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Abstract. We carry out the Cantor-Bendixson analysis of the space of all
subgroups of any countable abelian group and we deduce a complete classifi-
cation of such spaces up to homeomorphism.

Introduction

Let G denote a discrete group. The set N (G) of all normal subgroups of G has
a natural topology, called the Chabauty topology. It is the setting of interesting
interplay between topological phenomena and algebraic properties of the group
G. Introduced by Chabauty in [Chab50], it reappeared in the work of Gromov
[Gro81] and Grigorchuk [Gri84], where it proved to be a useful tool to understand
asymptotic properties of discrete groups, see for instance [CG05] for further ap-
plications. More precisely, consider the set of subsets of G, viewed as the product
2G, endowed with the product (Tychonov) topology. The subset N (G) is eas-
ily seen to be closed. By construction, this is a compact, totally disconnected
Hausdorff topological space, that is, a Boolean space. If G is countable, then it
is metrisable. For this topology, a net (Ni) of normal subgroups converges to N
if and only if for every g ∈ N (resp. g /∈ N), eventually g ∈ Ni (resp. g /∈ Ni).

In general, very little is known on the global structure of N (G) for a given
a group G, however see [Cham00, CGP07], which especially deal with the case
when G is free of finite rank. In this article we treat the case where the group G
is abelian (not necessarily finitely generated) and we preferably write A in place
of G. We obviously have N (A) = S(A), the space of subgroups of A. This is
not unrelated to finitely generated groups: indeed, if A is any countable abelian
group, then A embeds into the center of a finitely generated group G, giving an
obvious embedding of S(A) into N (G). The classification of the spaces S(A) for
an abelian group A turns out to be much more tractable than both of its natural
and difficult generalisations, namely the classification of either general Boolean
spaces or general abelian groups, see for instance [Pie70] and [Tho01] concerning
these problems. Indeed, we are able to provide a complete description of the
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spaces S(A) in terms of natural, and computable, invariants of the countable
abelian group A.

A topological space X is called perfect if it has no isolated point, and, at the
other extreme, scattered if any non-empty subset has an isolated point. As an
union of perfect subsets is perfect, every topological space has a unique largest
perfect subset, called its condensation part and denoted by Cond(X), which is
empty if and only if X is scattered. The subset X − Cond(X) is the largest
scattered open subset, and is called the scattered part of X.

If A is an abelian group, its torsion elements form a subgroup denoted by TA.
Recall that an element of A is called divisible if it belongs to nA for all non-zero
integers n. The set of divisible elements in A form a subgroup denoted by Div(A)
and it is easy to check that it always has a direct complement in A. Given a prime
p, we define Cp∞ = Z[1/p]/Z; this is called a quasi-cyclic group. An abelian group
is called Artinian if every non-increasing sequence of subgroups stabilises; every
such group is isomorphic to a direct sum A =

⊕h
i=1Cp∞i

⊕ F for some finite

subgroup F ; the finite index subgroup
⊕h

i=1Cp∞i
coincides with Div(A). An

abelian group A is called minimax if it has a finitely generated subgroup Z with
A/Z Artinian. Such a subgroup Z is called a lattice in A.

Proposition A (Corollaries 2.1.2 and 2.1.3). Let A be an abelian group. Then
S(A) is non-perfect (i.e. contains an isolated point) if and only if A is minimax.
In particular,

• if A is countable and not minimax, then S(A) is a Cantor space;
• if A is uncountable, then S(A) is perfect.

When the abelian group A is uncountable, we do not have any classification
result for the perfect space S(A), except the following, which shows that the
cardinality of A can be read out of the topology of S(A).

Proposition B (see Paragraph 2.2). Suppose that the abelian group A has un-
countable cardinal α. Then S(A) contains a subset homeomorphic to 2α. Accord-
ingly, α is the least cardinality of a basis for the topology of S(A). In particular,
if A is uncountable, then S(A) is not metrisable.

Our main result is the determination of the homeomorphism type of S(A) when
A is a countable abelian group. Proposition A settles the case of non-minimax
ones.

Recall that the rank of an abelian group A, denoted r(A), is the largest cardinal
of a Z-free family in A; this is also the Q-dimension of the vector space A⊗Z Q.
If A is minimax, then r(A) <∞. We also have to introduce the notion of critical
prime of a minimax abelian group, which plays a crucial role here. If A is a
minimax abelian group and p a prime, we define `p(A) as the largest integer k so
that A maps onto Ck

p∞ . Given a lattice Z in A, this is also the greatest integer k
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so that Ck
p∞ embeds into A/Z. The sum

h(A) = r(A) +
∑

p prime

`p(A)

is finite and called the height of A. When A is not minimax, we set h(A) = ∞. A
prime p is called critical for A if `p(A) ≥ 2. The set of critical, respectively non-
critical, primes for A is denoted by cr(A), resp. ncr(A). The minimax abelian
group A is called critical if cr(A) 6= ∅. Finally, if A is a minimax abelian group,
Div(A) is contained in TA as a subgroup of finite index; the number of subgroups
of the finite group TA/Div(A) is denoted by n(A).

Let [n] denote the set {0, . . . , n − 1} with n elements, and ω =
⋃

n[n]. Let
D denote the topological space ω ∪ {∞} consisting of the discrete sequence of
points (n)n≥0 converging to the limit ∞, which is homeomorphic to the subset
{1/n|n ≥ 1} ∪ {0} of R. For any integer m, the space Dm is scattered, since
D is scattered and the class of scattered spaces is closed under finite cartesian
products.

Theorem C (Th.4.5.1). Let A be a non-critical minimax abelian group, and
write h = h(A), n = n(A). Then the space S(A) is countable, and homeomorphic
to Dh × [n].

All the cases occur (for h ≥ 0 and n ≥ 1), for instance the abelian group
A = Zh ⊕ Z/2n−1Z has h(A) = h and n(A) = n, and as a finitely generated
group, it is minimax and non-critical.

Let us now deal with critical minimax abelian groups. Again, we have to
introduce some more definitions. Let A be a minimax abelian group and let V
be a set of primes. First define

`V (A) =
∑
p∈V

`p(A).

Let ZV ⊂ Q denote the ring of rationals whose denominator is divisible by no
p ∈ V . Let UV (A) ≤ A be the intersection of kernels of group homomorphisms
A→ ZV . Set aV (A) = r(UV (A)) and γV c(A) = r(A/UV (A)). Note that A/UV (A)

embeds into Z
γV c (A)
V .

On the other hand, let W be a “dusty Cantor space”; namely a compact
metrisable space consisting of the union of a Cantor space with an open dense
countable discrete set. It is a consequence of Pierce’s theorem (Theorem 1.3.3)
that W is thus uniquely defined up to homeomorphism. For instance, W may be
chosen as the union of the triadic Cantor set (which is the image of {0, 2}N in R
by the injective continuous map u 7→

∑
n≥0 u(n)3−n−1) and the set of centers of all

intervals in the complement, namely the set of reals of the form
∑

n≥0 v(n)3−n−1,
where v(n) is a sequence such that for some n0 ≥ 0, v(n) ∈ {0, 2} for all n < n0

and v(n) = 1 for all n ≥ n0.
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Theorem D (Theorem 4.5.1). Let A be a critical minimax abelian group. Then
S(A) is uncountable, and homeomorphic to Dσ ×W , where σ = σ(A) is defined
as follows

σ(A) = γncr(A)(A) + `ncr(A)(A)

= h(A)− (acr(A)(A) + `cr(A)(A)).

Again, all the cases occur: the minimax group (C2∞)2 × Zσ is critical, has
σ(A) = σ. Even better, for a minimax group A with given h(A), if S(A) is
uncountable, then 0 ≤ σ(A) ≤ h(A) − 2, and all these cases occur, taking A =

(C2∞)h−σ × Zσ, we have h(A) = h and σ(A) = σ provided 0 ≤ σ ≤ h− 2.
From the conjonction of Theorems C and D, we get the following corollaries.

Corollary E (Boyer [Boy56]). Let A be an abelian group. Then S(A) is countable
if and only if A is a non-critical minimax group.

Note that the harder implication, namely the forward one, follows from Theo-
rem C.

Corollary F (see Lemma 1.3.6). Let A,B be countable abelian groups. The
spaces S(A) and S(B) are homeomorphic if and only if one of the following
holds:

(i) h(A) = h(B) = ∞;
(ii) both A and B are minimax and non-critical, h(A) = h(B), and n(A) =

n(B);
(iii) both A and B are minimax and critical, and σ(A) = σ(B).

Next, we answer the question “where” does a given subgroup S of A lie in
S(A).

Let X be a topological space. Let X(1) be its derived subspace, that is the set
of its accumulation points, i.e. non-isolated points. Define by induction X = X(0)

and X(n+1) = (X(n))(1). If x ∈ X(n) −X(n+1), we say that the Cantor-Bendixson
rank1 of x in X is n and we write it cbX(x) = n. Note that Cond(X) ⊂
X(n) for all n. If X is a metrisable Boolean space, it can be checked that the
Cantor-Bendixson rank of x in X is the integer n if and only if there exists a
homeomorphism of a neighbourhood of x (which can be chosen clopen) to Dn

mapping x to (∞, . . . ,∞). If there is some n such that cbX(x) ≤ n whenever
cbX(x) is defined 2, we also define for any x ∈ X, its extended Cantor-Bendixson
rank as

cbX(x) = inf sup{cbX(y)| y ∈ V,cbX(y) <∞},

1We are avoiding the use of ordinals in this introduction. See Paragraph 1.1 for the extension
of the Cantor-Bendixson as an ordinal-valued function defined on all the scattered part of X.

2This is the case if X = S(A) with A an arbitrary abelian group, as a consequence of
Proposition A and Theorems C and D.
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where the infimum ranges over all neighbourhoods of x. This extends the function
cbX (assuming sup ∅ = −∞).

For a minimax abelian group A and a prime p, define

κp(A) = `p(A/TA) and τp(A) = `p(TA);

and, for a set of primes V ,

κV (A) =
∑

p

κp(A) and τV (A) =
∑

p

τp(A).

If S ≤ A, define

dA(S) = γncr(A)(A/S) + κncr(A)(A/S) + `ncr(A)(S)

= σ(A)− (τncr(A/S) + γncr(A)(A)− γncr(A)(A/S))

Theorem G (Theorem 4.5.1). Let A be a minimax abelian group and let S ≤ A.
We have

(i) S is in the scattered part of S(A) if and only if

κcr(A)(A/S) = `cr(A)(S) = 0;

(ii) the extended Cantor-Bendixson rank of S in S(A) is dA(S).
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The outline of the article is as follows. In Section 1, we establish some topolog-
ical preliminaries, notably a characterisation of the extended Cantor-Bendixson
function by semi-continuity and hereditary properties (Paragraph 1.2) and a topo-
logical characterisation of the spaces involved in Theorems C and D (Paragraph
1.3). The short Section 2 is devoted to general abelian groups, and we prove
Propositions A and B there. Sections 3 and 4 are devoted to the study of S(A)
when A is a a minimax group. Section 3 contains enough to prove Theorem C,
while both sections are necessary to obtain Theorems D and G.

Sections 3 and 4 contain a number of preliminary results, pertaining to the
topology of commensurability classes in S(A) for an abelian minimax group A,
which can be of independent interest.
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1. Topological preliminaries

1.1. Cantor-Bendixson analysis. Let X = X(0) be a topological space. If
X(1) is its derived subspace, one can define by transfinite induction X(α) as the
derived subspace of

⋂
β<αX

(β). This is a decreasing family of closed subsets of

X, and the first α such that X(α) is perfect is called the Cantor-Bendixson rank
of X and denoted cb(X). The advantage of this ordinal-valued definition is that
Cond(X) =

⋂
αX

(α) (if we restrict to integers, this is only an inclusion ⊂ in
general). If x /∈ Cond(X), its Cantor-Bendixson rank is defined as

cbX(x) = sup{α|x ∈ X(α)}.

This function is extended to all of X by

cbX(x) = inf sup{cbX(y)| y ∈ V −Cond(X)},

where the infimum ranges over all neighbourhoods of x, assuming sup ∅ = −∞.

1.2. Semi-continuity, heredity.

Definition 1.2.1. Denote by Ord the collection of ordinals. Let X be a topo-
logical space. A map f : X → Ord is called upper semi-continuous at x0 ∈ X if
f has a local maximum at x0. It is strictly upper semi-continuous at x0 if it is a
strict local maximum, i.e. if f(x) < f(x0) when x is close enough to x0.

Definition 1.2.2. Let X be a topological space.

• If Y ⊂ X is a dense subset, a map X → Ord is Y -hereditary if for every
x ∈ X and for every neighbourhood V of x in X, we have

f(x) ≤ sup
y∈V ∩Y

f(y)

• A map X → Ord is strictly hereditary if for every x ∈ X and for every
neighbourhood V of x in X, we have

f(x) ≤ sup
x′∈V \{x}

(f(x′) + 1),

where we set sup ∅ = 0.

Lemma 1.2.3. Let X be a topological space, with two subsets I, C ⊂ X and a
map f : I −→ Ord. Assume that the following conditions are satisfied:

(i) C has no isolated point;
(ii) X = I ∪ C;
(iii) f is upper semi-continuous and I-hereditary on I;
(iv) f is strictly upper semi-continuous and strictly hereditary on I.

Then I = I(X), C = Cond(X), and f coincides with cbX on I.
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Proof. First, using (iv), by induction on α, if x ∈ I and f(x) = α, we get
x ∈ I(X) and the Cantor-Bendixson rank of x in X is α. Hence I ⊂ I(X).
Moreover by (i), C ⊂ Cond(X). Therefore, using (ii), we get I = I(X) and
C = Cond(X). Finally using (iii), we get that f coincides with the extended
Cantor-Bendixson rank on C ∩ I. �

1.3. Characterisation of some topological spaces. It is very useful to have
a characterisation of some topological spaces. For instance, we already used in
the introduction the classical fact (see [Kec95, Theorem 7.4]) that if a non-empty
topological space is metrisable, compact, perfect and totally disconnected, then
it is a Cantor space. (By definition, a Cantor space is a space homeomorphic to
the triadic Cantor set.)

The second case concerns scattered spaces. It is known [MS20] that a non-
empty Hausdorff compact scattered topological space is characterised, up to
homeomorphism, by its Cantor-Bendixson rank (an arbitrary ordinal, countable
in the metrisable case), and the number of points of maximal Cantor-Bendixson
rank (an arbitrary positive integer). For our purposes it is enough to retain

Proposition 1.3.1. Let X be a Hausdorff compact scattered topological space of
finite Cantor-Bendixson rank m + 1 ≥ 1, with n ≥ 1 points of maximal Cantor-
Bendixson rank (= m). Then X is homeomorphic to Dm × [n].

This applies for instance to the ordinal ωm · n+ 1.
If X is a topological space, let us define

Cα(X) = {x ∈ I(X) ∩Cond(X) |cbX(x) ≥ α}.

Proposition 1.3.2. Let X be a metrisable Boolean space and σ < ∞. Assume
that cb(X) <∞ and

(i) cb(X) = σ + 1 and Ci(X) is a Cantor space for all i ≤ σ;
(ii) Ci+1(X) has empty interior in Ci(X) for all i.

Then X is homeomorphic to Dσ ×W .

We make use of the following result of Pierce [Pie70, Th.1.1]. Here, we as-
sume that a point not in the closure of the scattered part has extended Cantor-
Bendixson rank −∞.

Theorem 1.3.3 (Pierce). Let X, Y be metrisable Boolean spaces. Let φ be a
homeomorphism Cond(X) → Cond(Y ). Suppose that I(X) is homeomorphic to
I(Y ) and that φ preserves the extended Cantor-Bendixson rank. Then φ extends
to a homeomorphism X → Y .

We also need the following lemma. Let us view Dm−1 as the subspace Dm−1×
{∞} of Dm (D0 being a singleton).

Lemma 1.3.4. Let K = {0, 1}N be the Cantor discontinuum and let 0 ≤ σ < ω.
Let K = Kσ ⊃ Kσ−1 ⊃ · · · ⊃ K0 be subsets of K all homeomorphic to K and
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such that Ki has empty interior in Ki+1 for each 0 ≤ i ≤ σ − 1. Then there is a
homeomorphism K → K ×Dσ mapping Ki to K ×Di for each 0 ≤ i ≤ σ.

The proof is an induction based on the following theorem.

Theorem 1.3.5. [KR53, Th.2] Let Ki (i = 1, 2) be Cantor spaces and let Ci ⊂ Ki

be closed subsets with empty interior in Ki. Assume that there is a homeomor-

phism h : C1 −→ C2. Then there is a homeomorphism h̃ : K1 −→ K2 extending
h.

Proof of Lemma 1.3.4. The proof is an induction on σ.
Step 1: The result is obvious if σ = 0 and follows from Theorem 1.3.5 if σ = 1.
Step 2: Assume now σ > 1. Apply Step 1 to get a homeomorphism φ : K →

K ×D with φ(Kσ−1) = K × {∞}. By induction, there exists a homeomorphism
ψ : K → K ×Dσ−1 mapping φ(Ki) to K ×Di for all 0 ≤ i ≤ σ − 1. Then, for
i ≤ σ − 1, the homeomorphism (ψ × Id) ◦ φ of K to K ×Dσ−1 ×D = K ×Dσ

maps Ki to K ×Di × {∞} = K ×Di. �

Proof of Proposition 1.3.2. The condition is obviously necessary.
Conversely, set Ki = Cσ−i, and use Lemma 1.3.4 to get a homeomorphism

Cond(X) → Cond(Y ) preserving the extended Cantor-Bendixson rank. The
hypothesis on scattered parts and Pierce’s theorem then allow to get the desired
homeomorphism. �

Lemma 1.3.6. The spaces Dm × [n] (m ≥ 0, n ≥ 1), Dm ×W (m ≥ 0) and K
(a Cantor space) are pairwise non-homeomorphic.

Proof. The only perfect space here isK. The other uncountable ones areDm×W ,
which has Cantor-Bendixson rank m + 1. The countable space Dm × [n] has
Cantor-Bendixson rank m+1 and exactly n points of maximal Cantor-Bendixson
rank (m). �

2. Generalities

2.1. Isolated points.

Proposition 2.1.1. Let A be an abelian group and S ∈ S(A). Then S is isolated
in S(A) if and only if S is finitely generated and A/S is Artinian.

This follows from Lemma 1.3, Proposition 2.1 and Lemma 4.1 in [CGP07].

Corollary 2.1.2. Let A be an abelian group. Then S(A) has isolated points (i.e.
is non-perfect) if and only if A is minimax. In this case, isolated points in S(A)
form exactly one commensurability class, namely the lattices in A.

Corollary 2.1.3. If a countable abelian group A is not a minimax group, then
S(A) is a Cantor space.

These two corollaries settle Proposition A.
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2.2. Uncountable groups.

Proof of Proposition B. If A/TA has cardinality α, then A contains a copy of Z(α).
Otherwise, TA has cardinality α, and denoting by Ap the p-torsion in A, the direct
sum

⊕
pAp can be written as a direct sum of α cyclic subgroups of prime order.

So in both cases, A contains a subgroup isomorphic to a direct sum of non-trivial
(cyclic) subgroups

⊕
i∈α Si. The mapping 2A → S(A), J 7→

⊕
j∈J Sj is the

desired embedding. �

Lemma 2.2.1. Let α be an infinite cardinal. The least cardinal for a basis of
open sets in 2α is α.

Proof. The natural basis of the topological space 2α has cardinality α. Conversely,
if a basis has cardinality β, then it provides a basis of the dense subset 2(α). Thus
2(α) contains a dense subset D of cardinality not greater than β. The union of
(finite) supports of all f ∈ D must be all of α, so β ≥ α. �

Proposition 2.2.2. Let α be an infinite cardinal, and A an abelian group of
cardinal α. The least cardinal for a basis of open sets in S(A) is α.

Proof. As we have topological embeddings 2α ⊂ S(A) ⊂ 2α (the right-hand one
being the inclusion S(A) ⊂ 2A, the left-hand one following from Proposition B),
this follows from Lemma 2.2.1. �

3. The weight function on S(A)

In this section, all minimax groups are assumed abelian.

3.1. Critical primes, idle subgroups and parallelism.

Definition 3.1.1. Let A be a minimax group. Two subgroups S, S ′ are said to
be parallel if they have a common lattice, and `p(S) = `p(S

′) for every prime p.

Clearly, this is an equivalence relation. Commensurable implies parallel; the
obstruction to the converse comes from what we call critical primes.

Definition 3.1.2 (Strong Criticality). Let A be a minimax group and let S ≤ A.

• The subgroup S is p-critical if p is a critical prime
(i.e. `p(A) ≥ 2) and `p(S) > 0.

• The subgroup S is strongly p-critical if `p(S) > 0 and
τp(A/S) > 0.

Definition 3.1.3. Let A be a minimax group. A subgroup S of A is idle if any
subgroup parallel to S is commensurable to S.

Lemma 3.1.4. Let A be a minimax group and let S ≤ A. The following are
equivalent.

• S is idle;
• S is not strongly p-critical for any critical prime p.
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Proof. Suppose that S is not strongly critical for any critical prime p. Let S ′ be
a subgroup of A parallel to S. Replacing S and S ′ by S/Z and S ′/Z where Z is
a common lattice, we can assume that S, S ′ are (Artinian) torsion subgroups of
A.

Let us show that Div(S) = Div(S ′), which clearly proves that S ′ is commen-
surable to S. Let p be a prime such that τp(A) > 0.

If p is non critical (i.e. τp(A) = 1), then either τp(S) = τp(S
′) = 1 and hence

Div(S)∩Div(S ′) contains the divisible part Div(Ap) of the p-component Ap of A
or τp(S) = τp(S

′) = 0 and neither Div(S) nor Div(S ′) contains this part.
If p is critical, then there are two cases (recall that S is not strongly p-critical

for any critical prime p):
Case 1: τp(S) = 0. Then τp(S

′) = 0 and hence both Div(S) and Div(S ′)
intersect trivially Div(Ap).

Case 2: τp(S) = τp(A). Then τp(S
′) = τp(A) and hence Div(S) ∩ Div(S ′) ⊃

Div(Ap). All in all, this shows that Div(S) = Div(S ′).
Conversely, suppose that S is strongly p-critical for some critical prime p. Let

S ′ be the kernel of a homomorphism from S onto Cp∞ . Since S/S ′ is torsion,
the natural map A/S ′ −→ A/S maps TA/S′ onto TA/S. As `p(S/S

′) = 1 we have
then τp(A/S

′) = τp(A/S) + 1. As S is strongly p-critical, we have τp(A/S
′) ≥ 2.

So A/S ′ contains a subgroup L/S ′ isomorphic to Cp∞ , which is not equal (and
therefore not commensurable) to S/S ′. So L is parallel but not commensurable
to S. �

3.2. The weight function and semi-continuity.

Lemma 3.2.1. Let A be a minimax group and p a prime. Then for every S ≤ A,
we have

τp(S) + τp(A/S) ≥ τp(A),

with equality if S is torsion.

Proof. It is clearly an equality when S is torsion. Apply this to the exact sequence

0 → TA/(TA ∩ S) → A/S → A/(S + TA) → 0

to get (note that TA ∩ S = TS)

τp(A/S) = τp(A/(S + TA)) + τp(TA/TS).

Again, using additivity in the torsion case,

τp(TA/TS) = τp(A)− τp(S).

Thus

τp(A/S) + τp(S) = τp(A) + τp(A/(S + TA)). �

The following lemma is straightforward.
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Lemma 3.2.2. Let A be an abelian group. The map S 7→ r(S) is lower semi-
continuous on S(A). In particular, if r(A) < ∞, then the map S 7→ r(A/S) is
upper semi-continuous on S(A). �

Lemma 3.2.3. Let A be an abelian group with finitely many elements of order
p (e.g. A is minimax). Then the map S 7→ τp(S) is upper semi-continuous on
S(A).

Proof. Note that τp(S) makes sense, since the p-component of TA, that is, the
set of elements whose order is a power of p, is Artinian. Let (TA)p be the p-
component of the torsion in A, i.e. the set of element of p-prime order. Consider
S ≤ A and let us show that τp is upper semi-continuous at S. There exists a
finite subgroup M of (TS)p such that (TS)p/M is divisible. So taking the quotient
by M , we can assume that (TS)p = S ∩ (TA)p is divisible. Let F be the set of
elements of order p in A\S. Then S contains exactly pτp(S)− 1 elements of order
p. Therefore for any S ′ ≤ A with S ′ ∩ F = ∅, we have τp(S

′) ≤ τp(S). �

Lemma 3.2.4. Let A be an abelian group with finitely many elements of order
p, and with r(A) <∞ (e.g. A is minimax). Then the map S 7→ τp(A/S) is lower
semi-continuous on S(A).

Proof. Note that the assumption on A is inherited by its quotients (we need
r(A) < ∞ here), so the map considered here makes sense. Let us check that
this map is lower semi-continuous at S0. We can suppose that S0 is torsion.
Indeed, let Z be a lattice in S0. Then S(A/Z) can be viewed as an open subset
in S(A), S0 corresponding to S0/Z. So assume that S0 is torsion. We can write
τp(A/S) = f(S) + g(S), with f(S) = τp(A/S) + τp(S) and g(S) = −τp(S). By
Lemma 3.2.3, g is lower semi-continuous. By Lemma 3.2.1, since S0 is torsion, f
takes its minimal value τ(A) at S0, so is lower semi-continuous at S0. �

Definition 3.2.5. Let A be a minimax group. The weight of a subgroup S is

wA(S) = r(A/S) + `(S) + κ(A/S).

The following lemma is straightforward.

Lemma 3.2.6. Let A be a minimax group. The maps wA is constant on each
commensurability class in S(A). �

Lemma 3.2.7. Let A be a minimax group. The maps wA is upper semi-continuous
on S(A).

Proof. Observe that

wA(S) = r(A/S) + `(A)− τ(A/S).

so wA is upper semi-continuous as consequences of Lemmas 3.2.2 and 3.2.4. �

Lemma 3.2.8. Let A be a minimax group and S a torsion subgroup. If S ′ ≤ A
is close enough to S and Div(S ′) ≤ S, then either S ′ = S or wA(S ′) < wA(S).
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Proof. First we can mod out by a finite subgroup of S and suppose that S is
divisible. We can write wA(S ′) = `(A) + r(A/S ′) −

∑
p τp(A/S

′), which is a

sum of upper semi-continuous functions. So if S ′ is close to S with wA(S ′) =
wA(S), we have r(A/S ′) = r(A/S) by Lemma 3.2.2 (hence S ′ is torsion too)
and τp(A/S

′) = τp(A/S) for all p by Lemma 3.2.4, i.e. `p(S
′) = `p(S) for all p.

As by assumption Div(S ′) ≤ S, it follows that Div(S ′) = S. So S has a direct
complement M in S ′. Let F be the set of elements of prime order in A \ S. If S ′

is close enough to S, we have S ′ ∩ F = ∅, hence M cannot contain any element
of prime order, so M = {0}, and S ′ = S. �

Proposition 3.2.9. Let A be a minimax group, and S ∈ S(A). If S ′ is close
enough to S, then either

(1) wA(S ′) < wA(S),
(2) or wA(S ′) = wA(S) and S ′ is parallel and non-commensurable to S,
(3) or S ′ = S.

Proof. Let S ≤ A and let Z be a finitely generated subgroup of S. If S ′ is close
enough to S, then Z ≤ S ′, and as wA/Z(S ′/Z) = wA(S ′) whenever S ′ contains
Z, we can suppose that S is divisible. If S ′ is close to S and wA(S ′) = wA(S)
then r(A/S ′) = r(A/S), so that S ′ is torsion, and τp(A/S

′) = τp(A/S) for all
p, hence `p(S) = `p(S

′) for all p, i.e. S and S ′ are parallel (argue as in the
beginning of the proof of Lemma 3.2.8). If moreover S ′ is commensurable to S,
then Div(S ′) = Div(S). By Lemma 3.2.8, we get that if S ′ is close enough to S,
then S ′ = S. �

As wA is constant on commensurability classes, we get

Corollary 3.2.10. Let A be a minimax group. Every commensurability class in
S(A) is discrete. �

Corollary 3.2.11. Let A be a minimax group and S ∈ S(A). Then the function
wA is strictly upper semi-continuous at S if and only if S is idle.

Indeed, the case (2) can occur only if S is non-idle.
If A has no critical primes, every subgroup is idle and we thus get

Corollary 3.2.12. If the minimax group A has no critical primes, then the map
wA is strictly upper semi-continuous on S(A). �

3.3. Commensurable convergence.

Definition 3.3.1. Let H and S be two subgroups of A. We say that there is
commensurable convergence from H to S if S belongs to the topological closure
of the commensurability class of H.

Lemma 3.3.2. Let A be a minimax group and S ≤ TA a torsion subgroup. Let
H be another subgroup of A. Then the following are equivalent.

(i) There is commensurable convergence from H to S;
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(ii) Div(H) is contained in S.

Proof. Suppose (ii). As a divisible subgroup, Div(H) has a direct complement L
in H, and L contains a torsion-free subgroup of finite index L′. Let (Fn) be a
non-decreasing sequence of subgroups of S containing Div(H) as a subgroup of
finite index, with union all of S. Let (Vn) be a sequence of subgroups of finite
index of L′, with trivial intersection. Set

Hn = Fn ⊕ Vn ⊂ S ⊕ L′.

Then Hn has finite index in Fn ⊕ L, which contains Div(H)⊕ L = H with finite
index. So Hn is commensurable to H; clearly (Hn) tends to S.

Conversely, suppose that TH ∩ S has infinite index in TH . Then H contains a
quasi-cyclic subgroup P ' Cp∞ such that P ∩S is finite. Then every subgroup of
A commensurable to H contains P . Therefore this remains true for every group
in the closure of the commensurability class of H, which therefore cannot contain
S. �

As a consequence, we get

Proposition 3.3.3. Let A be a minimax group and S a subgroup of A. Let H
be another subgroup of A. Then the following are equivalent.

(i) There is commensurable convergence from H to S;
(ii) H contains some lattice Z of S and, in A/Z, TH/Z is virtually contained

in S/Z.

Proof. The implication (ii)⇒(i) is a direct corollary of Lemma 3.3.2. Suppose
(i). Let Z0 be a lattice of S and let (Hn) be a sequence of subgroups of A,
commensurable to H and converging to S. Then Hn∩Z0 → Z0. As Z0 is finitely
generated, eventually Hn contains Z0. So H contains a finite index subgroup Z
of Z0. So working in A/Z and applying Lemma 3.3.2, we get (ii). �

As an application, we have the two extreme cases.

Proposition 3.3.4. Let A be a minimax group.

• If Z is a lattice of A, then there is commensurable convergence from Z to
any subgroup of A.

• If S = TA, then S belongs to the closure of any commensurability class in
S(A).

So, the lattices of a minimax group form a dense commensurability class. As
it consists of isolated points it is the unique dense commensurability class. At
the opposite, the torsion subgroup is in the unique closed (and finite) commen-
surability class of S(A).

Another consequence of Proposition 3.3.3 is the following, which quite surpris-
ingly is not an obvious consequence of the definition.

Corollary 3.3.5. If there is commensurable convergence H → L and L → S,
then there is commensurable convergence H → S. �
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3.4. Hereditary properties.

Proposition 3.4.1. Let A be a minimax group. Set

I = {S ∈ S(A)|κcr(A)(A/S) = `cr(A)(S) = 0}.
Then the map wA is strictly hereditary on I.

The proposition readily follows from the following lemma.

Lemma 3.4.2. Let A be a minimax group and S ∈ S(A). Suppose that

κcr(A)(A/S) = 0 and r(A/S) + `ncr(A)(S) ≥ 1

(if S ∈ I, these two assumptions just mean that wA(S) ≥ 1). Then there exists
H ∈ S(A) with commensurable convergence H → S, with wA(H) = wA(S) − 1
and `cr(A)(H) = `cr(A)(S).

Proof. We can assume that S is torsion. Indeed, let Z be a lattice of S. We
can check that A/Z and S/Z satisfy the same hypotheses as A and S, and that
wA/Z(H/Z) = wA(H) for any H ≤ A containing Z.

• If r(A) ≥ 1, then there exists a torsion-free subgroup Q ≤ A of rank one
such that `cr(A)(Q) = 0 and τ(A/(S⊕Q)) = τ(A/S). Indeed, take a direct
complement L of Div(A) in A and a torsion-free finite index subgroup L′ of
L, a cyclic subgroup C ≤ L′, and the inverse image Q ≤ L′ of the torsion
of L′/C. As 0 = κcr(A)(A/S) = `cr(A)(L) = 0, we have `cr(A)(Q) = 0. Now
τ(A/(S ⊕Q)) = τ(TA/S ⊕ L/Q) = τ(A/S).

Setting H = S ⊕Q, we have `cr(A)(H) = `cr(A)(S) and

wA(H) = r(A/H) + `(A)− τ(A/H)
= r(A/S)− 1 + `(A)− τ(A/S)
= wA(S)− 1.

Now S is the limit of the subgroups

Hk = S ⊕ k!Q ≤ H (k ∈ N),

which have finite index in H. Indeed, observe that
– nQ is close to {0} if n has some large prime divisor p such that no

elements of Q is divisible by every power of p;
– nQ has finite index in Q for any n ≥ 1, because Q/nQ is Artinian

with finite exponent.
• If r(A) = 0, then A is Artinian, and by assumption this forces `ncr(A)(S) ≥

1. So S has a direct summand P isomorphic to Cp∞ for some non-critical
prime p. Let H be a direct complement of P in S. We have wA(H) =
wA(S)− 1 and `cr(A)(H) = `cr(A)(S).

Denote by Hk the direct sum of H with the subgroup of P of order
pk. Then Hk is commensurable to H and Hk tends to S as k goes to
infinity. �
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3.5. Conclusion in the scattered case.

Theorem 3.5.1. Let A be a minimax group with no critical primes. Then S(A)
is scattered, and the Cantor-Bendixson rank of S ∈ S(A) is given by wA(S).
The Cantor-Bendixson rank of S(A) is h(A) + 1, and S(A) is homeomorphic to
Dh(A) × [n(A)], where n(A) is the number of subgroups commensurable to TA.

Proof. Suppose that A has no critical primes. Then the subset I of Proposition
3.4.1 coincides with all of S(A), so that wA is strictly hereditary on S(A). More-
over, wA is strictly upper semi-continuous on S(A) by Corollary 3.2.12. So we
can apply Lemma 1.2.3 (with C = ∅) to obtain that S(A) is scattered and that
the Cantor-Bendixson rank of an element S ∈ S(A) is wA(S).

Writing wA(S) = h(A) − (r(S) + τ(A/S)), we see that the maximal value of
wA is given by h(A), and is attained exactly for subgroups commensurable to
TA. �

4. The leveled weight and condensation on S(A)

Again, in this section, all Artinian and minimax groups are assumed abelian.

4.1. The invariant γ. Let V be a set of primes, and ZV be the ring of rationals
whose denominator has no divisor in V .

Let A be an abelian group. Then Hom(A,ZV ) is a torsion-free ZV -module. Its
rank, i.e. the dimension of the Q-vector space Hom(A,ZV )⊗ZV

Q, is denoted by
γV (A). Note that γ∅(A) = r(A).

Lemma 4.1.1. If A has finite rank r(A), then Hom(A,ZV ) is a finitely generated
ZV -module, free of rank γV (A), and γV (A) ≤ r(A).

Proof. If n = r(A) and (e1, . . . , en) is a maximal Z-free family in A, then the
mapping f 7→ (f(e1), . . . , f(en)) embeds Hom(A,ZV ) as a submodule of the free
module of rank n. In particular, as ZV is principal, Hom(A,ZV ) is a free ZV -
module of rank γV (A) and γV (A) ≤ r(A). �

Define aV (A) = r(A)− γV (A). Besides, define UV (A) as the intersection of all
kernels of homomorphisms A→ ZV ; this is a characteristic subgroup of A.

Lemma 4.1.2. Let A be an abelian group of finite rank and let S ≤ A. We have
then:

γV (A) ≥ γV (A/S) ≥ γV (A)− γV (S);

aV (A)− r(S) ≤ aV (A/S) ≤ aV (A)− aV (S).

In particular, we have γV (A/S) = γV (A) and aV (A/S) = aV (A) if S is torsion.

Proof. From the exact sequence 0 → S → A → A/S → 0, we get the exact
sequence of ZV -modules

0 → Hom(A/S,ZV ) → Hom(A,ZV ) → Hom(S,ZV ),



16 YVES DE CORNULIER, LUC GUYOT, AND WOLFGANG PITSCH

so that Hom(A,ZV ) lies in an extension of Hom(A/S,ZV ) by some submodule of
Hom(S,ZV ). This gives the first inequality, and the second one is equivalent to
it. �

Lemma 4.1.3. Let A be an abelian group of finite rank. We have aV (A) =
r(UV (A)) and γV (A) = r(A/UV (A)).

Proof. The two statements are obviously equivalent; let us prove that γV (A) =
r(A/UV (A)).

Set B = A/UV (A). If i : Zr(B) → B is an embedding as a lattice, then, as
Hom(B/Im(i),ZV ) = {0}, it induces an embedding of Hom(B,ZV ) into

Hom(Zr(B),ZV ) = Z
r(B)
V , which is a ZV -module homomorphism. So γV (A) ≤

r(A/UV (A)).
Conversely, if (f1, . . . , fm) is a maximal Z-free family in Hom(A,ZV ), with

m = γV (A), then A/
⋂

Ker(fi) embeds into Zm
V . But

⋂
Ker(fi) is reduced to

UV (A), so r(A/UV (A)) ≤ γV (A). �

Corollary 4.1.4. Let A be a minimax group. We have aV (A) = 0 if and only if
κp(A) = 0 for every p ∈ V .

Proof. If aV (A) = 0, then UV (A) is torsion and hence coincides with TA. There-

fore A/TA embeds into Z
r(A)
V . As a result κp(A) = `p(A/TA) = 0 for every

p ∈ V . Conversely, suppose that κp(A) = 0 for every p ∈ V . We have an em-
bedding of A/TA into Qr(A). The assumption implies, using Lemma 4.1.5 below,

that the image is contained in a multiple of Z
r(A)
V . So UV (A) is torsion, that is

aV (A) = 0. �

Lemma 4.1.5. Let A be a minimax subgroup of Q and n ≥ 1. Suppose that
`p(A) = 0 for every prime p not dividing n. Then A ≤ λZ[1/n] for some λ ∈ Q∗.

Proof. Let B =
⊕

Bp be the image of A in Q/Z =
⊕

pCp∞ . As A is a minimax
group, Bp = 0 for all but finitely many p’s, and Bp is finite when p does not divide
n. Hence B is virtually contained in

⊕
p|nCp∞ = Z[1/n]/Z. So A is virtually

contained in Z[1/n]. As A is locally cyclic, A is generated by A ∩ Z[1/n] and
some rational u/v. Then A ≤ v−1Z[1/n]. �

Lemma 4.1.6. Let A be an abelian group with r(A) < ∞. The maps S 7→
aV (A/S), S 7→ γV (A/S) are upper semi-continuous on S(A).

Proof. Take S0 ∈ S(A). By the same argument as in the proof of Lemma 3.2.4,
we can suppose that S0 is torsion.

By the first (resp. second) inequality in Lemma 4.1.2, S 7→ γV (A/S) (resp.
aV (A/S)) is maximal at S0, so is upper semi-continuous at S0. �

4.2. More maps on S(A). Let A be a minimax group, and recall that cr(A),
respectively ncr(A), denotes the set of critical primes of A (resp. the set of
non-critical primes of A). We define three maps S(A) → N
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(1) The level of a subgroup S is

λA(S) = acr(A)(A/S) + `cr(A)(S) + κcr(A)(A/S);

(2) The leveled weight is

dA(S) = γcr(A)(A/S) + `ncr(A)(S) + κncr(A)(A/S).

Note that wA = λA + dA.

Lemma 4.2.1. Let A be a minimax group. The maps λA and dA are constant
on each commensurability class in S(A).

Proof. This is clear for the maps S 7→ κp(A/S), S 7→ `p(S). For S 7→ γV (A/S),
let S, S ′ be commensurable subgroups of A. We can deduce from 4.1.2 that
γV (A/S) = γV (A/(S ∩ S ′)) = γV (A/S ′). Finally aV (A/S) = r(A/S)− γV (A/S)
is settled. �

Lemma 4.2.2. Let A be a minimax group. The maps λA and dA are upper
semi-continuous on S(A).

Proof. Observe that

λA(S) = acr(A)(A/S) + `cr(A)(A)− τcr(A)(A/S);

dA(S) = γcr(A)(A/S) + `ncr(A)(A)− τncr(A)(A/S);

so they are upper semi-continuous as consequences of Lemmas 3.2.4 and 4.1.6. �

Proposition 4.2.3. In restriction to the open subset I = {λA = 0} of S(A), the
map wA (= dA) is strictly upper semi-continuous.

Proof. If λA(S) = 0, then `p(S) = 0 for every critical prime p, so S is not strongly
p-critical for any p. By Lemma 3.1.4, S is idle. We conclude by Proposition
3.2.9. �

4.3. Hereditary properties (second part). If A is a minimax group, in view
of Corollary 4.1.4, the set I of Proposition 3.4.1 coincides with {S ∈ S(A)|λA(S) =
0}. Accordingly Proposition 3.4.1 states that, on I, the function wA (= dA) is
strictly hereditary.

Lemma 4.3.1. Let A be a minimax group and S ∈ S(A) with λA(S) ≤ 1. Then
acr(A)(A/S) = κcr(A)(A/S) = 0.

Proof. We have λA(S) = acr(A)(A/S) + `cr(A)(S) + κcr(A)(A/S) ≤ 1. By Lemma
4.1.4, κcr(A)(A/S) = 0 if and only if acr(A)(A/S) = 0, so they are both zero. �

Using this, Lemma 3.4.2 can be restated in the following form

Lemma 4.3.2. Let A be a minimax group and S ≤ A. Suppose that λA(S) ≤ 1
and dA(S) ≥ 1. Then there exists H with commensurable convergence H → S,
with dA(H) = dA(S)− 1 and λA(H) = λA(S).
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Proof. By Lemma 3.4.2, there exists H with commensurable convergence H → S,
with `cr(A)(H) = `cr(A)(S) and wA(H) = wA(S)− 1. By upper semi-continuity of
λA, we have λA(H) ≤ λA(S). By Lemma 4.3.1, λA(S) = `cr(A)(S) = `cr(A)(H) ≤
λA(H). So λA(H) = λA(S), hence dA(H) = dA(S)− 1. �

Lemma 4.3.3. Suppose that λA(S) ≥ 1. Then there exists H with commensu-
rable convergence H → S, with λA(H) = λA(S)− 1 and dA(H) = dA(S).

Proof. We can suppose that S is torsion (argue as in the beginning of the proof
of Lemma 3.4.2). We easily check from the definition that κp(A/S) = κp(A) for
any prime p. By Lemma 4.1.2, we also have acr(A)(A/S) = acr(A)(A). Therefore
λA(S) = acr(A)(A) + `cr(A)(S) + κcr(A)(A).

Suppose that acr(A)(A) ≥ 1, i.e. that Ucr(A) is not torsion. Write A = TA ⊕ Q
with Q torsion-free. We have Ucr(A)(A) = Ucr(A)(TA)⊕ Ucr(A)(Q), so Ucr(A)(Q) is
not torsion. Let Z be an infinite cyclic subgroup of Ucr(A)(Q), and let L be the
inverse image in Q of the torsion subgroup of Q/Z. Finally set H = S ⊕ L. We
have (note that γcr(A)(A/S) = γcr(A)(A) by Lemma 4.1.2):

dA(H)− dA(S) = γcr(A)(A/H)− γcr(A)(A)− τncr(A)(A/H) + τncr(A)(A/S).

We claim that:

(1) τp(A/H) = τp(A/S) for every prime p;
(2) γcr(A)(A/H) = γcr(A)(A) and acr(A)(A/H) = acr(A)(A)− 1.

Proof of Claim (1). As Q/L is torsion-free the groups TA/H and TA/S are both
isomorphic to TA/S. Hence τp(A/H) = τp(A/S) for every p.

Proof of Claim (2) By Lemma 4.1.2, we have γcr(A)(A/H) = γcr(A)(A/Z) and
acr(A)(A/H) = acr(A)(A/Z). Since Z ≤ Ucr(A)(A), we have Hom(A/Z,Zcr(A)) =
Hom(A,Zcr(A)) and hence γcr(A)(A/Z) = γcr(A)(A), or equivalently acr(A)(A/Z) =
acr(A)(A)− r(Z) = acr(A)(A)− 1, which completes the proof of claim (2).

We deduce from the previous claims that dA(H) = dA(S) and
λA(H) = λA(S)− 1. Moreover, S is a strict limit of subgroups of finite index in
H.

Finally, suppose that acr(A)(A) = 0 (which implies κcr(A)(A) = 0 and τcr(A)(S) ≥
1). Write S = P ⊕ H, where P is isomorphic to Cp∞ for some critical prime p.
Then dA(S) = dA(H) and λA(H) = λA(S) − 1. Moreover, S is a strict limit of
subgroups containing H as a subgroup of finite index. �

Lemma 4.3.4. Let A be a minimax group and S a subgroup, and m ≤ λA(S).
Then there exists H with commensurable convergence H → S, with λA(H) = m
and dA(H) = dA(S).

Proof. This is a straightforward induction on λA(S)−m, based on Lemma 4.3.3
and making use of transitivity of commensurable convergence (Corollary 3.3.5).

�

Proposition 4.3.5. Let A be a minimax group. Again, set I = {S ∈ S(A)|λA(S) =
0}. Then the map dA is I-hereditary on S(A).
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Proof. First, the statement presupposes that I is dense in S(A), which is a con-
sequence of Proposition 3.3.4 and Corollary 2.1.2 (but also follows from the ar-
gument below).

Pick S ≤ A. Let V be an open neighbourhood of S. Using Lemma 4.3.4 with
m = 0, we obtain that there exists H ∈ I ∩ V such that dA(H) = dA(S). Hence
dA is I-hereditary at S. �

Lemma 4.3.6. Let A be a minimax group and S a subgroup of A with λA(S) ≥ 1,
and 1 ≤ n ≤ dA(S). Then there exists H with commensurable convergence
H → S, with λA(H) = 1 and dA(H) = n.

Proof. By Lemma 4.3.4, there exists H ∈ S(A) with commensurable convergence
H → S, and λA(H) = 1, dA(H) = dA(S). Applying several times Lemma 4.3.2
(using Corollary 3.3.5), we find H with commensurable convergence H → S,
dA(H) = n and λA(H) = 1. Again with Corollary 3.3.5, we have commensurable
convergence H → S. �

The following lemma gives somehow the “smallest” examples of minimax groups
whose space of subgroups is not scattered (equivalently uncountable).

Lemma 4.3.7. Let A = (Cp∞)2. The set K of subgroups of A isomorphic to Cp∞

is a Cantor space. In particular S(A) is uncountable.

Proof. By direct computation Aut(A) = GL2(Zp), the group of 2 × 2 matrices
with coefficients in the p-adics, acting on (Cp∞)2 through its identification with
(Qp/Zp)

2. The action on the set of subgroups is easily checked to be continuous.
The stabiliser of the “line” Cp∞ ⊕ {0} is the set of upper triangular matrices
T2(Zp). The quotient can be identified on the one hand with the projective line
P1(Qp), which is known to be a Cantor space, and on the other hand with the
orbit of Cp∞ ⊕ {0}.

Now let P ∈ K. Being divisible, it has a direct complement Q in A. Necessarily,
Q is isomorphic to Cp∞ . Therefore there exists an automorphism of A mapping
Cp∞ ⊕{0} to P . Thus K coincides with the orbit of Cp∞ ⊕{0}, which completes
the proof. �

Lemma 4.3.8. Suppose that S is strongly p-critical. Then there exists a Cantor
space K ⊂ S(A) such that S ∈ K, and every K ∈ K − {S} is parallel and
non-commensurable to S.

Proof. Let W be the kernel of a map of S onto Cp∞ . Working inside A/W , we can
suppose that W = 0, i.e. S is isomorphic to Cp∞ . As S is strongly p-critical, there
exists another subgroup P which is isomorphic to Cp∞ and such that P ∩ S = 0.
Then the set of subgroups of P ⊕S that are isomorphic to Cp∞ is a Cantor space,
by Lemma 4.3.7. They are all parallel to S and pairwise non-commensurable. �

Lemma 4.3.9. Suppose that λA(S) = 1. Then S belongs to a Cantor space whose
points are subgroups H with dA(S) = dA(H) and λA(H) = 1.
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Proof. By Lemma 4.3.1, we have acr(A)(A/S) = κcr(A)(A/S) = 0. So `cr(A)(S) = 1
and τcr(A)(A/S) = `cr(A)(A/S) ≥ 1. Let p be the critical prime such that `p(S) =
1. Then S is strongly p-critical. Thus we conclude by Lemma 4.3.8. �

Let A be a minimax group. For n ≥ 0, define the subset Cn(A) = {S|λA(S) ≥
1, dA(S) ≥ n}. By upper semi-continuity (Lemma 4.2.2), it is closed.

Proposition 4.3.10. Let A be a minimax group and n ≥ 0. The subset Cn(A) ⊂
S(A) is perfect.

Proof. By Lemma 4.3.4 with m = 1, its subset C1
n(A) = {S ∈ Cn|λA(S) = 1} is

dense in Cn(A). By Lemma 4.3.9, C1
n(A) is perfect, so Cn(A) is perfect as well. �

Proposition 4.3.11. Let A be a minimax group and n ≥ 0. Then Cn+1(A) has
empty interior in Cn(A).

Proof. Let S belong to Cn+1(A). By Lemma 4.3.6 there exists H ∈ S(A) with
commensurable convergence H → S, λA(H) = 1 and dA(H) = n. So H and its
commensurable subgroups belong to Cn(A) but not to Cn+1(A), and therefore S
is not in the interior of Cn+1(A). �

4.4. Maximal values.

Lemma 4.4.1. Let A be a minimax group. On the set I = {S|λA(S) = 0}, the
maximal value of wA(= dA) is γcr(A)(A) + `ncr(A)(A).

Proof. We have

dA(S) = γcr(A)(A/S) + `ncr(A)(A)− τncr(A)(A/S) ≤ γcr(A)(A) + `ncr(A)(A)

and

λA(S) = acr(A)(A/S) + `cr(A)(A)− τcr(A)(A/S) ≤ acr(A)(A) + `cr(A)(A).

Both inequalities are sharp, as they become equalities when S = TA.
Moreover by Lemma 4.3.4, we get the existence of a subgroup S of A with

λA(S) = 0 and dA(S) = γcr(A)(A) + `ncr(A)(A). �

4.5. Conclusion in the non-scattered case. Define

σ(A) = γcr(A)(A) + `ncr(A)(A) = h(A)− (acr(A)(A) + `cr(A)(A)).

Theorem 4.5.1. Let A be a minimax group. If S ∈ S(A), then

• S belongs to the scattered part of S(A) if and only if λA(S) = 0;
• the extended Cantor-Bendixson rank of S in S(A) is dA(S);
• the Cantor-Bendixson rank of S(A) is σ(A) + 1.

If moreover A has at least one critical prime, then S(A) is homeomorphic to
Dσ(A) ×W .
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Proof. If I = {λA = 0} and C = {λA ≥ 1}, then by Proposition 4.3.10 (for
n = 0), Lemma 4.2.2, Propositions 4.3.5, 4.2.3 and 3.4.1, I, C and dA satisfy the
hypotheses of Lemma 1.2.3. This settles the first two assertions, and the third
follows from Lemma 4.4.1.

For the last statement, we appeal to Proposition 1.3.2, with Ci = Ci(A) as
above. By Proposition 4.3.10, Ci is perfect. As dA(TA) = σ(A) and λA(TA) =
acr(A)(A) + `cr(A)(A) ≥ 1 (see the proof of Lemma 4.4.1), we have TA ∈ Cσ(A).
Thus Ci is a Cantor space for all i ≤ σ(A). Finally Ci+1 has empty interior in Ci

for all i, by Proposition 4.3.11. �

4.6. Example: Artinian groups. For an Artinian group A, the invariant γV

vanishes for every set of primes V . Thus, by definition

σ(A) = `ncr(A)(A),

and, for S ∈ S(A),

wA(S) = `(S); λA(S) = `cr(A)(S); dA(S) = `ncr(A)(S).

The properties of these maps established above are even easier to obtain in this
particular case. Indeed, if A is decomposed as a direct sum of its p-components:
A =

⊕
Ap, then S(A) =

⊕
S(Ap). Then, given that W × [n] for n ≥ 1 and

W ×W are homeomorphic to W , we are reduced to study S(A) when A is an
Artinian p-group.

If `(A) = 0 then A is finite and S(A) is homeomorphic to [n] for n = n(A), the
number of subgroups of A.

If `(A) = 1 then finite subgroups of A are isolated, and form a dense subset,
while there are only finitely many infinite subgroups, namely finite index sub-
groups of A. If there are n many such subgroups, then S(A) is homeomorphic to
D × [n].

If `(A) = `p(A) ≥ 2, again finite subgroups form a dense subset consisting
of isolated points. If C is the set of infinite subgroups, it is then closed. Now
C contains a dense subset, namely the set L1 of subgroups S with `(S) = 1.
The set L1 is perfect, by Lemma 4.3.9. So C is perfect. Accordingly, S(A) is
homeomorphic to W .
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