that
CoND(X) = ), X @ (if we restrict to integers, this is only an inclusion C in
general). If z ¢ COND(X), its Cantor-Bendixson rank is defined as

cBx(z) = sup{a|z € X@1.
This function is extended to all of X by
CBx(z) = infsup{CcBx(y)|y € V — CoND(X)},

where the infimum ranges over all neighbourhoods of z, assuming sup ) = —co.

1.2. Semi-continuity, heredity.

Definition 1.2.1. Denote by ORD the collection of ordinals. Let X be a topo-
logical space. A map f: X — ORD is called upper semi-continuous at xq € X if
f has a local maximum at xq. It is strictly upper semi-continuous at xg if it is a
strict local maximum, i.e. if f(z) < f(z¢) when z is close enough to z.

Definition 1.2.2. Let X be a topological space.

e If Y C X is a dense subset, a map X — ORD is Y-hereditary if for every
x € X and for every neighbourhood V' of z in X, we have

f(x) < sup f(y)

yevVny

e A map X — ORD is strictly hereditary if for every z € X and for every
neighbourhood V of x in X, we have

fl@) < sup (f(2') +1),
z'eV\{z}

where we set sup () = 0.
Lemma 1.2.3. Let X be a topological space, with two subsets I,C C X and a
map f: I — ORD. Assume that the following conditions are satisfied:

(i) C' has no isolated point;
(il) X = TUC;

)
iii) f is upper semi-continuous and I-hereditary on I;
(iv)

v) f s strictly upper semi-continuous and strictly hereditary on 1.
Then I = Z(X), C = CoND(X), and f coincides with CBx on I.
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Proof. First, using (iv), by induction on «, if z € I and f(x) = «, we get
x € Z(X) and the Cantor-Bendixson rank of z in X is a. Hence I C Z(X).
Moreover by (i), C' C COND(X). Therefore, using (ii), we get I = Z(X) and
C' = ConND(X). Finally using (iii), we get that f coincides with the extended
Cantor-Bendixson rank on C'N 1. U

1.3. Characterisation of some topological spaces. It is very useful to have
a characterisation of some topological spaces. For instance, we already used in
the introduction the classical fact (see [Kec95, Theorem 7.4]) that if a non-empty
topological space is metrisable, compact, perfect and totally disconnected, then
it is a Cantor space. (By definition, a Cantor space is a space homeomorphic to
the triadic Cantor set.)

The second case concerns scattered spaces. It is known [MS20] that a non-
empty Hausdorff compact scattered topological space is characterised, up to
homeomorphism, by its Cantor-Bendixson rank (an arbitrary ordinal, countable
in the metrisable case), and the number of points of maximal Cantor-Bendixson
rank (an arbitrary positive integer). For our purposes it is enough to retain

Proposition 1.3.1. Let X be a Hausdorff compact scattered topological space of
finite Cantor-Bendizson rank m + 1 > 1, with n > 1 points of mazximal Cantor-
Bendizson rank (= m). Then X is homeomorphic to D™ X [n].

This applies for instance to the ordinal w™ - n + 1.
If X is a topological space, let us define

Co(X) = {z € Z(X) N ConD(X) | CBx () > a}.
Proposition 1.3.2. Let X be a metrisable Boolean space and o < 0o. Assume
that cB(X) < oo and
(i) cB(X) =0+ 1 and C;(X) is a Cantor space for alli < o;
(17) Civ1(X) has empty interior in C;(X) for all i.
Then X is homeomorphic to D7 x W.

We make use of the following result of Pierce [Pie70, Th.1.1]. Here, we as-
sume that a point not in the closure of the scattered part has extended Cantor-
Bendixson rank —oo.

Theorem 1.3.3 (Pierce). Let X,Y be metrisable Boolean spaces. Let ¢ be a
homeomorphism COND(X) — COND(Y'). Suppose that Z(X) is homeomorphic to
Z(Y) and that ¢ preserves the extended Cantor-Bendizson rank. Then ¢ extends
to a homeomorphism X — Y.

We also need the following lemma. Let us view D™~! as the subspace D™t x
{oc} of D™ (D° being a singleton).

Lemma 1.3.4. Let K = {0, 1} be the Cantor discontinuum and let 0 < o < w.
Let K = K, D K,_1 D --- D Ky be subsets of K all homeomorphic to K and
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such that K; has empty interior in K;11 for each 0 <1 <o — 1. Then there is a
homeomorphism K — K x D mapping K; to K x D' for each 0 < i < 0.

The proof is an induction based on the following theorem.

Theorem 1.3.5. [KR53, Th.2] Let K; (i = 1,2) be Cantor spaces and let C; C K;
be closed subsets with empty interior in K;. Assume that there is a homeomor-

phism h : C; — Cy. Then there is a homeomorphism b Ky — K, extending
h.

Proof of Lemma 1.3.4. The proof is an induction on o.
Step 1: The result is obvious if ¢ = 0 and follows from Theorem 1.3.5 if ¢ = 1.
Step 2: Assume now ¢ > 1. Apply Step 1 to get a homeomorphism ¢ : K —
K x D with ¢(K,_1) = K x {oc}. By induction, there exists a homeomorphism
Y : K — K x D! mapping ¢(K;) to K x D for all 0 < i < o0 — 1. Then, for
i < o — 1, the homeomorphism (1) x Id) o ¢ of K to K x D°' x D = K x D?
maps K; to K X D' x {00} = K x D' O

Proof of Proposition 1.3.2. The condition is obviously necessary.

Conversely, set K; = C,_;, and use Lemma 1.3.4 to get a homeomorphism
CoND(X) — ConD(Y) preserving the extended Cantor-Bendixson rank. The
hypothesis on scattered parts and Pierce’s theorem then allow to get the desired
homeomorphism. 0

Lemma 1.3.6. The spaces D™ x [n| (m >0,n>1), D™ x W (m >0) and K
(a Cantor space) are pairwise non-homeomorphic.

Proof. The only perfect space here is K. The other uncountable ones are D™ x W |
which has Cantor-Bendixson rank m + 1. The countable space D™ x [n] has

Cantor-Bendixson rank m+1 and exactly n points of maximal Cantor-Bendixson
rank (m). O

2. GENERALITIES
2.1. Isolated points.

Proposition 2.1.1. Let A be an abelian group and S € S(A). Then S is isolated
in S(A) if and only if S is finitely generated and A/S is Artinian.

This follows from Lemma 1.3, Proposition 2.1 and Lemma 4.1 in [CGPO07].

Corollary 2.1.2. Let A be an abelian group. Then S(A) has isolated points (i.e.
is non-perfect) if and only if A is minimax. In this case, isolated points in S(A)
form exactly one commensurability class, namely the lattices in A.

Corollary 2.1.3. If a countable abelian group A is not a minimazx group, then
S(A) is a Cantor space.

These two corollaries settle Proposition A.
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2.2. Uncountable groups.

Proof of Proposition B. If A/T, has cardinality c, then A contains a copy of Z(®),
Otherwise, T4 has cardinality «, and denoting by A, the p-torsion in A, the direct
sum @p A, can be written as a direct sum of « cyclic subgroups of prime order.
So in both cases, A contains a subgroup isomorphic to a direct sum of non-trivial
(cyclic) subgroups @,., ;. The mapping 24 — S(A4), J — D,c;5; is the
desired embedding. 0

Lemma 2.2.1. Let « be an infinite cardinal. The least cardinal for a basis of
open sets in 2% is a.

Proof. The natural basis of the topological space 2% has cardinality «. Conversely,
if a basis has cardinality /3, then it provides a basis of the dense subset 2(*. Thus
2(®) contains a dense subset D of cardinality not greater than (. The union of
(finite) supports of all f € D must be all of a, so 8 > «a. O

Proposition 2.2.2. Let « be an infinite cardinal, and A an abelian group of
cardinal ov. The least cardinal for a basis of open sets in S(A) is a.

Proof. As we have topological embeddings 2¢ C S(A) C 2% (the right-hand one
being the inclusion S(A) C 24, the left-hand one following from Proposition B),
this follows from Lemma 2.2.1. O

3. THE WEIGHT FUNCTION ON S(A)
In this section, all minimax groups are assumed abelian.
3.1. Critical primes, idle subgroups and parallelism.

Definition 3.1.1. Let A be a minimax group. Two subgroups S, S" are said to
be parallel if they have a common lattice, and ¢,(S) = ¢,(S") for every prime p.

Clearly, this is an equivalence relation. Commensurable implies parallel; the
obstruction to the converse comes from what we call critical primes.

Definition 3.1.2 (Strong Criticality). Let A be a minimax group and let S < A.
e The subgroup S is p-critical if p is a critical prime
(i.e. £,(A) > 2) and £,(S) > 0.
e The subgroup S is strongly p-critical if £,(S) > 0 and
7,(A/S) > 0.

Definition 3.1.3. Let A be a minimax group. A subgroup S of A is idle if any
subgroup parallel to S is commensurable to S.

Lemma 3.1.4. Let A be a minimax group and let S < A. The following are
equivalent.

e S is idle;

e S is not strongly p-critical for any critical prime p.
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Proof. Suppose that S is not strongly critical for any critical prime p. Let S” be
a subgroup of A parallel to S. Replacing S and S” by S/Z and S’/Z where Z is
a common lattice, we can assume that S, S’ are (Artinian) torsion subgroups of
A.

Let us show that Div(S) = Div(S’), which clearly proves that S’ is commen-
surable to S. Let p be a prime such that 7,(A) > 0.

If p is non critical (i.e. 7,(A) = 1), then either 7,(S) = 7,(S") = 1 and hence
Div(S) N Div(S’) contains the divisible part Div(A,) of the p-component A, of A
or 7,(S) = 7,(5") = 0 and neither Div(S) nor Div(S’) contains this part.

If p is critical, then there are two cases (recall that S is not strongly p-critical
for any critical prime p):

Case 1: 7,(S) = 0. Then 7,(S") = 0 and hence both Div(S) and Div(5’)
intersect trivially Div(A4,).

Case 2: 7,(S) = 7,(A). Then 7,(5") = 7,(A) and hence Div(S) N Div(S’) D
Div(A,). All in all, this shows that Div(S) = Div(S5’).

Conversely, suppose that S is strongly p-critical for some critical prime p. Let
S" be the kernel of a homomorphism from S onto Cp~. Since S/S’ is torsion,
the natural map A/S" — A/S maps T;s onto Tass. As £,(S/S’) = 1 we have
then 7,(A/S") = 1,(A/S) + 1. As S is strongly p-critical, we have 7,(A/S5") > 2.
So A/S’ contains a subgroup L/S" isomorphic to Cpe, which is not equal (and
therefore not commensurable) to S/S’. So L is parallel but not commensurable
to S. O

3.2. The weight function and semi-continuity.

Lemma 3.2.1. Let A be a minimaz group and p a prime. Then for every S < A,
we have

() + 1,(A/5) = 7p(A),
with equality if S is torsion.
Proof. 1t is clearly an equality when S is torsion. Apply this to the exact sequence

0—=Ty/(TanNS)— A/S — A/(S+T4) —0
to get (note that T4 NS =Tg)
T,(A)S) = 1,(A)(S 4+ Ta)) + 17,(Ta/Ts).

Again, using additivity in the torsion case,

p(Ta/Ts) = 7p(A) = 7(5).
Thus

T(A/S) + 1p(5) = 1(A) + 7(A/(S + Ta)). T

The following lemma is straightforward.
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Lemma 3.2.2. Let A be an abelian group. The map S +— r(5) is lower semi-
continuous on S(A). In particular, if r(A) < oo, then the map S — r(A/S) is
upper semi-continuous on S(A). O

Lemma 3.2.3. Let A be an abelian group with finitely many elements of order
p (e.g. A is minimaz). Then the map S +— 7,(S) is upper semi-continuous on

S(A).

Proof. Note that 7,(S) makes sense, since the p-component of T4, that is, the
set of elements whose order is a power of p, is Artinian. Let (74), be the p-
component of the torsion in A, i.e. the set of element of p-prime order. Consider
S < A and let us show that 7, is upper semi-continuous at S. There exists a
finite subgroup M of (Ts), such that (Ts),/M is divisible. So taking the quotient
by M, we can assume that (Ts), = S N (T4), is divisible. Let F' be the set of
elements of order p in A\ S. Then S contains exactly p»(*) — 1 elements of order
p. Therefore for any S < A with S’ N F = 0, we have 7,(5") < 7,(5). O

Lemma 3.2.4. Let A be an abelian group with finitely many elements of order
p, and with r(A) < oo (e.g. A is minimaz). Then the map S — 7,(A/S) is lower
semi-continuous on S(A).

Proof. Note that the assumption on A is inherited by its quotients (we need
r(A) < oo here), so the map considered here makes sense. Let us check that
this map is lower semi-continuous at Sy. We can suppose that Sy is torsion.
Indeed, let Z be a lattice in Sy. Then S(A/Z) can be viewed as an open subset
in S(A), Sy corresponding to Sy/Z. So assume that Sy is torsion. We can write
7o(A/S) = F(S) + g(S), with F(S) = 7,(4/S) +7,(S) and g(S) = —7,(S). By
Lemma 3.2.3, g is lower semi-continuous. By Lemma 3.2.1, since S is torsion, f
takes its minimal value 7(A) at Sp, so is lower semi-continuous at S. O

Definition 3.2.5. Let A be a minimax group. The weight of a subgroup S is
wa(S) =1r(A/S)+L(S) + k(A)S).
The following lemma is straightforward.

Lemma 3.2.6. Let A be a minimax group. The maps w4 is constant on each
commensurability class in S(A). O

Lemma 3.2.7. Let A be a minimaz group. The maps w4 is upper semi-continuous

on S(A).
Proof. Observe that
wa(S) =r(A/S)+L(A) —T1(A)S).
SO w4 is upper semi-continuous as consequences of Lemmas 3.2.2 and 3.2.4. [

Lemma 3.2.8. Let A be a minimax group and S a torsion subgroup. If S’ < A
is close enough to S and Div(S’) < S, then either " =S or wa(S’) < wa(S).
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Proof. First we can mod out by a finite subgroup of S and suppose that S is
divisible. We can write wa(S’) = ((A) + r(A/S") — 32, 7(A/S’), which is a
sum of upper semi-continuous functions. So if S” is close to S with wa(S’) =
wa(S), we have r(A/S") = r(A/S) by Lemma 3.2.2 (hence S’ is torsion too)
and 7,(A/S") = 1,(A/S) for all p by Lemma 3.2.4, i.e. £,(S") = £,(S) for all p.
As by assumption Div(S’") < S, it follows that Div(S’) = S. So S has a direct
complement M in S’. Let F' be the set of elements of prime order in A\ S. If S
is close enough to S, we have S’ N F = (), hence M cannot contain any element
of prime order, so M = {0}, and 5" = S. O

Proposition 3.2.9. Let A be a minimaz group, and S € S(A). If S’ is close
enough to S, then either

(1) wa(5") <wal(9),

(2) or wa(S") = wa(S) and S’ is parallel and non-commensurable to S,

(3) or 8"=25.
Proof. Let S < A and let Z be a finitely generated subgroup of S. If S is close
enough to S, then Z < ', and as wa/z(5'/Z) = wa(S’) whenever S’ contains
Z, we can suppose that S is divisible. If S” is close to S and w4 (S") = wa(S)
then r(A/S") = r(A/S), so that S’ is torsion, and 7,(A4/S") = 7,(A/S) for all
p, hence 0,(S) = £,(5) for all p, i.e. S and S’ are parallel (argue as in the
beginning of the proof of Lemma 3.2.8). If moreover S’ is commensurable to S,
then Div(S’) = Div(S). By Lemma 3.2.8, we get that if S’ is close enough to S,
then S" = S. O

As wy is constant on commensurability classes, we get

Corollary 3.2.10. Let A be a minimazx group. Every commensurability class in
S(A) is discrete. O

Corollary 3.2.11. Let A be a minimaz group and S € S(A). Then the function
wy 1s strictly upper semi-continuous at S if and only if S is idle.

Indeed, the case (2) can occur only if S is non-idle.
If A has no critical primes, every subgroup is idle and we thus get

Corollary 3.2.12. If the minimaz group A has no critical primes, then the map
wy s strictly upper semi-continuous on S(A). O

3.3. Commensurable convergence.

Definition 3.3.1. Let H and S be two subgroups of A. We say that there is
commensurable convergence from H to S if S belongs to the topological closure
of the commensurability class of H.

Lemma 3.3.2. Let A be a minimax group and S < T4 a torsion subgroup. Let
H be another subgroup of A. Then the following are equivalent.

(i) There is commensurable convergence from H to S;
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(ii) Div(H) is contained in S.

Proof. Suppose (ii). As a divisible subgroup, Div(H) has a direct complement L
in H, and L contains a torsion-free subgroup of finite index L'. Let (F,) be a
non-decreasing sequence of subgroups of S containing Div(H) as a subgroup of
finite index, with union all of S. Let (V},) be a sequence of subgroups of finite
index of L/, with trivial intersection. Set

H,=F, &V, cSalL.

Then H, has finite index in F, & L, which contains Div(H) & L = H with finite
index. So H, is commensurable to H; clearly (H,) tends to S.

Conversely, suppose that Ty N .S has infinite index in Ty. Then H contains a
quasi-cyclic subgroup P ~ Cj such that PN S is finite. Then every subgroup of
A commensurable to H contains P. Therefore this remains true for every group

in the closure of the commensurability class of H, which therefore cannot contain
S. O

As a consequence, we get

Proposition 3.3.3. Let A be a minimax group and S a subgroup of A. Let H
be another subgroup of A. Then the following are equivalent.

(i) There is commensurable convergence from H to S;
(ii) H contains some lattice Z of S and, in A/Z, Ty,z is virtually contained
in S/Z.

Proof. The implication (ii)=-(i) is a direct corollary of Lemma 3.3.2. Suppose
(i). Let Z be a lattice of S and let (H,) be a sequence of subgroups of A,
commensurable to H and converging to S. Then H, N Zy — Zy. As Zj is finitely
generated, eventually H,, contains Zy. So H contains a finite index subgroup Z
of Zy. So working in A/Z and applying Lemma 3.3.2, we get (ii). O

As an application, we have the two extreme cases.

Proposition 3.3.4. Let A be a minimax group.

o If 7 is a lattice of A, then there is commensurable convergence from Z to
any subgroup of A.

o [f S =Ty, then S belongs to the closure of any commensurability class in
S(A).

So, the lattices of a minimax group form a dense commensurability class. As
it consists of isolated points it is the unique dense commensurability class. At
the opposite, the torsion subgroup is in the unique closed (and finite) commen-
surability class of S(A).

Another consequence of Proposition 3.3.3 is the following, which quite surpris-
ingly is not an obvious consequence of the definition.

Corollary 3.3.5. If there is commensurable convergence H — L and L — S,
then there is commensurable convergence H — S. ([l
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3.4. Hereditary properties.
Proposition 3.4.1. Let A be a minimaz group. Set
T =A{5 € S(A) Ker(a)(A/5) = ler()(5) = 0}.
Then the map w4 is strictly hereditary on I.
The proposition readily follows from the following lemma.

Lemma 3.4.2. Let A be a minimaz group and S € S(A). Suppose that
Ker(a)(A/S) =0 and 7(A/S) + Luer(a)(S) > 1

(if S € I, these two assumptions just mean that wa(S) > 1). Then there exists
H € S(A) with commensurable convergence H — S, with wa(H) = wa(S) — 1
and Lo(a)(H) = Ler(a) ().

Proof. We can assume that S is torsion. Indeed, let Z be a lattice of S. We
can check that A/Z and S/Z satisfy the same hypotheses as A and S, and that
wa/z(H/Z) = wa(H) for any H < A containing Z.

e If 7(A) > 1, then there exists a torsion-free subgroup @) < A of rank one
such that fo4)(Q) = 0 and 7(A/(S®Q)) = 7(A/S). Indeed, take a direct
complement L of Div(A) in A and a torsion-free finite index subgroup L’ of
L, a cyclic subgroup C < I/, and the inverse image Q < L’ of the torsion
of L'/C. As 0 = Ker(a)(A/S) = Leray(L) = 0, we have le,(4)(Q) = 0. Now
HA/(5® Q) = (Tas & L/Q) = 7(A/5).

Setting H = S ® Q, we have le(a)(H) = ler(a)(S) and

wa(H) = r(A/H)+((A)—7(A/H)
r(A/S) —1+((A)—T1(A/S)
== UJA<S) — 1.

Now S is the limit of the subgroups
H,=S®kQ<H (keN),

which have finite index in H. Indeed, observe that
— n@ is close to {0} if n has some large prime divisor p such that no
elements of @) is divisible by every power of p;
— n@) has finite index in @ for any n > 1, because @/n@ is Artinian
with finite exponent.

o If r(A) = 0, then A is Artinian, and by assumption this forces lyer(a)(S) >
1. So S has a direct summand P isomorphic to Cpe for some non-critical
prime p. Let H be a direct complement of P in S. We have wa(H) =
’LUA(S) — 1 and fcr(A)(H) = gcr(A)(S)-

Denote by Hj the direct sum of H with the subgroup of P of order
p¥. Then Hj is commensurable to H and Hj tends to S as k goes to
infinity. U
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3.5. Conclusion in the scattered case.

Theorem 3.5.1. Let A be a minimazx group with no critical primes. Then S(A)
is scattered, and the Cantor-Bendixson rank of S € S(A) is given by wa(S).
The Cantor-Bendizson rank of S(A) is h(A) + 1, and S(A) is homeomorphic to

DM x [n(A)], where n(A) is the number of subgroups commensurable to Ta.

Proof. Suppose that A has no critical primes. Then the subset Z of Proposition
3.4.1 coincides with all of S(A), so that wy is strictly hereditary on S(A). More-
over, wy is strictly upper semi-continuous on S(A) by Corollary 3.2.12. So we
can apply Lemma 1.2.3 (with C' = () to obtain that S(A) is scattered and that
the Cantor-Bendixson rank of an element S € S(A) is w(.S).

Writing wa(S) = h(A) — (r(S) + 7(A/S)), we see that the maximal value of
wya is given by h(A), and is attained exactly for subgroups commensurable to
Ty. O

4. THE LEVELED WEIGHT AND CONDENSATION ON S(A)

Again, in this section, all Artinian and minimax groups are assumed abelian.

4.1. The invariant . Let V be a set of primes, and Zy be the ring of rationals
whose denominator has no divisor in V.

Let A be an abelian group. Then Hom(A, Zy ) is a torsion-free Zy-module. Its
rank, i.e. the dimension of the Q-vector space Hom(A, Zy ) ®z,, Q, is denoted by
v (A). Note that y9(A) = r(A).

Lemma 4.1.1. If A has finite rank r(A), then Hom(A, Zy ) is a finitely generated
Zy -module, free of rank vy (A), and vy (A) < r(A).

Proof. It n = r(A) and (ey,...,e,) is a maximal Z-free family in A, then the
mapping f — (f(e1),..., f(e,)) embeds Hom(A,Zy ) as a submodule of the free
module of rank n. In particular, as Zy is principal, Hom(A,Zy ) is a free Zy-

module of rank vy (A) and vy (A4) < r(A). O

Define ay (A) = r(A) — v (A). Besides, define Uy (A) as the intersection of all
kernels of homomorphisms A — Zy; this is a characteristic subgroup of A.

Lemma 4.1.2. Let A be an abelian group of finite rank and let S < A. We have
then:

W(A) Zw(A/S) Zw(A) = w(S);
ay(A) —r(S) <ay(A/S) < ay(A) —ay(9).
In particular, we have v (A/S) = v (A) and ay(A/S) = ay(A) if S is torsion.

Proof. From the exact sequence 0 — S — A — A/S — 0, we get the exact
sequence of Zy-modules

0 — Hom(A/S,Zy) — Hom(A,Zy) — Hom(S, Zy),
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so that Hom(A, Zy ) lies in an extension of Hom(A/S,Zy ) by some submodule of
Hom(S,Zy). This gives the first inequality, and the second one is equivalent to
it. O

Lemma 4.1.3. Let A be an abelian group of finite rank. We have ay(A) =
r(Uv(A)) and vv(A) = r(A/Uy(A)).

Proof. The two statements are obviously equivalent; let us prove that v (A4) =
r(A4/Uv(A)).

Set B = A/Uy(A). If i : Z'®) — B is an embedding as a lattice, then, as
Hom(B/Im(i), Zy) = {0}, it induces an embedding of Hom(B, Zy) into
Hom(Z"B), Zy) = Z:/(B), which is a Zy-module homomorphism. So vy (A) <
r(A/Uv(A)).

Conversely, if (fi,..., fm) is a maximal Z-free family in Hom(A,Zy ), with
m = yy(A), then A/ Ker(f;) embeds into Z{}. But [ Ker(f;) is reduced to
Uy (A), so r(A/Uy(A)) < yv(A). O

Corollary 4.1.4. Let A be a minimaz group. We have ay(A) = 0 if and only if
kp(A) =0 for every p e V.

Proof. If ay(A) = 0, then Uy (A) is torsion and hence coincides with 7%4. There-
fore A/T4 embeds into Z:/(A). As a result k,(A) = (,(A/T4) = 0 for every
p € V. Conversely, suppose that x,(A) = 0 for every p € V. We have an em-
bedding of A/T, into Q". The assumption implies, using Lemma 4.1.5 below,

that the image is contained in a multiple of Z:,(A). So Uy (A) is torsion, that is
av(A) =0. 0

Lemma 4.1.5. Let A be a minimax subgroup of Q and n > 1. Suppose that
l,(A) =0 for every prime p not diwviding n. Then A < NZ[1/n] for some X € Q*.

Proof. Let B = €D B, be the image of A in Q/Z =P, Cp=. As A is a minimax
group, B, = 0 for all but finitely many p’s, and B, is finite when p does not divide
n. Hence B is virtually contained in €, Cpe = Z[1/n]/Z. So A is virtually
contained in Z[1/n]. As A is locally cyclic, A is generated by A N Z[1/n] and
some rational u/v. Then A < v~'Z[1/n]. O

Lemma 4.1.6. Let A be an abelian group with r(A) < oco. The maps S +—
ay(A/S), S — yw(A/S) are upper semi-continuous on S(A).

Proof. Take Sy € S(A). By the same argument as in the proof of Lemma 3.2.4,
we can suppose that Sy is torsion.

By the first (resp. second) inequality in Lemma 4.1.2, S — ~y(A/S) (resp.
ay(A/S)) is maximal at Sy, so is upper semi-continuous at Sp. O

4.2. More maps on S(A). Let A be a minimax group, and recall that cr(A),
respectively ncr(A), denotes the set of critical primes of A (resp. the set of
non-critical primes of A). We define three maps S(A) — N
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(1) The level of a subgroup S is
AA(S) = aer(a) (A)S) + Llexa)(5) + Fer(a)(A/5);
(2) The leveled weight is
da(S) = Yer(a)(A/S) + lncr(a) (S) + Fner(a) (A/S).
Note that wa = Aq + da.

Lemma 4.2.1. Let A be a minimax group. The maps Aa and da are constant
on each commensurability class in S(A).

Proof. This is clear for the maps S +— k,(A/S), S +— €,(S). For S — vy (A/S9),
let S,S” be commensurable subgroups of A. We can deduce from 4.1.2 that
W (A/S) = W(A/(S N S) = (A/S). Finally ay(4/S) = r(A/S) — w(A/S)
is settled. ]

Lemma 4.2.2. Let A be a minimax group. The maps Aax and da are upper
semi-continuous on S(A).

Proof. Observe that
Aa(S) = er(a)(A/S) + Ler(a)(A) — Tar(a) (A/5);
da(S) = Yer(a)(A/S) + luce(a)(A) — Tuer(a)(A/S);
so they are upper semi-continuous as consequences of Lemmas 3.2.4 and 4.1.6. [

Proposition 4.2.3. In restriction to the open subset T = {A4 = 0} of S(A), the
map wa (= da) is strictly upper semi-continuous.

Proof. If A4(S) = 0, then £,(S) = 0 for every critical prime p, so S is not strongly
p-critical for any p. By Lemma 3.1.4, S is idle. We conclude by Proposition
3.2.9. =

4.3. Hereditary properties (second part). If A is a minimax group, in view

of Corollary 4.1.4, the set Z of Proposition 3.4.1 coincides with {S € S(A)| A\a(S) =
0}. Accordingly Proposition 3.4.1 states that, on Z, the function wy (= da) is

strictly hereditary.

Lemma 4.3.1. Let A be a minimaz group and S € S(A) with A4(S) < 1. Then
Qer(4)(A)5) = Fex(a)(A/S) = 0.

Proof. We have As(S) = aer(a)(A/S) + Lex(a)(S) + Ker(a)(A/S) < 1. By Lemma
4.1.4, Ker(a)(A/S) = 0 if and only if ac(a)(A/S) = 0, so they are both zero. [

Using this, Lemma 3.4.2 can be restated in the following form

Lemma 4.3.2. Let A be a minimax group and S < A. Suppose that \4(S) < 1
and d4(S) > 1. Then there exists H with commensurable convergence H — S,
with dA(H) = dA(S) —1 and )\A(H) = )\A(S)
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Proof. By Lemma 3.4.2, there exists H with commensurable convergence H — S,
with loray(H) = lera)(S) and wa(H) = wa(S) — 1. By upper semi-continuity of
Aa, we have Ag(H) < Aa(S). By Lemma 4.3.1, Au(S) = ley(a)(S) = lexay(H) <
Aa(H). So Aa(H) = A4(S), hence d4(H) = d4(S) — 1. O

Lemma 4.3.3. Suppose that Aa(S) > 1. Then there ezists H with commensu-
rable convergence H — S, with Aa(H) = Aa(S) — 1 and da(H) = da(95).

Proof. We can suppose that S is torsion (argue as in the beginning of the proof
of Lemma 3.4.2). We easily check from the definition that x,(A/S) = k,(A) for
any prime p. By Lemma 4.1.2, we also have ac(4)(A/S) = aer(ay(A). Therefore
)\A(S) = Cbcr(A)(A) + fcr(A)<S) + /‘fcr(A)<A)-

Suppose that ac(a)(A) > 1, ie. that Ueay is not torsion. Write A = T4 @ Q
with @ torsion-free. We have U a)(A) = Ucr(a)(Ta) ® Uer(a)(Q), 50 Uer(a)(Q) is
not torsion. Let Z be an infinite cyclic subgroup of Uy(4)(Q), and let L be the
inverse image in @ of the torsion subgroup of Q/Z. Finally set H = S @& L. We
have (note that ve(a)(A4/S) = Yer(a)(A) by Lemma 4.1.2):

dA(H) - dA(S) = Yer(A (A/H) Yer(A) (A) — Tncr(A) (A/H> + Ther(A) (A/S)

We claim that:

(1) 7,(A/H) = 1,(A/S) for every prime p;
(2) Yor(a)(A/H) = Yer(a)(A) and ae(a)(A/H) = aer(a)(A) — 1.

Proof of Claim (1). As Q/L is torsion-free the groups T4 y and T4, are both
isomorphic to T4/S. Hence 7,(A/H) = 7,(A/S) for every p.

Proof of Claim (2) By Lemma 4.1.2, we have Yoy (A/H) = Yor(a)(A/Z) and
o) (A/H) = away(A/Z). Since Z < Ue(ay(A), we have Hom(A/Z, Zy(a)) =
Hom(A, Zey(ay) and hence Yer(a)(A/Z) = Yer(a )(A), or equivalently ae(ay(A/Z) =
Aor(a)(A) = 7(Z) = ey (A) — 1 which completes the proof of claim (2).

We deduce from the previous claims that da(H) = d4(S) and
Aa(H) = As(S) — 1. Moreover, S is a strict limit of subgroups of finite index in
H.

Finally, suppose that ae(a)(A) = 0 (which implies kep(a)(A) = 0 and 7e,4)(S) >
1). Write S = P @ H, where P is isomorphic to Cpe for some critical prime p.
Then da(S) = da(H) and Ms(H) = Aa(S) — 1. Moreover, S is a strict limit of

subgroups containing H as a subgroup of finite index. 0

Lemma 4.3.4. Let A be a minimax group and S a subgroup, and m < As(S )
Then there exists H with commensurable convergence H — S, with \y(H) =

Proof. This is a straightforward induction on A4(S) —m, based on Lemma 4.3.3

and making use of transitivity of commensurable convergence (Corollary 3.3.5).
OJ

Proposition 4.3.5. Let A be a minimaz group. Again, setZ = {S € S(A)|Aa(S) =
0}. Then the map da is Z-hereditary on S(A).
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Proof. First, the statement presupposes that Z is dense in S(A), which is a con-
sequence of Proposition 3.3.4 and Corollary 2.1.2 (but also follows from the ar-
gument below).

Pick S < A. Let V be an open neighbourhood of S. Using Lemma 4.3.4 with
m = 0, we obtain that there exists H € Z NV such that d4(H) = d4(S). Hence
d 4 is Z-hereditary at S. [l

Lemma 4.3.6. Let A be a minimax group and S a subgroup of A with Aa(S) > 1,
and 1 < n < da(S). Then there exists H with commensurable convergence

H — S, with \A(H) =1 and ds(H) = n.

Proof. By Lemma 4.3.4, there exists H € S(A) with commensurable convergence
H — S, and Ma(H) = 1, da(H) = da(S). Applying several times Lemma 4.3.2
(using Corollary 3.3.5), we find H with commensurable convergence H — S,
da(H) =nand Ay (H) = 1. Again with Corollary 3.3.5, we have commensurable
convergence H — S. O

The following lemma gives somehow the “smallest” examples of minimax groups
whose space of subgroups is not scattered (equivalently uncountable).

Lemma 4.3.7. Let A = (Cp=)?. The set K of subgroups of A isomorphic to Cpe
is a Cantor space. In particular S(A) is uncountable.

Proof. By direct computation Aut(A) = GLy(Z,), the group of 2 x 2 matrices
with coefficients in the p-adics, acting on (Cpe)? through its identification with
(Q,/Z,)?. The action on the set of subgroups is easily checked to be continuous.
The stabiliser of the “line” Cpe @ {0} is the set of upper triangular matrices
T5(Z,). The quotient can be identified on the one hand with the projective line
P!(Q,), which is known to be a Cantor space, and on the other hand with the
orbit of Cpe @ {0}.

Now let P € K. Being divisible, it has a direct complement () in A. Necessarily,
@ is isomorphic to Cpe. Therefore there exists an automorphism of A mapping
Cpee @ {0} to P. Thus K coincides with the orbit of Cpe @ {0}, which completes
the proof. O

Lemma 4.3.8. Suppose that S is strongly p-critical. Then there exists a Cantor
space I C S(A) such that S € K, and every K € K — {S} is parallel and

non-commensurable to S.

Proof. Let W be the kernel of a map of S onto Cpe. Working inside A/W, we can
suppose that W = 0, i.e. S is isomorphic to Cpe. As S is strongly p-critical, there
exists another subgroup P which is isomorphic to Cpe~ and such that P NS = 0.
Then the set of subgroups of P@® S that are isomorphic to Cp~ is a Cantor space,
by Lemma 4.3.7. They are all parallel to S and pairwise non-commensurable. []

Lemma 4.3.9. Suppose that Ay(S) = 1. Then S belongs to a Cantor space whose
points are subgroups H with da(S) = da(H) and Aa(H) = 1.
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Proof. By Lemma 4.3.1, we have ac(4)(A/S) = Ker(a)(A/S) = 0. So Loy a)(S) =
and Te(4)(A/S) = leray(A/S) > 1. Let p be the critical prime such that ¢,(S
1. Then S is strongly p-critical. Thus we conclude by Lemma 4.3.8.

AVZ I [ B

Let A be a minimax group. For n > 0, define the subset C,(A) = {S|Aa(5)
1,d4(S) > n}. By upper semi-continuity (Lemma 4.2.2), it is closed.

Proposition 4.3.10. Let A be a minimaz group and n > 0. The subset C,(A) C
S(A) is perfect.

Proof. By Lemma 4.3.4 with m = 1, its subset C}(A) = {S € C,|Aa(S) = 1} is
dense in C,(A). By Lemma 4.3.9, C}(A) is perfect, so C,(A) is perfect as well. [J

Proposition 4.3.11. Let A be a minimax group and n > 0. Then C,11(A) has
empty interior in C,(A).

Proof. Let S belong to Cny1(A). By Lemma 4.3.6 there exists H € S(A) with
commensurable convergence H — S, Ay(H) = 1 and ds(H) = n. So H and its
commensurable subgroups belong to C,(A) but not to C,.1(A), and therefore S
is not in the interior of C, 1 (A). O

4.4. Maximal values.

Lemma 4.4.1. Let A be a minimazx group. On the set T = {S|Aa(S) = 0}, the
mazimal value of wa(= da) i5 Yer(a)(A) + lner(a) (A).

Proof. We have
da(S) = Yer(4)(A/S) + lrcr(a) (A) = Toer(4)(A/S) < Yer(a)(A) + lner(a)(A)
and
Aa(S) = acr(a)(A/S) + ler(a)(A) = Tex(4)(A/S) < aer(a)(A) + Lex(a) (A).

Both inequalities are sharp, as they become equalities when S = T'4.
Moreover by Lemma 4.3.4, we get the existence of a subgroup S of A with
)\A(S) =0 and dA(S) = "Ycr(A)(A) +€ncr(A)(A)~ O

4.5. Conclusion in the non-scattered case. Define
0(A) = Yer(a) (A) + luer(a)(A) = h(A) = (acr(a)(A) + Ler(ay(A)).

Theorem 4.5.1. Let A be a minimaz group. If S € S(A), then

e S belongs to the scattered part of S(A) if and only if Aa(S) =0;
e the extended Cantor-Bendizson rank of S in S(A) is da(5);
e the Cantor-Bendixson rank of S(A) is o(A) + 1.

If moreover A has at least one critical prime, then S(A) is homeomorphic to

DA x W,
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Proof. f T = {A4 = 0} and C = {A4 > 1}, then by Proposition 4.3.10 (for
n = 0), Lemma 4.2.2, Propositions 4.3.5, 4.2.3 and 3.4.1, Z, C and d 4 satisfy the
hypotheses of Lemma 1.2.3. This settles the first two assertions, and the third
follows from Lemma 4.4.1.

For the last statement, we appeal to Proposition 1.3.2, with C; = C;(A) as
above. By Proposition 4.3.10, C; is perfect. As da(T4) = 0(A) and A\a(T4) =
aer(4)(A) + Lexay(A) > 1 (see the proof of Lemma 4.4.1), we have Ty € Cya).
Thus C; is a Cantor space for all i < o(A). Finally C;,1 has empty interior in C;
for all 7, by Proposition 4.3.11. ([l

4.6. Example: Artinian groups. For an Artinian group A, the invariant ~y
vanishes for every set of primes V. Thus, by definition

U(A) = gncr(A) (A)7
and, for S € S(A),

wa(S) =4(S);  Aa(S) = Law)(S);  da(S) = lucx(a)(5).

The properties of these maps established above are even easier to obtain in this
particular case. Indeed, if A is decomposed as a direct sum of its p-components:
A= @A, then S(A) = P S(A,). Then, given that W x [n] for n > 1 and
W x W are homeomorphic to W, we are reduced to study S(A) when A is an
Artinian p-group.

If {(A) = 0 then A is finite and S(A) is homeomorphic to [n] for n = n(A), the
number of subgroups of A.

If £(A) = 1 then finite subgroups of A are isolated, and form a dense subset,
while there are only finitely many infinite subgroups, namely finite index sub-
groups of A. If there are n many such subgroups, then S(A) is homeomorphic to
D x [n].

If ¢((A) = ¢,(A) > 2, again finite subgroups form a dense subset consisting
of isolated points. If C' is the set of infinite subgroups, it is then closed. Now
C' contains a dense subset, namely the set L; of subgroups S with ¢(S) = 1.
The set L; is perfect, by Lemma 4.3.9. So C is perfect. Accordingly, S(A) is
homeomorphic to .
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