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Abstract. We give a complete characterization of the locally compact groups that
are non-elementary Gromov-hyperbolic and amenable. They coincide with the
class of mapping tori of discrete or continuous one-parameter groups of compact-
ing automorphisms. We moreover give a description of all Gromov-hyperbolic
locally compact groups with a cocompact amenable subgroup: modulo a com-
pact normal subgroup, these turn out to be either rank one simple Lie groups, or
automorphism groups of semi-regular trees acting doubly transitively on the set
of ends. As an application, we show that the class of hyperbolic locally compact
groups with a cusp-uniform non-uniform lattice, is very restricted.
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1. Introduction

1.A. From negatively curved Lie groups to amenable hyperbolic groups. John
Milnor [Mil76] initiated the study of left-invariant Riemannian metrics on general
Lie groups and observed that a connected Lie group admitting a left-invariant
negatively curved Riemannian metric is necessarily soluble; he asked about a more
precise characterization. This was answered by E. Heintze [Hei74]: a connected
Lie group has a negatively curved left-invariant Riemannian metric if and only if
it can be written as a semidirect product N⋊αR, where the group N is a (nontrivial)
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nilpotent Lie group, which is contracted by the action of positive elements of R,
i.e. limt→+∞ α(t)x = 1 for all x ∈ N.

All these groups thus constitute examples of locally compact groups that are
both amenable and (non-elementary) Gromov-hyperbolic. The purpose of the present
paper is to study this more general class of groups.

It should be emphasized that, although most works devoted to Gromov-
hyperbolicity focus on finitely generated discrete groups, Gromov’s original con-
cept was designed to encompass more general metric groups. We shall mostly
focus here on compactly generated locally compact groups; this point of view
is in fact very natural, as the full isometry group of a Gromov-hyperbolic met-
ric space might very well be non-discrete. The definition reads as follows: A
locally compact group G is Gromov-hyperbolic (or, for short, hyperbolic) if it
admits a compact generating set such that the associated word metric is Gromov-
hyperbolic. In particular hyperbolicity is invariant under quasi-isometries. The
definition might look unfamiliar to readers used to deal with locally compact
spaces, since the Cayley graph associated with a compact generating set is in gen-
eral far from locally finite; moreover the natural action of the group on its Cayley
graph need not be continuous. This matter of fact is however mitigated by the fol-
lowing characterization, proved in Corollary 2.6 below: a locally compact group
G is Gromov-hyperbolic if and only if it admits a continuous proper cocompact
isometric action on a Gromov hyperbolic proper geodesic metric space.

Gromov [Gro87, §3.1,§8.2] divides hyperbolic groups into three classes.

• The visual boundary ∂G is empty. This means that G is compact.
• The visual boundary ∂G consists of two points. This holds if and only if

G has an infinite cyclic closed cocompact subgroup. Actually, this can be
improved as follows (Proposition 5.6): G has a (unique) maximal compact
normal subgroup W such that G/W is isomorphic to a cocompact group of
isometries of the real line, namely isomorphic to Z, Z⋊ {±1}, R, or R⋊ {±1}.
• The visual boundary is uncountable.

Hyperbolic groups belonging to the first two classes are called elementary and
the above description provides for them a largely satisfactory classification; we
shall focus on non-elementary hyperbolic groups. For example, a semisimple real
Lie group is non-elementary hyperbolic if and only if it has real rank one. All
Heintze groups mentioned above are non-elementary hyperbolic.

In order to state our first result, we introduce the following terminology. An
automorphism α ∈ Aut(H) of a locally compact group H is called compacting if
there is some compact subset V ⊆ H such that for each g ∈ H, we have αn(g) ∈ V
for all sufficiently large n > 0. In the special case where limn→∞ αn(g) = 1 for all
g ∈ G, we say that α is contracting.

The following result provides a first characterization of amenable hyperbolic
groups, in the spirit of Heintze’s characterization.

Theorem A. A locally compact group is amenable and non-elementary hyperbolic if and
only if it can be written as a semidirect product H ⋊α Z or H ⋊α R, where α(1) is a
compacting automorphism of the noncompact group H.

We give a more detailed statement in Section 7.B. For now, observe that besides
Heintze groups, examples of amenable and non-elementary hyperbolic locally
compact groups are provided by the stabilizer of an end in the full automorphism
group of a regular locally finite tree. One can also combine these two examples
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by some kind of warped product construction, which also yields examples of
amenable non-elementary hyperbolic locally compact groups. As a result of our
analysis, it turns out that all amenable hyperbolic groups are obtained in this way.
For this more comprehensive description of amenable hyperbolic groups, we
refer to Theorem 7.3 below. At this point, let us simply mention the following
consequence of that description.

Theorem B. Every amenable hyperbolic locally compact group acts continuously, prop-
erly and cocompactly by isometries on a proper, geodesically complete CAT(−1) space.

These CAT(−1) spaces will be constructed as fibered products of homogeneous
negatively curved manifolds with trees. We call them millefeuille spaces; see
§7.A below for a more precise description. Those millefeuille spaces provide
model spaces for amenable hyperbolic groups; one should keep in mind that for
general hyperbolic locally compact groups (even discrete ones), it is an outstand-
ing problem to determine if they can act properly cocompactly on any CAT(−1)
(or even CAT(0)) space [Gro93, §7.B].

Another consequence of our study is an answer to a question appearing at the
very end of the paper [KW02] by Kaimanovich and Woess: they asked whether
there exists a one-ended locally finite hyperbolic graph with a vertex-transitive
group Γ of automorphisms fixing a point at infinity. For planar graphs, this was
recently settled in the negative by Georgakopoulos and Hamann [GH12]. We
actually show that the answer is negative in full generality.

Corollary C. If a locally finite hyperbolic graph admits a vertex-transitive group of
automorphisms fixing a point at infinity, then it is quasi-isometric to a regular tree and
in particular cannot be one-ended.

The proof of Theorem A can be outlined as follows. If a non-elementary hyper-
bolic locally compact group G is amenable, it fixes a point in its visual boundary ∂G
since otherwise, the ping-pong lemma provides a discrete free subgroup. Notice
moreover that since G acts cocompactly on itself, it must contain some hyperbolic
isometry. The G-action on itself therefore provides a special instance of what we
call a focal action: namely the action of a group Γ on a hyperbolic space X is called
focal if Γ fixes a boundary point ξ ∈ ∂X and contains some hyperbolic isometry. If
Γ fixes a point in ∂X but does not contain any hyperbolic isometry, then the action
is called horocyclic. Any group admits a horocyclic action on some hyperbolic
space, so that not much can be said about the latter type. On the other hand, it
is perhaps surprising that focal actions are on the contrary much more restricted:
for example any focal action is quasi-convex (see Proposition 3.2). In addition,
we shall see how to associate canonically a nontrivial Busemann quasicharacter
β : Γ→ R whenever Γ has a focal action on X fixing ξ ∈ ∂X. Roughly speaking, if
b is a Busemann function at ξ, it satisfies, up to a bounded error, β(g) = b(x)−b(gx)
for all (g, x) ∈ Γ × X. We refer the reader to §3.C for a rigorous definition.

Coming back to the setting of Theorem A, the amenability of G implies that the
Busemann quasicharacter is actually a genuine continuous character. The fact that
an element that is not annihilated by the character acts as a compacting automor-
phism on the kernel of that character is finally deduced from an analysis of the
dynamics of the boundary action, which concludes the proof of one implication.

For the converse implication, we give a direct proof that the Cayley graph of
a semi-direct product of the requested form is Gromov-hyperbolic. This part of
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the argument happens to use only metric geometry, without any local compact-
ness assumption. This approach therefore yields a rather general hyperbolicity
criterion, which is stated in Theorem 4.1 below.

1.B. Hyperbolic groups with a cocompact amenable subgroup. We emphasize
that, while hyperbolicity of locally compact groups is stable under compact ex-
tensions, and even under any quasi-isometry, this is not the case for amenability,
although amenability is of course invariant under quasi-isometries in the class of
discrete groups. Indeed, a noncompact simple Lie group G is non-amenable but
contains a cocompact amenable subgroup, namely the minimal parabolic sub-
group P. The issue is that G is unimodular while P is not, so that G/P does not
carry any G-invariant measure. In particular, the class of hyperbolic locally com-
pact groups containing a cocompact amenable subgroup is strictly larger than the
class of amenable hyperbolic locally compact groups. The following result shows
that there are however not so many non-amenable examples in that class.

Theorem D. Let G be a non-amenable hyperbolic locally compact group. If G contains
a cocompact amenable closed subgroup, then G has a unique maximal compact normal
subgroup W, and exactly one of the following holds:

(1) G/W is the group of isometries isometries of a rank one symmetric space of noncompact
type, or its identity component (which has index at most 2).

(2) G/W has a continuous, proper, faithful action by automorphisms on a locally finite
non-elementary tree T, without inversions and with exactly two orbits of vertices,
such that the induced G-action on the set of ends ∂T is 2-transitive. In particular,
G/W decomposes as a nontrivial amalgam of two profinite groups over a common
open subgroup.

A locally compact group is called a standard rank one group if it has no
nontrivial compact normal subgroup and satisfies one of the two conditions (1)
or (2) fulfilled by G/W in Theorem D. Standard rank one groups of type (2)
include simple algebraic groups of rank one over non-Archimedean local fields
and complete Kac–Moody groups of rank two over finite fields. More exotic
examples, and a thorough study in connection with finite primitive groups, are
due to Burger and Mozes [BM00].

Any standard rank one group contains a cocompact amenable subgroup, namely
the stabilizer of a boundary point, so that the converse of Theorem D holds as
well. In fact, several other characterizations of standard rank one groups are
provided by Theorem 8.1 below; we shall notably see that they coincide with
those noncompact hyperbolic locally compact groups acting transitively on their
boundary.

A consequence of Theorem D is that a non-amenable hyperbolic locally compact
group containing a cocompact amenable subgroup is necessarily unimodular.
This is a noteworthy fact, since a non-amenable hyperbolic locally compact groups
has no reason to be unimodular in general. For example, consider the HNN
extension of Zp by the isomorphism between its subgroups pZp and p2Zp given by
multiplication by p; this group is hyperbolic since it lies as a cocompact subgroup
in the automorphism group of a (p + p2)-regular tree, but it is neither amenable
nor unimodular.
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1.C. When are non-uniform lattices relatively hyperbolic? In a similar way as
the concept of Gromov hyperbolic groups was designed to axiomatize funda-
mental groups of compact manifolds of negative sectional curvature, relative hy-
perbolicity was introduced, also by Gromov [Gro87], to axiomatize fundamental
groups of finite volume manifolds of pinched negative curvature. Several equiv-
alent definitions exist in the literature. Let us only recall one of them, which is the
most appropriate for our considerations; we refer the reader to rich literature on
relative hyperbolicity for other definitions and comparisons between those (the
most relevant one for the definition we chose is [Yam04]). Let G be a locally com-
pact group acting continuously and properly by isometries on a hyperbolic metric
space X. Following P. Tukia [Tuk98, p. 74], we say that the G-action (or G itself
if there is no ambiguity on the action) is cusp-uniform if every boundary point
ξ ∈ ∂X is either a conical limit point or a bounded parabolic point (this notion
was introduced by B. Bowditch [Bow99], who called it ‘geometrically finite’). The
group G is called relatively hyperbolic if it admits some cusp-uniform action on
a proper hyperbolic geodesic metric space.

For example, fundamental groups of finite volume manifolds of pinched neg-
ative curvature and, in particular, non-uniform lattices in rank one simple Lie
groups, are all relatively hyperbolic: their action on the universal cover of the
manifold (resp. on the associated symmetric space) is cusp-uniform. Since rank
one simple Lie groups are special instances of hyperbolic locally compact groups,
one might expect that non-uniform lattices in more general hyperbolic locally
compact groups are always relatively hyperbolic. The following result shows
that this is far from true.

Theorem E. Let X be a proper hyperbolic geodesic metric space and G ≤ Is(X) be a closed
subgroup acting cocompactly.

If the action of some non-cocompact closed subgroup Γ ≤ G on X is cusp-uniform, then
G has a maximal compact normal subgroup W such that G/W is a standard rank one
group.

Some hyperbolic right-angled buildings, as well as most hyperbolic Kac–Moody
buildings, are known to admit non-uniform lattices. Theorem E implies that,
provided the building has dimension ≥ 2, these lattices are not cusp-uniform
(i.e., they are not relatively hyperbolic with respect to the family of stabilizers of
parabolic points).

As remarked above, a non-uniform lattice in a rank one simple Lie group is
always relatively hyperbolic. In the case of tree automorphism groups, this is
not the case. Necessary and sufficient conditions for a non-uniform lattice have
been described by F. Paulin [Pau04]: the key being that a connected fundamental
domain for the action of the lattice on the tree has finitely many cusps.

1.D. Amenable relatively hyperbolic groups. As we have seen, there are non-
trivial examples of locally compact groups that are both amenable and hyperbolic.
We may wonder whether even more general examples might be obtained by con-
sidering the class of relatively hyperbolic groups. The following shows that this
is in fact not the case.

Theorem F. Let G be an amenable locally compact group. If G is relatively hyperbolic,
then G is hyperbolic.
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Organization of the paper. We start with a preliminary section presenting a gen-
eral construction associating a proper geodesic metric space X to an arbitrary
compactly generated locally group G, together with a continuous, proper, cocom-
pact G-action by isometries. This provides a useful substitute for Cayley graphs,
which is better behaved since it avoids the lack of continuity and local compactness
that Cayley graphs may have in the non-discrete case. Since G is quasi-isometric
to X, the hyperbolicity of the former is equivalent to the hyperbolic of the latter.

The proofs of the main results are then spread over the rest of the paper, and
roughly go into three steps. The first part consists in a general study of isometric
actions on hyperbolic spaces, culminating in the proof of Theorem 4.1 which
implies that certain groups given as semi-direct products with cyclic factor are
hyperbolic. This part is mostly developed in a purely metric set-up, without the
assumption of local compactness. It occupies Section 3 and Section 4, and yields
the implication from right to left in Theorem A.

In Section 5, we start making local compactness assumptions, but yet not ex-
ploiting any deep structural result about locally compact groups. This is where
Theorem F is proven. This chapter moreover provides the implication from left
to right in Theorem A, whose proof is thus completed in Section 6.A.

Finally, a more comprehensive version of Theorem A, as well as its corollar-
ies, is proved in §7.B after some preliminary work about the structure of groups
admitting compacting automorphisms in Section 6, and on the construction of
millefeuille spaces in §7.A. Similarly, a more comprehensive version of Theo-
rem D is stated and proved in §8.A. Theorem E is then easily deduced in the next
subsection.

Acknowledgement. We thank the referee, whose comments were helpful in im-
proving the presentation of the paper.

2. Preliminaries on geodesic spaces for locally compact groups

It is well-known that a topological group with a proper, cocompact action
by isometries on a locally compact geodesic metric space is necessarily locally
compact and compactly generated. It turns out that the converse is true, and
that the space can be chosen to be a piecewise-manifold. This is the content of
Proposition 2.1 below. Its relevance to the rest of the paper is through Corollary 2.6.
The remainder of the section is devoted to its proof and is independent from the
rest of the paper, so the reader can, in a first reading, take the proposition and its
corollary for granted and go directly to Section 3.

Proposition 2.1. Let G be a compactly generated, locally compact group. There exists a
finite-dimensional (in the sense of topological dimension) locally compact geodesic metric
space X with a continuous, proper, cocompact G-action by isometries.

In fact X is a connected locally finite gluing of Riemannian manifolds along their
boundaries.

An immediate consequence is the fact that a closed cocompact subgroup of a
compactly generated locally compact group is itself compactly generated. This is
well-known and can be established more simply by a direct algebraic argument,

see [MŚ59].

Let us begin by illustrating Proposition 2.1 with significant examples.
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• When G is discrete, we consider its Cayley graph with respect to a finite
generating set.
• When G is a connected Lie group, X is taken as G endowed with a left-

invariant Riemannian metric.
• When G is an arbitrary Lie group, we pick a finite subset S whose image

in G/G◦ is a generating subset and endow the (non-connected) manifold
G with a left-invariant Riemannian metric; then for each coset L of G◦ and
each s ∈ S, we consider a strip L × [0, 1] (with the product Riemannian
metric) and attach it to G by identifying (g, 0) to g and (g, 1) to gs. The
resulting space G is path-connected and endowed with the inner length
metric associated to the Riemannian metric on each strip.
• When G is totally disconnected, a Cayley–Abels graph construction is

available, generalizing the discrete case. It goes back to Abels [Abe74,
Beispiel 5.2]. It consists in picking a compact generating subset S that is bi-
invariant under the action of some compact open subgroup K, considering
the (oriented, but unlabeled) Cayley graph of G with respect to S, and
modding out by the right action of K. The resulting graph is locally finite;
the action of G is continuous, vertex-transitive and proper, the stabilizer
of the base-vertex is K.

The general case is a common denominator between the latter two construc-
tions. Roughly speaking, we construct X by fibering a Lie quotient associated to
G◦ over a Cayley–Abels graph for G/G◦. The following classical theorem allows
to bypass some of the technical difficulties.

Theorem 2.2 (H. Yamabe). Let G be a connected-by-compact locally compact group.
Then G is compact-by-(virtually connected Lie).

(By convention (A)-by-(B) means with a normal subgroup satisfying (A) so that
the quotient group satisfies (B).)

Proof. See Theorem 4.6 in [MZ55]. �

Lemma 2.3. Let G be any locally compact group. There is a compact subgroup K whose
image in G/G◦ is open. If G◦ is Lie, then we can assume that K ∩ G◦ = 1.

Proof of Lemma 2.3. By van Dantzig’s theorem [vD31, p. 18], the totally discon-
nected group G/G◦ contains a compact open subgroup; let H be the pre-image in
G of that subgroup, so that H is open in G and H/H◦ is compact.

Thus Yamabe’s theorem applies and H contains a compact normal subgroup
K such that H/K is a Lie group. Since H/H◦ is compact, it follows that H/K
has finitely many connected components and therefore, upon replacing H by a
smaller open subgroup, we can assume that H/K is a connected Lie group. The
next lemma, of independent interest, implies in particular that we have H◦.K = H;
thus indeed the image of K in G/G◦ is the open subgroup H/H◦.

For the additional statement, assume that G◦ is Lie. Then there exists a neigh-
bourhood V of 1 such that V ∩ G◦ contains no nontrivial subgroup. Since any
compact group is pro-Lie (by Peter-Weyl’s Theorem), V contains a normal sub-
group K′ of K such that K/K′ is Lie; clearly we have K′ ∩ G◦ = 1. If π is the
projection to G/G◦, it follows that π(K)/π(K′) is both Lie and profinite, hence is
finite, so π(K′) is open in G/G◦ as well. �

Lemma 2.4. Let G be a locally compact group with a quotient map π : G։ L onto a Lie
group L. Then π(G◦) = L◦.
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Proof. Obviously (considering π−1(L◦)→ L◦) we can suppose that L is connected.

We have to show that NG◦ = G, where N is the kernel of π. Since G/NG◦ is both
a quotient of the connected group L = G/N and of the totally disconnected group
G/G◦, it is trivial, in particular NG◦ is dense. This allows to conclude at least when
N is compact or G is a Lie group (not assumed connected). Indeed, in both cases
this assumption implies that NG◦ is closed (when G is a Lie group, see this by
modding out by N ∩ G◦).

In general, let Ω be an open subgroup of G such that Ω/G◦ is compact. Since π
is an open map, π(Ω) is an open subgroup of L and therefore is equal to L. This
allows to assume that G is connected-by-compact. By Yamabe’s theorem, G thus
has a maximal compact normal subgroup W. We can factor π as the composition
of two quotient maps G → G/(N ∩ W) → G/N = L. The left-hand map has
compact kernel, and G/(N ∩W) has a continuous injective map into G/N × G/W
and therefore is a Lie group. So the result follows from the two special cases
above. �

Remark 2.5. The assumption that L is a Lie group is essential in Lemma 2.4.
Indeed, let G = R × Zp, where Zp denotes the (compact) additive group of the
p-adic integers. Let Z be a copy of Z embedded diagonally in G, and let L = G/Z
be the quotient group. The group L is the so-called solenoid and can alternatively
be defined as the inverse limit of the iterated p-fold covers of the circle group. It
is connected (but not locally arcwise connected). The image of G◦ = R under the
quotient map π : G→ L is dense, but properly contained, in L.

Proof of Proposition 2.1. Let G be a compactly generated locally compact group.
Upon modding out G by the unique maximal compact normal subgroup of G◦, we
can assume that G◦ is a Lie group and endow it with a left-invariant Riemannian
metric. Set Q = G/G◦. By Lemma 2.3, there is a compact subgroup U < G whose
image W in Q is open and U ∩ G◦ = 1.

Let S ⊆ Q be a compact generating set with S = S−1 = WSW. Since W is open,
W\S/W is finite and we pick a finite set {z1, . . . , zr} of representatives zi ∈ S. We
define for 1 = 1, . . . , r

Wi :=W ∩ ziWz−1
i , Li := UG◦ ∩ ziUG◦z−1

i , Vi := Li ∩U Xi := G/Vi × [0, 1].

We recall that a Cayley–Abels graph for Q is given by the discrete vertex set Q/W
and the r (oriented edge)-sets Q/Wi, with natural Q-action and source and target
maps. On the other hand, there are canonical surjective G-maps Xi ։ Q/Wi. The
fibres of these maps are Li/Vi × [0, 1] � G◦ × [0, 1], which are indeed connected
Riemannian manifolds. By construction, the G-action is compatible with the
gluings of boundary components of Xi determined by the map to the Cayley–
Abels graph, and we endow the resulting connected space X with the inner length
metric associated to the Riemannian structure. Explicitly, the gluing is generated
by identifying (gVi, 0) with (hV j, 0) whenever gU = hU and (gVi, 1) with (hVi, 0)
whenever gziU = hU. �

The above construction is of course much more general than what is needed
in the present article. Indeed, as a consequence of the results of the article,
a hyperbolic locally compact group has a continuous proper cocompact action
either on a millefeuille space (this includes the special case when this space is
simply a homogeneous negatively curved manifold), or on a connected graph.
Actually, the latter description shows that the space can be chosen in addition
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to be contractible: indeed, in the case of a connected graph, the Rips complex
construction as described in [Gro87, 1.7.A] is applicable.

For the time being, we only record the following consequence of Proposition 2.1.

Corollary 2.6. For a locally compact group G, the following are equivalent.

(i) G is hyperbolic, i.e. compactly generated and word hyperbolic with respect to some
compact generating set.

(ii) G has a continuous proper cocompact isometric action on a proper geodesic hyperbolic
space. �

3. Actions on hyperbolic spaces

≪ Ça faut avouer, dit Trouscaillon qui, dans cette simple ellipse, uti-
lisait hyperboliquement le cercle vicieux de la parabole. ≫

(R. Queneau, Zazie dans le métro, 1959)

After reviewing some basic features of groups acting on hyperbolic spaces, the
goal of this section is to highlight the importance of focal actions (see Section 3.A
below for the precise definitions). Indeed, while actions of general type have
been studied in thorough detail in a myriad of papers on hyperbolic spaces, other
actions, sometimes termed as “elementary”, have been considered as uninterest-
ing. Notably, and as a consequence of an inadequate terminology, the distinction
between horocyclic and focal actions has been eclipsed. Several basic results in this
section (especially Proposition 3.2, Lemma 3.4, and Proposition 5.5) illustrate how
different these two types of actions are and how essential it is to take a specific
look at focal actions.

Throughout this section, we let X be a Gromov-hyperbolic geodesic metric
space.

Recall that X is called proper if closed balls are compact; due to the Hopf–Rinow
theorem for length spaces, it is equivalent to require that X be locally compact
and complete. Recall further that the full isometry group Is(X), endowed with
the compact open topology, is a second countable locally compact group. We
emphasize that X will not be assumed proper, unless explicitly stated otherwise.

3.A. Gromov’s classification. The material in this section follows from [Gro87,
3.1]. Let Γ be an abstract group, and consider an arbitrary isometric action α of Γ
on a nonempty hyperbolic geodesic metric space X.

The visual boundary (or boundary) ∂X of X is defined as follows. Fix a
basepoint x in X, define the norm |y|x = d(x, y) and the Gromov product

2(y|z)x = |y|x + |z|x − d(y, z).

Note that |(y|z)x − (y|z)w| ≤ d(x,w). A sequence (xn) in X is Cauchy-Gromov if
(xn|xm)x tends to infinity when n,m both tend to∞; by the previous inequality, this
does not depend on the choice of x. We identify two Cauchy-Gromov sequences
(yn) and (zn) if (yn|zn) tends to infinity. This is indeed an equivalence relation if X
is δ-hyperbolic, in view of the inequality

(y|z)x ≥ min[(y|w)x, (w|z)x] − δ,

whose validity is a definition of δ-hyperbolicity (if it holds for all x, y, z,w). The
boundary ∂X is the quotient set of Cauchy-Gromov sequences by this equivalence
relation. (In other words, consider the uniform structure given by the entourages
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{(y, z) : (y|z)x ≥ r} as r ranges over R; then ∂X is the completion from which the
canonical image of X has been removed.)

If Γ is a group acting on X by isometries, the boundary ∂XΓ, also called the
limit set of Γ in X, consists of those elements (yn) in the boundary, that can be
represented by a Cauchy-Gromov sequence of the form (gnx) with gn ∈ Γ. Since
(gnx) and (gnw) are equivalent for all x,w, this does not depend on x. The action
of Γ induces an action on ∂X, which preserves the subset ∂XΓ.

A crucial case is when Γ is generated by one isometry φ. Recall that φ is called

– elliptic if it has bounded orbits;
– parabolic if it has unbounded orbits and limn→∞

1
n
|φn(x)|x = 0;

– hyperbolic if limn→∞
1
n
|φn(x)|x > 0.

The above limit always exists by subadditivity, and the definition clearly does not
depend on the choice of x. Also, it is straightforward that ifφ preserves a geodesic
subset Y, then the type of φ|Y is the same as the type of φ. In terms of boundary,
it can be checked [CDP90, Chap. 9] that

• φ is elliptic⇔ ∂X〈φ〉 is empty;
• φ is parabolic⇔ ∂X〈φ〉 is a singleton;
• φ is hyperbolic⇔ ∂X〈φ〉 consists of exactly two points.

For an action of an arbitrary group Γ, Gromov’s classification [Gro87, 3.1] goes
as follows. The action is called

• elementary and
– bounded if orbits are bounded;
– horocyclic if it is unbounded and has no hyperbolic element;
– lineal if it has a hyperbolic element and any two hyperbolic elements

have the same endpoints;
• non-elementary1 and

– focal if it has a hyperbolic element, is not lineal and any two hyperbolic
elements have a common endpoint (it easily follows that there is a
common endpoint for all hyperbolic elements);

– general type if it has two hyperbolic elements with no common end-
point.

These conditions can be described in terms of the boundary ∂XΓ.

Proposition 3.1. The action of Γ is

• bounded if and only if ∂XΓ is empty;
• horocyclic if and only if ∂XΓ is reduced to one point; then ∂XΓ is the unique

finite orbit of Γ in ∂X;
• lineal if and only if ∂XΓ consists of two points; then ∂XΓ contains all finite orbits

of Γ in ∂X;
• focal if and only if ∂XΓ is uncountable and Γ has a fixed point ξ in ∂XΓ; then {ξ}

is the unique finite orbit of Γ in ∂X;
• of general type if and only if ∂XΓ is uncountable and Γ has no finite orbit in
∂X.

1We follow Gromov’s convention. It turns out that in the special case of proper actions of
discrete groups, focal actions do not exist and thus elementary actions are precisely those with
a finite orbit on the boundary. For this reason, Gromov’s conventions were misinterpreted by
several authors, who unaccurately consider the focal case as elementary.
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In particular, the action is elementary if and only if ∂XΓ has at most two elements, and
otherwise ∂XΓ is uncountable.

Sketch of proof. If the action is horocyclic, the proof of [CDP90, Theorem 9.2.1]
shows that for every sequence (gn) such that |gnx|x tends to infinity, the sequence
(gnx) is Cauchy-Gromov; it follows that ∂XΓ is a singleton. It follows in particular
that the intersection of an orbit with any quasi-geodesic is bounded.

If ∂XΓ = {ξ} and Γ has another finite orbit on the boundary, then we can suppose
that it has another fixed point η by passing to a subgroup of finite index. Let us
consider a (metric) ultrapower X∗ of X; namely X∗ is obtained as follows: endow
the space of bounded sequences in X with the pseudo-distance defined as the
limit of the distances along a non-principal ultrafilter; then X∗ is the metric space
obtained by identifying sequences at pseudo-distance zero. It admits a canonical
isometric embedding of X; it is also a geodesic metric space and is hyperbolic with
the same hyperbolicity constant, and the Γ-action canonically extends to an action
X∗. There is an natural inclusion ∂X ⊂ ∂X∗; since X is Γ-invariant, it follows that
∂XΓ = ∂X∗Γ and in particular, the type of the action on X∗ is the same as the type of
the action on X, i.e., horocyclic. Moreover, any pair of distinct points in ∂X can be
joined by a geodesic in X∗. Consider a geodesic in X∗ joining ξ and η. Its Γ-orbit
is a Γ-invariant quasi-geodesic. Since the action is horocyclic, the above remark
shows that the action of Γ on this quasi-geodesic, and hence on X, is bounded, a
contradiction.

The other verifications are left to the reader (the uncountability of ∂XΓ in the
non-elementary cases follows from Lemma 3.3). �

3.B. Basic properties of actions and quasi-convexity. As before, X is a hyperbolic
geodesic space, without properness assumptions. Recall that a subset Y ⊂ X is
quasi-convex if there exists c ≥ 0 such that for all x, y ∈ Y there exist a sequence
x = x0, . . . , xn = y in Y with d(xi, xi+1) ≤ c for all i and n ≤ c(d(x, y) + 1). We say
that an action is quasi-convex if some (and hence every) orbit is quasi-convex. If
the acting group Γ is locally compact and the action is metrically proper, this is
equivalent to the requirement that Γ is compactly generated and undistorted in X
(i.e. the orbit map g 7→ gx is a quasi-isometric embedding for some/all x ∈ X).

The notions of horocyclic and focal actions, i.e. those unbounded actions with a
unique fixed point at infinity, are gathered under the term of quasi-parabolic actions
in [Gro87, KN04], while horocyclic actions were termed parabolic. Nevertheless,
the following proposition, which does not seem to appear in the literature, shows
that horocyclic and focal actions exhibit a dramatically opposite behaviour.

Proposition 3.2. If the action of Γ is bounded, lineal or focal, then it is quasi-convex. On
the other hand, a horocyclic action is never quasi-convex, while an action of general type
can be either quasi-convex or not.

Proof. The bounded case is trivial and in the lineal case, Γ preserves a subset at
bounded Hausdorff distance of a geodesic and is thus quasi-convex.

Assume that the action is focal with ξ ∈ ∂X as a global fixed point. We have to
prove that some given orbit is quasi-convex. Let α be a hyperbolic element, and
let x0 be a point on a geodesic line [ξ, η] between the two fixed points ξ and η of α
(embed if necessary X into a (metric) ultrapower X∗ as in the proof of Proposition
3.1 to ensure the existence of this geodesic). The 〈α〉-orbit of x0 is a discrete quasi-
geodesic. Observe that the orbit Γx0 is the union of quasi-geodesics g〈α〉x0, with g
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varying in Γ. In particular, Γx0 contains quasi-geodesics between all its points to ξ.
Now, let x and y be two points in Γx0. Recall that given a quasi-geodesic triangle
between three points in the reunion of a hyperbolic space with its boundary, the
union of two edges of this triangle is quasi-convex. Applying this to x, y and ξ,
we see that a quasi-geodesic between x and y can be found in the orbit Γx0, which
is therefore quasi-convex.

If the action of Γ is horocyclic, we observed in the proof of Proposition 3.1 that
the intersection of any orbit with a quasi-geodesic is bounded. More precisely,
for every c there exists c′ (depending only on δ and c) such that the intersection of
any orbit and any c-quasi-geodesic is contained in the union of two c′-balls. If the
action is quasi-convex, given x there exists c such that any two points in Γx are
joined by a c-quasi-geodesic within Γx; taking two points at distance > 2c′ + c we
obtain a contradiction.

For the last statement, it suffices to exhibit classical examples: for instance
SL2(Z) has a proper cocompact action on a tree, but its action on the hyperbolic
plane is not quasi-convex. �

Let Γ act on X by isometries. Recall that a Schottky subsemigroup, resp.
subgroup, for the action of Γ on X is a pair (a, b) such that the orbit map g 7→ gx,
is a quasi-isometric embedding of the free semigroup (resp. subgroup) on (a, b).
An elementary application of the ping-pong lemma [Gro87, 8.2.E, 8.2.F] yields the
following.

Lemma 3.3. If the action of Γ is focal (resp. general type), then there is a Schottky
subsemigroup (resp. subgroup) for the action of Γ on X. �

It is useful to use a (metrizable) topology on ∂X. A basis of neighbourhoods of
the boundary point represented by the Cauchy-Gromov sequence (xi) is

Vn = {(yi) : lim inf(yi|xi) ≥ n}.

Gromov shows [Gro87, 8.2.H] that if the action is of general type, then the
actions of Γ on ∂XΓ and on ∂XΓ × ∂XΓ are topologically transitive. This very
important (and classical) fact will not be used in the paper. On the other hand,
in the focal case, we have the following observation, which, as far as we know, is
original.

Lemma 3.4. Let the isometric action of Γ on X be focal with ξ ∈ ∂X as a fixed point.
Then the action of Γ on ∂XΓ − {ξ} is topologically transitive.

Proof. By Proposition 3.2, there is no loss of generality in assuming that the action
of Γ on X is cobounded, so that X is covered by r-balls around points of an orbit
Γx for some r < ∞. Fix a point η and an open subset Ω in ∂X − {ξ}. For some c
there exists a c-quasi-geodesic D in Γx joining ξ and η; let gx be one of its points.
There exists a r-ball B so that every c-quasi-geodesic with endpoint ξ and passing
through B has its second endpoint in Ω. There exists h ∈ Γ such that hgx belongs
to B. It follows that the second endpoint of hD, which equals hη, lies in Ω. �

Lemma 3.5. Let the isometric action of Γ on X be horocyclic with fixed point ξ in ∂X.
Fix x ∈ X and endow Γ with the left-invariant (pseudo)distance dx(g, h) = d(gx, hx).

Then the action of Γ on ∂X − {ξ} satisfies the following property (akin to metric
properness): for every closed subset K of ∂X not containing ξ, the set {g ∈ Γ : gK∩K , ∅}
is bounded in (Γ, dx).
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Proof. We can replace X by a (metric) ultrapower (see the proof of Proposition 3.1),
allowing the existence of geodesics between any two points (at infinity or not).

Let K be a closed subset of ∂X not containing ξ. Note that there exists a ball B
of radius 10δ such that every geodesic whose endpoints are ξ and some point in
K, passes through B. Fix g ∈ Γ such that gK ∩ K , ∅. In particular, there exists
a geodesic D such that both D and gD are issued from ξ and pass through B. It
follows that before hitting B, D and gD lie at bounded distance (say, ≤ 50δ) from
each other. Fix some y ∈ D ∩ B and let Dy be the geodesic ray in D joining y to
ξ. Then either gDy is contained in the 50δ-neighbourhood of Dy, or vice versa.
Since g is not hyperbolic, using the inequality d(g2y, y) ≤ d(gy, y)+2δ (see [CDP90,
Lemma 9.2.2]) it easily follows (using that y, gy and g2y are close to the geodesic
ray Dy and the equality d(y, gy) = d(gy, g2y)) that d(y, gy) ≤ 152δ. Thus the set
{g ∈ Γ; gK ∩ K , ∅} is dy-bounded, hence dx-bounded. �

Define the bounded radical of Γ as the union BX(Γ) of all normal subgroups N
that are X-bounded, i.e. such that the action of N on X is bounded.

Lemma 3.6. Suppose that the Γ-action is not horocyclic. Then the following properties
hold.

(a) The action of BX(Γ) on X is bounded.
(b) If moreover the Γ-action is neither lineal, BX(Γ) is equal to the kernel K of the action

of Γ on ∂XΓ.

Proof. If N is an X-bounded normal subgroup, then Nx is bounded, and therefore
the Ny are uniformly bounded when y ranges over an orbit Γx. In particular,
the action of N on ∂XΓ is trivial. This proves the inclusion BX(Γ) ⊂ K (without
assumption on the action).

Note that the action of K on ∂XK is trivial, so by Proposition 3.1, the action of
K is bounded, lineal or horocyclic; Lemma 3.5 then shows that the action of K
cannot be horocyclic.

• If the action of K on ∂XK is bounded, it follows from the definition of BX(Γ)
that K ⊂ BX(Γ), and both (a) and (b) follow.
• If the action of K on ∂XK is lineal, its 2-element boundary is preserved

by Γ and therefore the action of Γ is lineal as well (so we do have to
consider (b). Since BX(Γ) consists of elliptic isometries, its action is either
bounded or horocyclic, but since a horocyclic action cannot preserve a
2-element subset in ∂XΓ by Proposition 3.1, the action of BX(Γ) ⊂ K cannot
be horocyclic and therefore is bounded, so (a) is proved.

�

3.C. Horofunctions and the Busemann quasicharacter. The material in this sec-
tion is based on [Gro87, 7.5.D] and [Man08, Sec. 4].

Let X be an arbitrary hyperbolic space and ξ ∈ ∂X be a point at infinity. We
define a horokernel based at ξ to be any accumulation point (in the topology of
pointwise convergence) of a sequence of functions

X × X −→ R, (x, y) 7−→ d(x, xn) − d(y, xn),

where {xn} is any sequence in X converging to ξ, i.e. a Cauchy-Gromov sequence
representing ξ. By the Tychonoff theorem, the collection Hξ of all horokernels
based at ξ is non-empty; it consists of continuous functions, indeed 1-Lipschitz in
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each variable. Moreover, any horokernel is antisymmetric by definition. For def-
initeness, many authors propose the gordian definition of the Busemann kernel
bξ of ξ as the supremum of Hξ (losing continuity and antisymmetry in general);
it turns out that it remains at bounded distance of any horokernel, the bound
depending only on the hyperbolicity constant of X, see § 8 in [GH90]. Let us also
mention the notion of horofunction h′(x) = h(x, x0), which depends on the choice
of a basepoint x0.

Recall that a function f : Γ→ R defined on a group Γ is a quasicharacter (also
known as quasimorphism) if the defect

sup
g,h∈G

∣

∣

∣

∣

f (g) + f (h) − f (gh)
∣

∣

∣

∣

is finite; it is called homogeneous if moreover f (gn) = n f (g) for all g ∈ G and
n ∈ Z; in that case, f is constant on conjugacy classes. Given an isometric group
action on X fixing ξ, there is a canonical homogeneous quasicharacter associated
to the action, which was constructed by J. Manning [Man08, Sec. 4]. The following
is a variant of an idea appearing in T. Bühler’s (unpublished) Master’s thesis.

Proposition 3.7. Let G be a locally compact group acting continuously by isometries on
X. Let ξ ∈ ∂X, h ∈ Hξ and x ∈ X. Then the function

βξ : Gξ −→ R, βξ(g) = lim
n→∞

1

n
h(x, gnx)

is a well-defined continuous homogeneous quasicharacter, called Busemann quasichar-
acter of Gξ, and is independent of h ∈ Hξ and of x ∈ X.

Moreover, the differences βξ(g)− h(x, gx) and βξ(g)− bξ(x, gx) are bounded (the bound
depending only on the hyperbolicity constant of X).

Proof. By a direct computation, we have

h(x, g1g2x) − h(x, g1x) − h(x, g2x) = h(g1x, g1g2x) − h(x, g2x);

since ξ is fixed by g1, the latter quantity is bounded by a constant depending only
on the hyperbolicity of X. Therefore, the function g 7→ h(x, gx) is a continuous
quasicharacter. Given any quasicharacter f on a group G, it is well-known that
for all g, the sequence f (gn)/n converges (because the sequence { f (gn)− c}n is sub-
additive, where the constant c is the defect) and that the limit is a homogeneous
quasicharacter (by an elementary verification). This limit is the unique homoge-
neous quasicharacter at bounded distance from f and a bounded perturbation
of f yields the same limit. Returning to our situation, it only remains to justify
that the limit is continuous. It is Borel by definition, and any Borel homogeneous
quasicharacter on a locally compact group is continuous [BIW10, 7.4]. �

The Busemann quasicharacter is useful for some very basic analysis of boundary
dynamics:

Lemma 3.8. Let Γ act on X by isometries and let ξ be a boundary point. Then the
(possibly empty) set of hyperbolic isometries in Γξ is {g ∈ Γξ : βξ(g) , 0}, and the set of
those with attracting fixed point ξ is {g ∈ Γξ : βξ(g) > 0}. In particular, the action of Γξ
is bounded/horocyclic if and only if βξ = 0, and lineal/focal otherwise.

Proof. Elements g of Γξ acting as hyperbolic isometries with attracting fixed point
ξ satisfy βξ(g) > 0, as we see by direct comparison with horokernels. In particular
all elements g acting as hyperbolic isometries satisfy βξ(g) , 0.
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Conversely, if g ∈ Γξ satisfies βξ(g) > 0, then βξ(gn) being linear in n, the sequence
{gnx : n ∈ Z} is a quasi-geodesic with the +∞-endpoint at ξ. By hyperbolicity of
X, it follows that g is a hyperbolic isometry with attracting fixed point ξ. It also
follows that if g ∈ Γξ satisfies βξ(g) , 0 then it acts as a hyperbolic isometry. �

The Busemann quasicharacterβξ is particularly nice in connection with amenabil-
ity: indeed, as a corollary of Proposition 3.7, we deduce the following.

Corollary 3.9. Let G be a locally compact group acting continuously by isometries on X
and fixing the boundary point ξ ∈ ∂X. Assume that G is amenable, or that X is proper.

Then the Busemann quasicharacter βξ : G→ R is a continuous group homomorphism
(then called Busemann character) at bounded distance of g 7→ bξ(x, gx) independently
of x ∈ X.

Proof of Corollary 3.9. The well-known fact that a homogeneous quasicharacter f of
an amenable group M is a homomorphism can be verified explicitly by observing

that one has f (g) = m
(

h 7→ f (gh) − f (h)
)

when m is an invariant mean on M.

If G is amenable, this applies directly. Now assume that X is proper. If βξ = 0
the result is trivial, so assume that the action is lineal/focal. Since X is proper, we
can suppose that G = Is(X)ξ (and thus acts properly) and we argue as follows. By
Proposition 3.2, sufficiently large bounded neighbourhoods of a G-orbit are quasi-
geodesic. Therefore, replacing X by such a subset if necessary, we can assume
that the G-action on X is cocompact, so that Lemma 3.10 below applies to show
that Is(X)ξ is amenable. We are thus reduced to the previous case. �

A metric space is called quasi-geodesic if there is some constant c such that
any two points can be joined by a c-quasi-geodesic. For example, any orbit of a
quasi-convex group of isometries in a hyperbolic metric space is quasi-geodesic.
Remark that it is always possible to embed a quasi-geodesic subset coboundedly
into a geodesic space (by gluing geodesic paths), but it is delicate to get a proper
geodesic space.

Lemma 3.10 (S. Adams). Let X be a proper quasi-geodesic hyperbolic space having a
cocompact isometry group (or more generally, having bounded geometry), then for every
ξ ∈ ∂X, the stabilizer Is(X)ξ is amenable.

Proof. See [Ada96, 6.8]; another simpler proof can be found in [Kai04]. Remark
that in [Ada96], the result is stated assuming X is geodesic, but quasi-geodesic is
enough with no alteration of the proof, and is a more robust statement because it
allows passing to a quasi-convex subset. �

Remark 3.11. If X is proper, one can also use the amenability of Is(X)ξ to prove
the existence of a (non-canonical) Is(X)ξ-invariant function X×X→ R at bounded
distance of the horokernels based at ξ. Indeed, the Tychonoff theorem implies that
Hξ is compact and the desired function is obtained by integrating an invariant
measure on Hξ. More generally, one can use the amenability of the Is(X)-action
on ∂X to make an Is(X)-equivariant choice of such Busemann-like functions,
depending measurably on ∂X.

Example 3.12. There are many instances where the Busemann quasicharacter is a
character: the trivial case of bounded/horocyclic actions, and also the case when
X is proper, by Corollary 3.9. It is also the case when the hyperbolic space X is
CAT(0): indeed in this case there is a unique horokernel based at each ξ ∈ ∂X.
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Therefore, this unique horokernel coincides with the Busemann function bξ and
moreover we then have βξ(g) = bξ(x, gx) for all g ∈ Is(X)ξ and all x ∈ X.

On the other hand, here is an example of an oriented lineal action where the
Busemann character βξ is not a homomorphism. Consider the centralizer in
Homeo(R) of the translation t 7→ t + 1. This can be interpreted as the universal
covering of the group of oriented homeomorphisms of the circle, and we thus

denote it by H = H̃omeo
+
(R/Z). Endow R with the structure of Cayley graph

with respect to the generating set [−1, 1], i.e. with the incidence relation x ∼ y if
|x− y| ≤ 1. This incidence relation is preserved by the action of H, which thus acts
on the Cayley graph. This Cayley graph is obviously quasi-isometric to R and
this action is transitive and lineal. If ξ = +∞, then βξ is the translation number
βξ(g) = lim gn(0)/n, which is a classical example of non-homomorphic homoge-
neous quasicharacter. Actually, in restriction to some suitable subgroups (e.g. the
inverse image of PSL2(Z) in H), this quasicharacter remains non-homomorphic
and this provides examples where the acting group is finitely generated.

Here is now an example of a focal action, based on the same group. Set
C = Z/2Z (or any nontrivial finite group). Consider the permutational wreath
product G = C≀R H = C(R)⋊H, where H acts by shifting the indices in C(R) =

⊕

t∈R
C

according to its action on R. Let A ⊂ C(R) be the subgroup of elements with support
in [0,+∞) and let W ⊂ H be the set of elements with translation number in [−1, 1]
(i.e. those elements φ such that φ(0) ∈ [−1, 1]). Then G is generated by A∪W and
the corresponding Cayley graph is hyperbolic, the action of G being focal. To see
this, first observe that if α ∈ H be the translation t 7→ t + 1, then 〈α〉 is cobounded
in H and thus it suffices to check that C(R) ⋊ 〈α〉, with the word metric associated
to the generating set W ∪ {α}, is hyperbolic focal. But this is indeed the case by
Theorem 4.1.

4. Focal actions and confining automorphisms

Recall from the introduction that the action of a group Γ on a hyperbolic metric
space X is called focal if it fixes a unique boundary point ξ and if some element
of Γ acts as a hyperbolic isometry. Let β : Γ → R the associated Busemann
quasicharacter, as in §3.C. The action of Γ is said to be regular focal if β is a
homomorphism. This holds in particular if X is CAT(0), or if X is proper (i.e. if
balls are compact). The latter case will in fact be crucial in the proof of Theorem 7.3.
Example 3.12 illustrates that a focal action need not be regular in general.

Let H be a group (with no further structure a priori) and let α be an automor-
phism of H and A a subset of H. We say that the action of α is [strictly] confining
H into A (we omit H when no ambiguity incurs) if it satisfies the following three
conditions

• α(A) is [strictly] contained in A;
• H =

⋃

n≥0 α
−n(A);

• αn0(A · A) ⊂ A for some non-negative integer n0.

In case H is a locally compact group, there is a close relation between confining
and compacting automorphisms, which will be clarified in Corollary 6.2 below.

Notice that the group G = H⋊ 〈α〉 is generated by the set S = {α±}∪A. Endow G
with the word metric dS associated to S. Given an action of a group Γ on a metric
space X and a point x ∈ X, define a pseudo-metric on Γ by dx(g, h) = d(g · x, h · x).
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Theorem 4.1. Let Γ be a group with a cobounded isometric action on a geodesic metric
space X. Then the following assertions are equivalent.

(i) X is hyperbolic and the Γ-action is regular focal;
(ii) There exist an element α ∈ Γ and a subset A ⊂ [Γ,Γ] such that

• the image of α in Γ/[Γ,Γ] has infinite order;
• the action of α on [Γ,Γ] is confining into A;
• setting G = [Γ,Γ] ⋊ 〈α〉 and S = A ∪ {α±}, the inclusion map (G, dS) →

(Γ, dx) is a quasi-isometry for some (hence every) x ∈ X.

Moreover if (ii) holds, the Busemann character in (i) is proportional, in restriction to G,
with the obvious projection to Z.

The implication (ii)⇒(i) includes the fact that for every G = H⋊Z as above, (G, dS)
is Gromov-hyperbolic (see Proposition 4.6); this remains true when α(A) = A but
in this case (G, dS) is elementary hyperbolic and quasi-isometric to the real line.

Beyond the locally compact case, a simple example of a group H as above is
a Banach space, A being the unit ball and α being the multiplication by some
positive scalar λ < 1.

4.A. From focal actions to focal hyperbolic groups. The following proposition
reduces the proof of Theorem 4.1 to a statement in terms of metric groups: A
group (Γ, d) is regular focal if and only if it has a subgroup G with a semidirect
decomposition G = H ⋊ 〈α〉 and a subset A so that α is confining into A and the
inclusion map (G, dS)→ (Γ, d) is a quasi-isometry.

Proposition 4.2. Let G be a group acting by isometries on a hyperbolic metric space X,
and let o ∈ X. Let dG be any left-invariant pseudo-metric on G such that the orbit map
(G, dG)→ G · o is a quasi-isometry. Then

(i) the action is focal if and only if (G, dG) is hyperbolic and the left G-action on
(G, dG) is focal;

(ii) the action is regular focal if and only if (G, dG) is hyperbolic and the left G-action
on (G, dG) is regular focal.

Let us start with two useful lemmas.

Lemma 4.3. Let f be a homogeneous quasicharacter on a group G. Suppose that f is
bounded in restriction to some normal subgroup N. Then f induces a (homogeneous)
quasicharacter on G/N. In particular if all homogeneous quasicharacters of G/N are
characters, then so is f .

Proof. Let g ∈ G and n ∈ N. Using that f is bounded on N, we get

f (gn) = f ((gn)k)/k = f (gknk)/k = f (gk)/k + A/k = f (g) + A/k

for some nk ∈ N and some bounded A = A(g,n, k). Letting k tend to infinity, we
obtain that f (gn) = f (g), which proves the lemma. �

Lemma 4.4. Let f1 and f2 be homogeneous quasicharacters on a group G such that

C−1 f1 − C ≤ f2 ≤ C f1 + C

for some C ≥ 1. If f1 is a character, then so is f2.

Proof. Since f1 and f2 are homogeneous, we have C−1 f1 ≤ f2 ≤ C f1. Let N = Ker( f1).
By the previous lemma, both f1 and f2 induce a homogenous quasicharacter
of the quotient G/N, and their value on G is completely determined by their
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value on G/N. Since the quotient G/N = f1(G) is abelian, all its homogeneous
quasicharacters are characters, and the claim follows. �

Proof of Proposition 4.2. Recall that the orbits of a focal action are quasi-convex
(Proposition 3.2), hence are quasi-geodesic subspaces of X. Therefore, the fact
that the action is focal (resp. regular focal) or not can be read on the restriction
of the action on one orbit of G. In other words, this proves the proposition when
dG is exactly the distance induced by the orbit map. Now we need to prove that
being focal (resp. regular focal) for a metric group G only depends on a choice of
metric up to quasi-isometry. This is clear for focal, since a quasi-isometry induces
a homeomorphism between the boundaries, and therefore does not change the
dynamics of the G-action on its boundary. The quasi-isometric invariance of the
regularity condition follows from Lemma 4.4. �

4.B. From regular focal groups to confining automorphisms. The implication
(i)⇒(ii) in Theorem 4.1 will be deduced from the following.

Proposition 4.5. Let (Γ, d) be a regular focal hyperbolic metric group. Let ξ be the
unique fixed point of the boundary and βξ be the corresponding Buseman character. Set
H = [Γ,Γ] ⊆ Ker βξ and let α < Ker βξ. Then

(i) 〈H ∪ {α}〉 � H ⋊ 〈α〉 is a cobounded, normal subgroup of (Γ, d). (In particular,
if Γ is locally compact and the action continuous and proper, it is a cocompact
closed normal subgroup of Γ.)

(ii) There exist r0 > 0 satisfying: for all r > 0 there exists n0 such that for all n ≥ n0,
αn(B(1, r)∩H) ⊂ B(1, r0)∩H. In particular, α is confining into A = B(1, r0)∩H.

Proof. We start with a preliminary observation. Since α acts as a hyperbolic
isometry, the focal point ξ must be either its attracting or repelling fixed point.
Upon replacing α by α−1, we may assume that it is the attracting one. In particular,
the sequence (1, α, α2, . . . ) defines a quasi-geodesic ray tending to ξ. Therefore,
so is the sequence (g, gα, gα2, . . . ) for any g ∈ Γ. Recall that here is a constant r0

(depending only on the hyperbolicity constant of (Γ, d)) such that any two quasi-
geodesic ray with the same endpoint are eventually r0-close to one another. In
particular, if |βξ(g)| ≤ C, then d(αn, gαn) ≤ C + r0 for all n larger than some n0,
where n0 depends only on d(1, g).

We now turn to the assertion (i). The only nontrivial statement is that H ⋊ 〈α〉
is cobounded.

Let thus g ∈ Γ be arbitrary, and let k ∈ Z be such that |βξ(g)−βξ(αk)| < C = |βξ(α)|.
By the preliminary observation, we have d(gαn, αn+k) ≤ C + r0. Therefore we have

d(g, [g, α−n]αk) = d(g, gα−ng−1αn+k) ≤ C + r0.

Since [g, α−n]αk ∈ H⋊ 〈α〉, this proves that H⋊ 〈α〉 is (C+ r0)-dense in Γ, as desired.

The assertion (ii) also follows from the preliminary observation, since for all
g ∈ H, we have βξ(g) = 0. �

4.C. From confining automorphisms to hyperbolic groups. We now turn to
the converse implication in Theorem 4.1, which is summarized in the following
proposition.

Proposition 4.6. Let H be a group and let α be an automorphism of H confining H into
some subset A ⊂ H. Let S = {α±}∪A. Then the group G = H⋊ 〈α〉 is Gromov-hyperbolic
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with respect to the left-invariant word metric associated to the generating set S. If the
inclusion α(A) ⊂ A is strict, then it is focal.

Upon replacing A by A ∪ A−1 ∪ {1}, we may assume that A is symmetric and
contains 1. The group H ⋊ 〈α〉 is endowed with the word metric associated with
the symmetric generating set S = {α±} ∪A. Remark that this metric is 1-geodesic,
in the sense that for all x, x′ ∈ H⋊ 〈α〉 at distance ≤ n from one another, there exists
a so-called 1-geodesic between them, i.e. x = x0, . . . , xn = x′ such that d(xi, xi+1) = 1.
Denote by B(n) = Sn the n-ball in this metric.

The following easy but crucial observation is a quantitative version of the fact
that unbounded horocyclic actions are always distorted, see Proposition 3.2.

Lemma 4.7. There exists a positive integer k0 such that all 1-geodesics of G = H ⋊ 〈α〉
contained in H have length ≤ k0.

Proof. Actually, we will prove a stronger statement, which, roughly speaking, says
that H is exponentially distorted inside H ⋊ 〈α〉. Note that

A2 ⊂ α−n0(A).

Since S = {±α} ∪ A, we infer, more generally that

(B(1) ∩H)2m

= A2m

⊂ α−n0m(A) ⊂ B(2n0m + 1) ∩H.

Hence, if there exists a 1-geodesic of length 2m contained in H, then m must satisfy
2m ≤ 2n0m + 1, which obviously implies that it is bounded by some number k0

depending only on n0 (say, k0 = 4 log2(n0 + 2)). �

Now let us go further and describe 1-geodesics in G = H ⋊ 〈α〉. Observe that a
1-geodesic between 1 and x can be seen as an element in the free semigroup over
S of minimal length representing x (note that in this semigroup we do not have
ss−1 = 1; the reason we work in the free semigroup rather than free group is that
the loop sns−n is not viewed as at bounded distance to the trivial loop).

Lemma 4.8. Every path emanating from 1, of the form αn1h1αn2h2 . . . αnkhkαnk+1 with
ni ∈ Z and hi ∈ H, is at distance ≤ k(k + 1) from a path of the form α−ig1 . . . gkα j, with
i, j ≥ 0 and gi ∈ A.

In particular, every 1-geodesic from 1 to x in H ⋊ 〈α〉 is at uniformly bounded distance
from a word of the form α−ig1 . . . gkα j, with i, j ≥ 0, k ≤ k0, and gs ∈ A for all s, where k0

is the constant from Lemma 4.7.

Proof. Let m = αn1h1αn2h2 . . . αnkhkαnk+1 be a word in S representing a path joining
1 to some x ∈ H, such that hi ∈ A − {1} and ni ∈ Z. Note that every subword of
the form hα−n (resp. αnh), with h ∈ A, and n ≥ 0 can be replaced by α−nh′ (resp.
h′αn), with h′ = αnhα−n ∈ A. Such an operation moves the 1-geodesic to another
1-geodesic at distance one (because αkhα−k ∈ A for all k = 0, . . . ,n).

With this process we can move positive powers of α all the way to the right, and
negative powers to the left, obtaining after at most k(k + 1) operations a minimal
writing of x as m′ = α−ig1 . . . gkα j, with i, j ≥ 0, and gs ∈ A for all s. This proves the
first assertion.

Assuming now that m is of minimal length among words representing x. In the
above process of moving around powers of α, the length of the word never gets
longer, and since m is minimal, it cannot get shorter either. Since the word g1 . . . gk

has minimal length, it forms a geodesic in H and we deduce from Lemma 4.8 that
k ≤ k0 and m′ is at distance at most k0(k0 + 1) from m. �
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Proof of Proposition 4.6. Consider a 1-geodesic triangle T in H⋊ 〈α〉. By Lemma 4.8,
we can suppose that T is of the form

T = [α−i1u1α
j1][α−i2u2α

j2][α−i3u3α
j3],

where u1,u2,u3 are words of length ≤ k0 in A and is, js ≥ 0. Since T forms a
loop, its image under the projection map onto 〈α〉 is also a loop, hence we have
i1 + i2 + i3 = j1 + j2 + j3.

Let us prove that T is thin, in the sense that every edge of the triangle lies in the
δ-neighborhood of the union of the two other edges. Note that if after removing a
backtrack in a triangle (in terms of words this means we simplify ss−1), we obtain a
δ-thin triangle, then it means that the original triangle was δ-thin. Upon removing
the three possible backtracks, permuting cyclically the edges, and changing the
orientation, we can suppose that

T = [α−k1u1α
k2][u2][α−k3u3],

with k1, k2, k3 ≥ 0 and k1 + k3 = k2.
By Lemma 4.8, the 1-path u2α−k3 is a distance ≤ k0 from a 1-geodesic segment of

the form α−k3v2 (where v2 has length ≤ k0), and removing a backtrack by replacing
αk2α−k3 by αk1 we get a triangle T′ = [α−k1u1αk1][v2][u3]. Invoking Lemma 4.8 once
more, we see that αk1v2u3 is a distance ≤ 2k0 from a 1-geodesic segment w2αk1 ,
so T′ is at distance ≤ 2k0 of the triangle [αk1][u1][w2αk1], which after removing
a backtrack is the bounded digon [u1][w2], which is k0-thin. Thus the original
triangle is 4k0-thin and the space is δ-hyperbolic with δ = 16 log2(n0 + 2). �

4.D. Proof of Theorem 4.1. (i)⇒(ii) Let do be the left-invariant pseudo-metric on
Γ defined by do(g, h) = d(g.o, h.o), where o ∈ X is a basepoint.

By assumption, the Γ-action is regular focal and cobounded on the hyperbolic
space X. By Proposition 4.2, the pair (Γ, do) is a regular focal hyperbolic group. Let
β : Γ→ R be the associated Busemann character, let H = [Γ,Γ] ⊆ Ker β and α < H.
By Proposition 4.5, the group G = H ⋊ 〈α〉 is a cobounded normal subgroup of Γ
(in particular (G, d) is quasi-isometric to (Γ, do), where d denotes the restriction of
do to G), and H contains some bounded subset A such that α is confining into A.

Let S = {α±} ∪ A. It remains verify that the identity map (G, dS) → (G, d) is
a quasi-isometry. First it is Lipschitz since S is bounded for d. We then need
to check that (G, d) → (G, dS) is large-scale Lipschitz. Since d is quasi-geodesic
by Proposition 3.2, it suffices to prove that a subset of G is bounded for dS if it
is bounded for d. In restriction to H, this follows from Proposition 4.5 (ii). We
conclude thanks to the fact that bounded sets of (G, d) are mapped to bounded
sets of R by β.

(ii)⇒(i) By Proposition 4.6, the group (G, dS) is hyperbolic. Since A2n
⊂ α−nn0(A)

for all n, it is clear that A consists of non-hyperbolic isometries. If the inclu-
sion α(A) ⊂ A is strict, then the chain α−n(A) is strictly ascending and thus A is
unbounded, hence its action on the Cayley graph is horocyclic and thus fixes a
unique boundary point; in particular the action is not lineal. Since α acts as a
hyperbolic element (because αn has word length equal to n), the only possibility
is that the action of H ⋊ 〈α〉 is focal. (Obviously, if α(A) = A, then A = H is
bounded and the action is lineal.) Since (G, dS) is quasi-isometric to (Γ, dx) which
in turn is quasi-isometric to X by hypothesis, the desired conclusion follows from
Proposition 4.2. �



AMENABLE HYPERBOLIC GROUPS 21

5. Proper actions of locally compact groups on hyperbolic spaces

In this section, we let G be a locally compact group acting isometrically con-
tinuously on the hyperbolic space X. We assume moreover that the action is
metrically proper, i.e. the function L(g) = d(x, gx) is proper for some (and hence
all) x ∈ X.

5.A. Preliminary lemmas.

Lemma 5.1. If G admits a non-horocyclic proper isometric action on a hyperbolic space
(e.g. a cocompact action), then G admits a maximal compact normal subgroup.

Proof. Clearly, every compact normal subgroup is contained in the bounded rad-
ical BX(G). By Lemma 3.6(a), BX(G) acts with bounded orbits, so by properness,
its closure is compact and thus BX(G) is compact. �

Lemma 5.2. If G admits a proper isometric action of general type on a hyperbolic space,
then G is non-amenable. Moreover the amenable radical of G (the largest amenable normal
subgroup of G) is compact, and so is any normal closed subgroup N whose action on X is
not of general type.

Proof. By Lemma 3.3, if G admits an action of general type, then it contains a
discrete nonabelian free subgroup and therefore is non-amenable.

Now let us prove the contrapositive statement. Let G admit a proper action
on a hyperbolic space and assume that N is noncompact. Then the action of N
on X is neither bounded nor general type, so is horocyclic, or lineal, or focal. In
particular N preserves a unique finite subset of cardinality at most 2 in ∂X. This
finite set is invariant under G and it follows that the action of G is not of general
type. �

There is a partial converse to Lemma 5.2.

Lemma 5.3. Let G admit a proper isometric action on a hyperbolic space. Assume that
the action is bounded, or lineal, or focal. Then G is amenable.

Proof. By Proposition 3.2, each G-orbit Go is quasi-convex. Moreover the orbit
is closed and proper, by properness of the action. Thus each orbit is a proper
quasi-geodesic hyperbolic space on which G acts continuously, properly (and of
course cocompactly). Therefore Lemma 3.10 shows that G is amenable. �

Remark 5.4. The reader can find an example showing that the conclusion of
Lemma 5.1 can fail when the G-action is horocyclic. Actually, the conclusion
of Lemma 5.3 also fails in the horocyclic case. Indeed, as observed by Gromov
[Gro87, §6.4], every countable discrete group has a proper horocyclic action on a
hyperbolic space: it consists in endowing such a group with a left-invariant proper
metric d0 and define d(g, h) = log(1 + d0(g, h)), and embedding it equivariantly as
a horosphere into a hyperbolic space (which can be arranged to be proper).

5.B. Proper actions of amenable groups. Recall from §3.C that a Busemann qua-
sicharacter βξ is defined on the stabilizer in X of every boundary point ξ ∈ ∂X.

Proposition 5.5. Let X be a hyperbolic space. Let M be an amenable locally compact
group with a continuous, (metrically) proper, cobounded isometric non-elementary action
on X. Then we have the following.

(a) the action is focal, with a unique fixed boundary point ξ ∈ ∂X.
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(b) βξ is a homomorphism and βξ(M) is a closed non-zero subgroup of R. In particular,
for every α < U = Ker(βξ), the subgroup 〈U ∪ {α}〉 � U ⋊ 〈α〉 is closed, cocompact
and normal in M.

(c) The action of U on ∂X \ {ξ} is proper and transitive.
(d) Every element α ∈M with βξ(α) < 0 acts as a compacting automorphism on U.

Note that by Lemma 5.3, the conclusion of Proposition 5.5 applies to any proper
focal isometric action of a locally compact group on an arbitrary hyperbolic space
X (in (c), ∂X has to be replaced by ∂XM).

Proof. (a) This follows from Lemma 5.2.

(b) First, βξ is a homomorphism by Corollary 3.9; since the action is focal, it is
nonzero by Lemma 3.8. Suppose that βξ(gn) tends to r ∈ R. By Proposition 4.5,
we can write gn = hnsn with d(snx, x) bounded and βξ(hn) ∈ ZR for some R > 0.
By properness, we can extract, so that the sequence (sn) converges, say to s ∈ G.
Observe that βξ(hn) = βξ(gn)−βξ(sn) converges by continuity of βξ, so the sequence
(βξ(hn)) eventually stabilizes. So r = βξ(hns) for large n and thus the image of βξ is
closed.

(c) Let us now verify that U is transitive on ∂X \ {ξ}. The action being proper by
Lemma 3.5, we only need to check that the orbit of η is dense. Now observe that
the U-orbit of η coincides with its U ⋊ 〈α〉-orbit, which is dense by Lemma 3.4.

(d) Let η be the second fixed point ofα. Let W be the stabilizer of η in U, so that W
is compact by properness (Lemma 3.5). The homeomorphismϕ : U/W → ∂X−{ξ}
mapping u 7→ uη, is equivariant when U/W is endowed with the action induced
by the conjugation action of the cyclic group 〈α〉, namely ϕ(αuα−1) = αϕ(u). Since
α acts as a homeomorphism of X − {ξ} contracting on {η}, it follows that the
conjugation by α acts as a contracting homeomorphism of U/W and therefore as
a compacting automorphism of U. �

5.C. Two-ended groups.

Proposition 5.6. Let G be a hyperbolic locally compact group. Then the visual boundary
∂G consists of two points if and only if G has a maximal compact normal subgroup W
so that G/W is isomorphic to a cocompact closed group of isometries of the real line, and
more precisely isomorphic to Z, Z ⋊ {±1}, R, or R ⋊ {±1}.

It can be seen that these conditions also characterize two-ended groups among
all compactly generated locally compact groups. This thus improves a result of
Houghton [Hou74, Theorem 3.7], who obtained a similar statement, but at the
cost of passing to a closed cocompact normal subgroup.

Proof. Write ∂G = {ξ, η} and define M as the stabilizer of ξ. By Lemma 3.5, the
action of U = Ker(βξ) on {η} is proper and therefore U is compact. By Proposi-
tion 5.5(b), D = M/U is isomorphic to either Z or R. Note that U is the kernel of
the action on the boundary and therefore is normal in G. Set E = G/U.

Note that D has index one or two in E. If D = E we are done, so suppose that
this index is two, i.e. the action of E on its boundary is not trivial. Since D is
abelian and E/D is cyclic; D cannot be central in E, otherwise E would be abelian
and therefore isomorphic to Z, R × Z/2Z or Z × Z/2Z and these groups have a
trivial action on their boundary. So for some g ∈ E, the action by conjugation on
D is given by multiplication by −1. Now g2 commutes with g but also belongs to
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M, so has to be fixed by multiplication by −1, so g2 = 1, so that E is isomorphic to
D ⋊ {±1}. This ends the proof. �

5.D. Relative hyperbolicity. In this paragraph, X is a proper geodesic space. Let
G ≤ Is(X) be a closed subgroup. A point ξ ∈ ∂X is called a conical limit point (with
respect to G) if for some (hence any) geodesic ray ̺ pointing to ξ, there is some
tubular neighbourhood of ̺ that intersects a G-orbit in an unbounded set. A point
ξ ∈ ∂X is called bounded parabolic if the stabilizer Gξ acts cocompactly on ∂X\{ξ}.
Following P. Tukia [Tuk98], we say that the G-action on X is cusp-uniform if every
point in ∂X is a conical limit point or a non-isolated bounded parabolic point. In
general, a locally compact group is said to be relatively hyperbolic if it admits
a proper cusp-uniform continuous action on some proper hyperbolic geodesic
space. The stabilizers in G of the boundary points that are not conical limit
points are called peripheral subgroups and G is more precisely called hyperbolic
relatively to the collection of (conjugacy classes of) peripheral subgroups. We
refer to [Yam04] for a proof of the equivalence between this definition and other
characterizations of relative hyperbolicity in the discrete setting.

Lemma 5.7. For any G ≤ Is(X), any point ξ in ∂X − ∂XG is neither conical, nor
non-isolated bounded parabolic.

Proof. Obviously ξ is not conical. Fix x ∈ X. If ξ is non-isolated and V is a small
enough neighbourhood of ξ then the convex hull of V is disjoint from the orbit
Gx, and therefore ξ is not bounded parabolic. �

The following appears as Lemma 3.6 in [KS96].

Lemma 5.8. If G ≤ Is(X) is quasi-convex and ∂XG = ∂X, then G acts cocompactly.

Proof. Otherwise, we can find in X a sequence (xn) such that d(xn,Gx0) tends to
infinity. Translating xn by an element of G, we can suppose that d(xn,Gx0) =
d(xn, x0). From the quasi-convexity of Gx0 it follows that for every sequence (yn) in
Gx0, the Gromov product (xn|yn) = 1

2
(d(xn, x0) + d(yn, x0) − d(xn, yn)) does not tend

to infinity and this means that any limit point of (xn) lies in ∂X − ∂XG. �

Theorem F from the introduction is an immediate consequence of the following.

Proposition 5.9. If G ≤ Is(X) is cusp-uniform, then

• either G is cocompact (hence hyperbolic),
• or the action is of general type (hence G is not amenable).

Proof. First observe that the action is not horocyclic: indeed, for a horocyclic action
with fixed point ξ, any point boundary point η , ξ is neither bounded parabolic,
nor conical.

Suppose that the action is not of general type and let us show that G is cocom-
pact. By Proposition 3.2, G is quasi-convex. By Lemma 5.7, we have ∂X = ∂XG
and by Lemma 5.8, this shows that G acts cocompactly. �

5.E. Groups of general type. The following is a slight improvement of [MMS04,
Th. 21] (in the cocompact case) and [Ham09, Theorem 1] (the improvement being
that in the rank one case we do not need to pass to a finite index subgroup). It
will be used in the proof of Theorem 8.1. The proof we provide is substantially
simpler than the previous ones.
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Proposition 5.10. Let X be a proper geodesic hyperbolic space and let G ≤ Is(X) be a
closed subgroup whose action on X is of general type.

Then G has a unique maximal compact normal subgroup W, and G/W is a virtually
connected simple adjoint Lie group of rank one (actually, either the full group of isometries,
or its identity component, which always has index at most two), or G/W is totally
disconnected.

Geometrically, this means that a hyperbolic locally compact group of general
type has a proper, isometric and cocompact action on either a rank one symmetric
space of noncompact type, or a vertex-transitive locally finite graph. We first
prove the following lemma.

Lemma 5.11. Let X be a proper geodesic hyperbolic space, let G ≤ Is(X) be a closed
subgroup and W ⊳ G a compact normal subgroup.

Then for every non-elementary closed subgroup H of G, the centralizer Z = {g ∈ G :
[g,H] ⊂W} of H in G modulo W, is compact.

Proof. Note that W acts trivially on the boundary. The assumption implies that H
contains two hyperbolic elements with distinct axes, so each of these axes have to
be preserved by Z. So the action of Z is bounded. Since Z is clearly closed, we are
done. �

Proof of Proposition 5.10. Let V be the amenable radical of G◦. Since G is of general
type, V is compact and G◦ is either compact (in which case we are done) or of
general type by Lemma 5.2. Moreover the quotient S = G◦/V is noncompact
semisimple with trivial center and no compact factor. A first application of
Lemma 5.11 implies that S is noncompact simple with trivial center. Let P/V be a
maximal parabolic subgroup in S (“parabolic” is here in the sense of algebraic/Lie
groups). Since the normal subgroup G◦ is not compact, it is of general type and
hence its cocompact subgroup P is nonelementary and thus either focal or of
general type. Since P has a noncompact amenable radical, the second case is
excluded, and hence P is focal, thus amenable, and in turn it follows that G has
rank one. Let φ : G→ Aut(S) be induced by the action by conjugation and W its
kernel. Then V ⊂W and φ induces a topological isomorphism from S to Aut(S)◦.

The kernel W is compact: this follows from a second application of Lemma 5.11,
because W is the centralizer modulo the compact normal subgroup V of the closed
subgroup G◦, which is of general type. Thus G/W is isomorphic to an open
subgroup of Aut(S).

The precise statement follows from the knowledge of Out(S) (see [Gün10,
Cor. 2.15] for a comprehensive list of automorphism groups of adjoint simple
connected Lie groups): in the case of the real or complex hyperbolic space, Out(S)
is cyclic of order two, while in the quaternionic or octonionic case, it is triv-
ial. (Note that in complex hyperbolic spaces of even complex dimension, both
components consist of orientation preserving isometries.) �

6. Structural results about compacting automorphisms

≪ Brigitte était un de ces caractères qui, sous le marteau de la
persécution, se serrent, deviennent compactes. ≫

(Balzac, Les Petits Bourgeois, Calmann Lévy, 1892, p. 18.)



AMENABLE HYPERBOLIC GROUPS 25

Before tackling the proof of our main theorem, we need to collect a few basic
facts on the algebraic structure of groups admitting compacting automorphisms.
This is the purpose of the present section.

Let H be a locally compact group and α ∈ Aut(H) be an automorphism. Recall
from the introduction that α is said to be a compacting automorphism (or a
compaction for short) if there is some compact subset V ⊆ H such that for all
g ∈ H there is some n0 ≥ 0 such that αn(g) ∈ V for all n > n0. Such a subset V is
called a pointwise vacuum set for α.

6.A. Basic features of compactions and proof of Theorem A. For the sake of
future reference, we collect some basic properties of compactions, which will be
frequently used in the sequel.

Following [CT11] we define a vacuum set as a subset Ω such that for every
compact subset M of H, there is some n0 ≥ 0 such that αn(M) ⊂ Ω for all n > n0. A
vacuum set is obviously a pointwise vacuum set. The following proposition gives
a partial converse, showing that compactions are uniform on compact subsets.
In the case of contractions, the corresponding result is due to S.P. Wang [Wan84,
Prop. 2.1].

Proposition 6.1. Let H be a locally compact group and α an automorphism. Then α is a
compaction if and only if there is a compact vacuum set for α.

In other words, compactions are “uniform on compact subsets”, and thus our
choice of terminology is consistent with that in [CT11] (modulo the fact that
compactions are termed “contractions” there).

Proof of Proposition 6.1. Assume that C is a compact pointwise vacuum subset,
symmetric and containing 1. We are going to show that for some compact normal
subgroup W, the compact subset W · C · C · C · C is a vacuum set.

Since H =
⋃

n≥0 α
−n(C), it is σ-compact. By [KK44], H⋊αZ has a compact normal

subgroup W such that (H ⋊ Z)/W is second countable. We may thus assume
henceforth that H is second countable.

For each subset A ⊆ H and all m ≥ 0, we set Am =
⋂

n≥m α
−n(A). Clearly we have

A0 ⊆ A1 ⊆ . . . and Am · Bm ⊆ (A · B)m for all A,B ⊆ H.
Let now C ⊆ H be a compact subset such that αn(g) ∈ C for all g ∈ H and

all sufficiently large n. Upon replacing C by C ∪ C−1 ∪ {1}, we may assume that
C = C−1 and contains the identity. Notice that we have H =

⋃

m≥0 Cm. By Baire’s
theorem (which can be invoked since H second countable), we deduce that Cm

has non-empty interior for some m > 0. Since Cm · C
−1
m ⊆ (C · C−1)m = (C · C)m, it

follows that the compact set A = C · C has the property that Am contains some
identity neighbourhood and

⋃

n≥0 An = H.
Let now Ω ⊆ H be any compact subset. Then there is a finite set g1, . . . , gk ∈ Ω

such thatΩ ⊆
⋃k

i=1 giAm. Since Am∪{g1, . . . , gk} ⊆ An for all sufficiently large n > 0,
we deduce that the compact set B = A · A contains αn(Ω) for all sufficiently large
n. �

We record the following relation between compacting and confining automor-
phisms, as defined in Section 4 above.

Corollary 6.2. Let H be a [noncompact] locally compact group and α ∈ Aut(H).
Then α is compacting if and only if there is a compact subset A into which α is [strictly]

confining.
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Proof. Assume thatα is compacting. By Proposition 6.1, there is a compact vacuum
set Ω for α. Then αm(Ω) ⊆ Ω for some m > 0. Set

A = Ω ∪ α(Ω) ∪ · · · ∪ αm−1(Ω).

Thus A is itself a compact vacuum set; moreover it satisfies α(A) ⊂ A. It follows
that α is confining into A, as desired.

The converse is obvious from the definitions. �

Proof of Theorem A. We saw in Corollary 6.2, as an application of Baire’s theorem,
that if α is a compacting automorphism of a [noncompact] locally compact group
H, then H admits a compact subset A into which α is [strictly] confining. In
particular, Theorem 4.1 (or Proposition 4.6) implies that the semidirect product H⋊
〈α〉 of a locally compact group H with the cyclic group generated by a compacting
automorphism, is hyperbolic. Since a group of the form H⋊R contains a cocompact
subgroup of the form H ⋊ Z, the ‘if’ part of Theorem A follows.

Conversely, assume that G is non-elementary hyperbolic and amenable. Re-
call from Corollary 2.6 that G admits a continuous, proper cocompact action by
isometries on a proper hyperbolic geodesic metric space. The desired conclusion
then follows from Proposition 5.5. �

We define the limit group of a compacting automorphism as the intersection
of all compact vacuum subsets. The definition makes sense in view of Proposi-
tion 6.1. The limit group need not be a vacuum set unless the ambient group is
compact. The main properties of the limit group are collected in the following.

Lemma 6.3. Let H be a locally compact group and α ∈ Aut(H) be a compacting auto-
morphism with limit group L. Then the following properties hold.

(a) The limit group L is an α-invariant compact subgroup.
(b) For every compact subset K ⊂ H we have

⋂

n∈Z α
nK ⊆ L, with equality if K is a

vacuum subset.
(c) The limit group L is the largest α-invariant compact subgroup.
(d) A compact subset K of H is a vacuum set if and only if it is a neighbourhood of L.

Proof. For any K ⊆ H, we set L′(K) =
⋂

n∈Z α
nK.

We start with a preliminary observation. IfΩ is a vacuum set and K ⊂ H is any
compact subset, then αnK ⊂ Ω for all n > 0 sufficiently large. In particular, for any
infinite set I of positive integers, we have

⋂

n∈I α
nK ⊂ Ω. This being valid for any

vacuum set Ω, we infer that
⋂

n∈I α
nK ⊂ L.

(b) The preliminary observation implies that L′(K) ⊆ L for each compact subset K.
If in addition K is a vacuum set, then αnK is a vacuum set for all n so that L ⊆ L′(K),
whence L = L′(K).

(a) The limit group is obviously compact and α-invariant (because α permutes the
vacuum subsets), but we have to show that it is indeed a subgroup. Fix a vacuum
setΩ. For some n0, we have αn0(Ω ·Ω) ⊂ Ω. In particular, if x, y ∈ L′(Ω) =

⋂

n α
nΩ,

for all n we have α−n(x), α−n(y) ∈ Ω, so α−n(xy) = α−n(x)α−n(y) ∈ α−n0Ω, i.e. xy ∈
αn−n0(Ω) for all n. Similarly one shows that for each x ∈ L′(Ω) we have x−1 ∈ L′(Ω).
Thus L′(Ω) is a subgroup and (a) follows from (b).

(c) If M is an α-invariant compact subgroup, it is immediate that M is contained
in every compact vacuum subset, and therefore M ⊂ L.
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(d) Let Ω be a compact vacuum subset of H. Upon enlarging Ω if necessary, we
may assume that Ω is a neighbourhood of L. If V is any vacuum subset, then for
some n > 0 we have αnΩ ⊂ V. Since L is α-invariant, it follows that αnΩ, and
hence also V, is a neighbourhood of L.

Let V be a neighbourhood of L and suppose for a contradiction that V is not
a vacuum set. Then there exists a compact subset K, an infinite set I of positive
integers and a sequence (xn ∈ K)n∈I such that αnxn < V for all n ∈ I. Since αnK ⊂ Ω
for all sufficiently large n > 0, we may assume after passing to a subsequence that
αnxn converges to some x. Since V is a neighbourhood of L, we have x < L. On the
other hand, since for each vacuum setΩ′, there is n0 > 0 such that

⋃

n>n0
αnK ⊆ Ω′,

it follows that x belongs to all vacuum sets, and hence to L, which is absurd. �

Here are some more straightforward properties of compactions.

Lemma 6.4. Let H be a locally compact group and α ∈ Aut(H). Then the following
properties hold.

(a) If K < H is a compact normal subgroup invariant under α, then α is a compaction if
and only if it induces a compaction on H/K.

(b) if α is compacting, the group H ⋊ 〈α〉 has a maximal compact subgroup, which is the
intersection of all H-conjugates of the limit group L ⊂ H.

(c) α is a compaction if and only αn is a compaction for some n > 0.
(d) If (αt) is a continuous one-parameter subgroup of automorphisms of H, then if some
αt is a compaction for some t > 0 then it is true for all t > 0, and this implies that H
is connected-by-compact.

(e) If H is totally disconnected, then α is a compaction if and only if some compact open
subgroup of H is a vacuum set for α.

Proof. For (d), observe that R acts as the identity on H/H◦ so the latter has to be
compact if α1 is compacting. Then observe that

⋃

t≥0 αt(Ω) is a compact vacuum
subset, and use (c).

For (e), use Lemma 6.3(d) and the fact that in a totally disconnected group,
every compact subgroup is contained in a compact open subgroup.

The other verifications and details are left to the reader. �

Recall that a locally compact group has polynomial growth if for every compact
subset S, the Haar measure of Sn is polynomially bounded with respect to n.

Proposition 6.5. If a locally compact group H admits a compaction α, then H has poly-
nomial growth (of uniform degree) and thus is unimodular and amenable. In particular,
G = H ⋊α Z is amenable, and is non-unimodular unless H is compact.

Proof. Let V be a compact subset and λ the Haar measure, and let us show that
λ(Vn) grows polynomially (with degree depending only on H and α). Replacing V
by a larger compact subset and α by a positive power if necessary, we can suppose
that α(VV) ⊂ V. Since α is a compacting automorphism, it multiplies the Haar
measure of H by some 1/c ≤ 1. The above inclusion implies that for all k ≥ 0 we

have V2k
⊂ α−k(V). So

Vn ⊂ V2⌈log2 n⌉

⊂ α−⌈log2 n⌉(V)

and thus
λ(Vn) ≤ λ(V)c⌈log2 n⌉ ≤ λ(V)cnlog2 c,

which is a polynomial upper bound of degree log2 c. So H has polynomial growth
and therefore is unimodular and amenable. It follows that G is amenable. If
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moreover H is noncompact, it follows that G is a semidirect product of two
unimodular groups, where the action of the acting group does not preserve the
volume, so G is non-unimodular. �

6.B. Reduction to connected and totally disconnected cases. Given a locally
compact group G, a subgroup H ≤ G is called locally elliptic if every finite subset
of H is contained in a compact subgroup of G. If G is locally elliptic and second
countable, then G is a union of a countable ascending chain of compact open
subgroups. By [Pla65], the closure of a locally elliptic subgroup is locally elliptic,
and an extension of a locally elliptic group by a locally elliptic group is itself
locally elliptic. In particular any locally compact group G has a unique maximal
closed normal subgroup that is locally elliptic, called the locally elliptic radical of
G and denoted by RadLE(G). It is a characteristic subgroup of G, and the quotient
G/RadLE(G) has trivial locally elliptic radical. (Some authors use the confusing
terminology (topologically) locally finite and LF-radical for locally elliptic groups
and locally elliptic radical.)

The following result was established in [CT11] (using the existence of a compact
vacuum set as the definition of a compacting automorphism).

Proposition 6.6. Let H be a locally compact group whose identity component H◦ has no
nontrivial compact normal subgroup. If H admits a compacting automorphism, then the
product map H◦×RadLE(H)→ H is an isomorphism onto an open finite index subgroup
of H.

Proof. See Theorem A.5 and Corollary A.6 from [CT11]. �

6.C. Compacting automorphisms of totally disconnected groups. The follow-
ing lemma was established in Proposition 4.6 from [CT11].

Lemma 6.7. Let H be a totally disconnected locally compact group and α be a compacting
automorphism. Then H is locally elliptic and G = H ⋊ 〈α〉 acts properly and vertex
and edge-transitively without inversions on a (k + 1)-regular tree T, and fixes an end
ξ ∈ ∂T. In particular G is hyperbolic. The integer k is characterized by the equality
∆(G) = {kn : n ∈ Z}, where ∆ is the modular function.

About the proof. By Lemma 6.4(e), there is a compact open subgroup Ω which
is vacuum for the compaction; replacing Ω by

⋃

n≥0 α
n(Ω) if necessary, we can

suppose that α(Ω) ⊂ Ω and the associated tree is nothing else than the Bass–Serre
tree associated to the corresponding ascending HNN-extension. �

6.D. Compacting automorphisms of almost connected groups. Let H be a vir-
tually connected Lie group. Its nilpotent radical is defined here as the largest
normal connected nilpotent subgroup. It is closed and characteristic on H.

There is a general decomposition result for one-parameter groups of com-
pactions.

Proposition 6.8 (Hazod-Siebert [HS86]). Let H be a connected-by-compact locally
compact group with a continuous compacting action α of R. Then the nilpotent radical N
of H◦ is simply connected and there is an α-invariant semidirect product decomposition

H = N ⋊ Kα,

where Kα is the limit group of α; moreover N exactly consists of the contracted elements
(i.e. those h ∈ H such that limt→+∞ α(t)(h) = 1).
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A similar result for arbitrary compactions holds under further assumptions.

Proposition 6.9. Let H be a virtually connected Lie group and N its nilpotent radical. If
H has no nontrivial compact normal subgroup and admits a compacting automorphism
α, then N is simply connected and for every compacting automorphism α of H, denoting
by Kα its limit subgroup, we have H = N ⋊ Kα and N consists exactly of the elements of
H that are contracted by α.

Lemma 6.10. Let G be a connected solvable Lie group, with no nontrivial compact
normal subgroup, and N its nilpotent radical. Then for any automorphism α of G, the
automorphism induced on G/N has finite order.

Proof. Consider the Zariski closure P of 〈α〉 in Aut(g), and P◦ its identity component
in the real topology. Write G = G̃/Z with Z discrete and central, and G̃ simply
connected. Then G̃⋊P◦ is a connected solvable Lie group and therefore its derived
subgroup is nilpotent. Now if α has infinite order as an automorphism of G/N,
then some power of α belonging to P◦ acts nontrivially on G/N, so the connected
group [G̃,P◦] strictly contains the inverse image Ñ of N in G̃. Its image in G is
a connected nilpotent normal subgroup of G strictly containing N, contradicting
the maximality of N. �

Lemma 6.11. Let G be a virtually connected Lie group without nontrivial compact normal
subgroups, and N its nilpotent radical, and assume that G/N is compact. Then for any
maximal compact subgroup K of G, we have G = N ⋊ K.

Proof. Since G has no nontrivial compact normal subgroup, N is simply con-
nected and therefore N∩K = 1, and we also deduce that G→ G/N is a homotopy
equivalence. Since the inclusion K → G is also a homotopy equivalence [Mos55,
Theorem 3.1], the composite homomorphism K → G/N is injective and is a ho-
motopy equivalence between (possibly not connected) compact manifolds. This
is necessarily a homeomorphism and therefore G = N ⋊ K. �

Proof of Proposition 6.9. Fix a compaction α. By Proposition 6.5, H is amenable. Let
R be the solvable radical of H (the largest connected solvable normal subgroup),
so N ⊂ R and H/R is compact by amenability. By Lemma 6.10, α induces an
automorphism of finite order of R/N and therefore, since α is compacting, we
deduce that R/N and hence H/N is compact.

Let L be the limit group of α. Then α induces a contraction of the manifold H/L;
since H/L is locally contractible, it immediately follows that H/L is contractible
(because it has all its homotopy groups trivial). Therefore L is a maximal com-
pact subgroup (indeed, if L′ is a maximal compact subgroup containing L, then
H/L retracts by deformation to L′/L, which is a compact manifold, so cannot be
contractible unless it is reduced to a point). By Lemma 6.11, we deduce that
H = N ⋊ L.

Finally, the restriction α|N is a compaction, but N has no nontrivial compact
subgroup, so the limit group of α|N is trivial and hence α|N is a contraction. �

A compaction as in Proposition 6.9 cannot in general be extended to a one
parameter subgroup; however we point out the following fact in this direction.

Lemma 6.12. Let H be a virtually connected Lie group without nontrivial compact
normal subgroup and α ∈ Aut(H) be a compaction.

Then there is a proper injective homomorphism with cocompact image

i : G = H ⋊α Z→ G′ = H′ ⋊ R
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with compacting action of R on H′, so that i(H) is open of finite index in H′, and i induces
the standard embedding Z→ R (on the compacting factors). Moreover i(G) is normal in
G′ and G′/i(G) is abelian.

To check the lemma, we use the following easy subsidiary fact.

Lemma 6.13. Let G be the group of real points of an affine algebraic group defined over
the reals, viewed as a locally compact group. Let Z be a discrete subgroup of G isomorphic
to Z.

Then there exists a closed subgroup P of G, contained in the Zariski closure of Z,
isomorphic to R × F with F finite cyclic, such that Z is contained and cocompact in P.

Proof. Let M be the Zariski closure of Z. As a compactly generated abelian Lie
group with finitely many components, it is isomorphic to M◦ × F with M◦ an
abelian connected Lie group and F finite [Bou67, II. §2.1]; we can replace F by the
projection of Z so as to suppose it cyclic. The projection of Z in M◦ is contained in
a closed one-parameter subgroup; its inverse image in M is the desired subgroup
P. �

Proof of Lemma 6.12. We may assume H non-compact, since otherwise H would
be trivial by hypothesis, in which case the desired conclusions are clear. Let
N be the nilpotent radical of H and K be the limit group of α, so that H =

N ⋊ K by Proposition 6.9. Observe that Aut(N) is an affine algebraic group; let
ρ : K ⋊α Z→ Aut(N) be the homomorphism defined by the action by conjugation.
The hypothesis that α is a compaction, together with the fact that H is non-
compact, implies that ρ is injective and moreover that ρ(Z) is a discrete subgroup
of Aut(N). Let then P = R × F ⊃ ρ(Z) be a subgroup of Aut(N) as given by
Lemma 6.13. Since K is compact, so is ρ(K), which is thus Zariski closed in Aut(N)
by the Weierstrass approximation theorem. Since P is contained in the Zariski
closure of Z, it normalizes ρ(K). Therefore ρ(K)P is a virtually connected Lie
group. The homomorphism ρ : K ⋊α Z → ρ(K)P is proper and has a cocompact
image, containing the group of commutators of ρ(K)P since P is abelian and ρ(K)
is normal. Thus we obtain a proper embedding

N ⋊ (K ⋊α Z)→ G′ = N ⋊ ρ(K)P

whose image contains [G′,G′]. Since P = R × F, we may write ρ(K)P = ρ(K)F ⋊R.
We finally obtain the desired claim by setting H′ = N ⋊ ρ(K)F. �

We deduce the following corollary, which will be used in the proof of Theo-
rem 7.3.

Corollary 6.14. Let G = H⋊R or H⋊Z be a semidirect product of a locally compact group
H with compacting action of R or Z, and assume in the second case that H is connected-by-
compact. Then G has a proper cocompact isometric action on a homogeneous negatively
curved Riemannian manifold X fixing at point at infinity. More precisely, in the case of
H ⋊ R this action is transitive, and in the case of H ⋊ Z, this action has, as orbits, the
subsets {x : b(x) − r ∈ Z} where b is (a scalar multiple of) some Busemann function and
r ∈ R/Z; in particular, the orbit space G\X is a circle in the latter case.

Proof. Note that H is connected-by-compact (this follows by Lemma 6.4(d) in
the first case, and by assumption in the second). Start by modding out by the
maximal compact normal subgroup, so that in particular H is a virtually connected
Lie group. Second, in view of Lemma 6.12, it suffices to deal with the case of a
semidirect product by R.
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So we assume that G = H ⋊ R with compacting action. By Proposition 6.8, we
can write G = N ⋊ (K ⋊ R) with K compact. By [CT11, Proposition 4.3] (which
relies on the results of Heintze [Hei74]), the connected manifold G/K admits a
G-invariant metric of negative curvature and the corollary is proved, the orbit
description being clear. �

The following proposition will also be used in the proof of Theorem 7.3.

Proposition 6.15. Let H be a connected-by-compact locally compact group, and let Λ be
either R or Z, and denote by Λ+ the set of positive elements in Λ. Let G = H ⋊ Λ be a
semidirect product such that some element α ∈ H ⋊Λ+ compacts H. Then every element
in H ⋊Λ+ compacts H.

We need the following lemma.

Lemma 6.16. Let H be a locally compact group, α a compaction of H and φ an inner
automorphism of H. Then αφ is a compaction as well.

Proof. By the solution to Hilbert’s fifth’s problem, H◦ admits a maximal compact
normal subgroup W; we freely use the observation that an automorphism of H is
compacting if and only it induces a compacting automorphism of H/W.

Write cx(t) = xtx−1. We have to prove that α ◦ cx is a compaction for every x ∈ H.
We have

(αcx)n(t) = cx(n)(α
n(t)), where x(n) = α(x) . . . αn(x).

So it is enough to check that the sequence (x(n)) is bounded (for each fixed x).
We begin with two particular easier cases. The first is when x belongs to

a closed, α-invariant locally elliptic subgroup; then all αn(x) belong to a single
compact subgroup and thus x(n) is bounded. The second is when x belongs to
a closed α-invariant subgroup that is a simply connected nilpotent Lie group.
Then (αn(x)) converges exponentially to zero and thus is summable, so (x(n)) is
bounded.

In general, we claim that if W is the maximal compact normal subgroup in H◦,
then for every compaction α of H, the group H/W is generated E1 ∪ N1, where
E1 is an α-invariant closed locally elliptic subgroup and N1 is a characteristic
subgroup, which is a simply connected nilpotent Lie group. Granting the claim,
starting from a compaction α, and choosing E1 and N1 accordingly, we deduce
from the first particular case that β = α ◦ cx is a compaction for all x ∈ E1. Since
N1 is β-invariant, it follows from the second particular case that α ◦ cxy = β ◦ cy

is a compaction for all y ∈ N1. Since N1 is normal, every element in H can be
written such a form xy for x ∈ E1 and y ∈ N1, which completes the proof modulo
the claim.

It remains to prove the claim. Modding out if necessary, we can suppose that H◦

has no non-trivial compact normal subgroup. Let E be the locally elliptic radical
and C the identity component of H; by Proposition 6.6, E and C generate their
topological direct product, and E × C stands an open subgroup of finite index of
H. Let W/E be the maximal compact normal subgroup of H/E. Then W is locally
elliptic, and it follows from the definition of E that W = E. So we can apply
Proposition 6.9 and get an α-invariant decomposition H/E = N⋊K with N simply
connected nilpotent Lie group and K compact; N is the nilpotent radical of H/E
and thus is characteristic. Denoting by p the projection H → H/E, Lemma 2.4
implies that p(C) = (H/E)◦, so p−1((H/E)◦) = E × C. Thus E × C → (H/E)◦ is
isomorphic to the projection E × C→ C. In particular, E ×N = p−1(N), and N can
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be identified with the subgroup p−1(N)◦, so p−1(N) is generated by p−1(N)◦ and
Ker(p) ⊂ p−1(K). Thus H is generated by the simply connected nilpotent Lie group
N1 = p−1(N)◦ (which is characteristic) and the locally elliptic group E1 = p−1(K),
and the claim is proved. �

Proof of Proposition 6.15. Let π : G → Λ be the projection homomorphism. By
Lemma 6.16, every element in π−1(π(α)) is compacting. In particular there is no
loss of generality in assuming that α ∈ Λ. Since an element is compacting if and
only if some/every positive power is compacting (see Lemma 6.4), we are done if
Λ = Z. In case Λ = R, we let ϕ : R→ Λ : t 7→ ϕt be an isomorphism with ϕ1 = α
and C ⊆ H be a compact vacuum set for α (see Lemma 6.4). Then K =

⋃

0≤s≤1 ϕs(C)
is compact and contains ϕn

t (h) for all h ∈ H and all sufficiently large n ≥ 0. Thus
every element of Λ+ is compacting, whence the claim by Lemma 6.16. �

6.E. The closure of a contraction subgroup. Recall that to any automorphism
α of a locally compact group G, one can associate the contraction subgroup
Uα = {g ∈ G | limn αng = 1}. It is important to point out that this contraction
subgroup need not be closed in general: an excellent illustration of this fact is
provided by the group G = Aut(T) of all automorphisms of a regular locally finite
tree. It is easy to see that the contraction subgroup Uα associated to any hyperbolic
element α ∈ G is never closed. It is therefore natural to study what the closure
of the contraction subgroup Uα can be. The following observation, which will
be used in the proof of Theorem 8.1 therefore provides additional motivation to
consider compacting automorphisms.

Proposition 6.17. Let G be a locally compact group and α ∈ Aut(G).

Then the restriction of α to the closure Uα acts as a compacting automorphism.

Proof. Clearly the group Uα is invariant under α. There is thus no loss of generality

in assuming that G = Uα.
We next observe that if H ≤ G is any α-invariant closed normal subgroup,

then G/H is a locally compact group such that the contraction subgroup UG/H
α

associated to the automorphism of G/H induced by α is dense. In view of this
observation, there is no loss of generality in assuming that the maximal compact
normal subgroup of the neutral component G◦ is trivial. In particular G◦ is a Lie
group.

We next apply this observation to the identity component H = G◦. The quotient
G/G◦ is totally disconnected. Given a compact open subgroup V ≤ G/G◦, we set
V− =

⋂

n≥0 α
−n(V) and V−− =

⋃

n≥0 α
−n(V−). Clearly V− is compact. According to

Theorem 1 from [Wil94], we can find a compact open subgroup V such that V−−
is closed in G/G◦.

Let u ∈ UG/G◦

α . Since V is open, there is some N such that αn(u) ∈ V for all n ≥ N.

Thus αN(u) ∈ V− and, hence, we have u ∈ α−N(V−) ≤ V−−. This proves that UG/G◦

α

is contained in V−−. Since the latter is closed, we deduce that

G/G◦ = UG/G◦
α ≤ V−−

and, hence, that α acts on G/G◦ as a compacting automorphism: indeed, for all
g ∈ G/G◦ we have αn(g) ∈ V− for all sufficiently large n.

We have shown that G/G◦ admits a compacting automorphism. By Proposi-
tion 6.6, this implies that G/G◦ is locally elliptic. Since the neutral component G◦
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has no nontrivial compact normal subgroup, we can thus invoke Theorem A.5
from [CT11], which ensures that G has a characteristic open subgroup splitting as
a direct product J � G◦ ·D, where D ≤ G is a closed, totally disconnected, locally
elliptic and characteristic in G. Since the quotient G/J is discrete and contains
a dense contraction subgroup by the preliminary observation above, it must be
trivial. Thus G � G◦ × D. Since G◦ � G/D is a Lie group with no nontrivial

compact normal subgroup, the contraction subgroup UG/D
α is closed in G/D by

Proposition 6.9. Therefore α acts on G◦ as a contracting automorphism. Thus
we have G◦ ≤ Uα and the desired result follows since G = G◦ × D and since we
have already established that α acts on the totally disconnected group D as a
compacting automorphism. �

6.F. Decompositions of compactions. We can wonder whether a converse to
Proposition 6.17 holds. Here is a precise formulation of this question: Given a
locally compact group H and a compaction α of H, do we always have H = KUα,
where K is the limit group of the compaction and Uα the contraction subgroup of
α? By Baumgartner-Willis [BW04, Cor. 3.17] (see [Jaw09] for the general case of
possibly non-metrizable groups), this is true when H is totally disconnected and
this easily extends (in view of Propositions 6.6 and 6.9) to the case when H◦ has
no nontrivial compact normal subgroup. A positive answer would simplify the
statement in Theorem 8.1(iv) below, avoiding the need to mod out by a compact
normal subgroup.

7. Amenable hyperbolic groups and millefeuille spaces

The purpose of this section is to establish a sharpening of Theorem A, namely
Theorem 7.3 below. Theorem B and Corollary C from the introduction will then
follow easily. This first requires a discussion of millefeuille spaces.

7.A. Millefeuille spaces. Fix −κ ≤ 0. Let X be a complete CAT(−κ) metric space
and b : X→ R a surjective, 1-Lipschitz convex function.

For example if we set b(x) = limn→+∞(d(x, xn) − d(x0, xn)) for some sequence xn

tending to infinity along a geodesic ray, then b satisfies these conditions and is a
Busemann function (see Proposition II.8.19 in [BH99]).

For k ≥ 1, we define a new CAT(−κ)-space X[k] as follows. Let T be the (k + 1)-
regular tree (identified with its 1-skeleton) with a surjective Busemann function
b′ (taking integral values on vertices). As a topological space

X[k] = {(x, y) ∈ X × T : b(x) = b′(y)}.

Note that X[1] = X. Note that in case X is a d-dimensional Riemannian man-
ifold the map b : X → R is a trivial bundle with fibre Rd−1 and thus X[k] is
homeomorphic to Rd−1 × T and in particular is contractible.

Locally, X[k] is obtained from X by gluing finitely many CAT(−κ) spaces along
closed convex subsets, and thus (see [BH99, II.11]) X[k] is canonically endowed
with a locally CAT(−κ) metric; it is called the millefeuille space of degree k
associated to X. This metric defines the same uniform structure and bornology as
the metric induced by inclusion, and thus in particular X[k] is a complete metric
space and if X is proper then so is X[k].

Now let G be a locally compact group with a homomorphism p onto Z, and
isometric actions on X and T satisfying b(gx) = b(x)+ p(g) for all (g, x) ∈ G×X and
b′(gx) = b′(x)+ p(g) for all (g, x) ∈ G×T (we say that b and b′ are equivariant with
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respect to G). Then the product action of G on X×T preserves X[k] and preserves
its metric.

The following result is one of the essential steps in the proof of Theorem 7.3,
and provides a precise formulation of the geometric consequences that can be
derived from Theorem 7.3(v). We isolate its statement to emphasize the specific
role of the millefeuille space (the case of a semidirect product H ⋊ R was already
considered in Corollary 6.14).

Theorem 7.1. Let G = H ⋊α Z be a locally compact group, where Z acts by a compaction
α of H. Then

(a) G/RadLE(G) acts properly cocompactly by isometries on a negatively curved manifold

X, with an equivariant Busemann function b, and the projection X
b
→ R → R/Z

identifies G\X with the circle R/Z;
(b) G/G◦ acts properly, vertex and edge-transitively on a (k + 1)-regular tree for some k,

with an equivariant Busemann function b′;
(c) the corresponding product action of G restricts to a proper cocompact action on

the negatively curved millefeuille space X[k], the projection X[k]
β
→ R → R/Z

identifying the orbit space G\X[k] with the circle R/Z.

Proof. By Proposition 6.6, H/RadLE(G) is connected-by-compact, and (a) follows
from Corollary 6.14.

The group G/G◦ is totally disconnected and (b) follows from Lemma 6.7 (which
also gives the explicit value of k).

It follows that for each r, the product action of H preserves and is transitive on

{(x, y) ∈ X × T| b(x) = r and b′(y) = r};

since the generator of Z adds (1, 1) to (b(x), b(y)), it follows that for every r ∈ R,
the action of G is transitive on {(x, y) ∈ X × T|b(x) = b′(y) ∈ Z + r} ⊂ X[k] and in
particular is cocompact on X[k].

By Proposition 6.6, modulo some compact normal subgroup of G◦, the subgroup
generated by the kernels RadLE(G) and G◦ is a topological direct product; it follows
that the product action is proper. �

Remark 7.2. Given two hyperbolic spaces with Busemann functions (X, b) (Y, b′),
a notion of horocyclic product

{(x, y) ∈ X × Y : b(x) + b′(y) = 0}

was introduced by Woess and studied by various authors. In the case of two
trees, it is known as Diestel–Leader graph. Despite an obvious analogy, mille-
feuille spaces are not horocyclic products. Actually, horocyclic products are never
hyperbolic, except in a few degenerate uninteresting cases.

7.B. A comprehensive description of amenable hyperbolic groups. The follow-
ing statement, where all actions and homomorphisms are implicitly assumed to
be continuous, is a more comprehensive version of Theorem A: indeed, the latter
is covered by the equivalence (iii)⇔(v).

Theorem 7.3. Let G be a locally compact group. Then the following assertions are
equivalent.

(i) G is focal hyperbolic.
(ii) G is amenable, hyperbolic and non-unimodular.
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(iii) G is amenable and non-elementary hyperbolic.
(iv) G is σ-compact and there exists a homomorphism β : G→ R with closed image,

such that Ker(β) is noncompact and for some x with β(x) , 0, the action by
conjugation of x on Ker(β) is compacting.

(v) One of the two following holds:
• G = N ⋊ (K × R) where N is a nontrivial simply connected nilpotent Lie

group on which R acts by contractions, and K is compact subgroup.
• G = H ⋊ Z, where H is closed, noncompact, and the action of Z on H is

compacting.
(vi) G has actions by isometries on a homogeneous negatively curved manifold X and

on a regular tree T with G-equivariant surjective Busemann functions b and b′

(X and T not being both reduced to a line), so that the action on the product X×T
is proper and preserves cocompactly the fibre product

{(x, y) ∈ X × T | b(x) = b′(y)}.

(vii) G acts properly and cocompactly by isometries on a proper geodesically complete
CAT(−1) space X � R and fixes a point in the visual boundary ∂X.

The final subsidiary fact needed for the proof is the following.

Lemma 7.4. Let G be a locally compact group and W a compact normal subgroup so that
G/W ≃ R. Then G can be written as a direct product W × R.

Proof. Since the outer automorphism group of W is totally disconnected, the G-
action by conjugation on W is by inner automorphisms, so WZ = G where Z is
the centralizer of W. If p : G → R is the projection modulo W, by an easy case of
Lemma 2.4 we have p(Z◦) = R. By Theorem 4.15.1 in [MZ55], the group Z◦ contains
a one-parameter subgroup P such that p(P) = R. It follows that G =W × P. �

Proof of Theorem 7.3. We shall prove that (i)⇔(iii)⇒(iv)⇒(v)⇒(vi)⇒(vii)⇒(iii), and
(ii)⇔(iii). A direct, independent and conceptually different approach for the im-
plication (iv)⇒(iii) is provided, in a much more general setting, by Theorem 4.1.

(i)⇔(iii) Since G is focal, it is non-elementary by definition and amenable by
Lemma 3.10. Conversely if G is amenable and non-elementary hyperbolic, it is
either focal or general type by Proposition 3.1, but cannot be of general type since
otherwise it could contain a discrete nonabelian free subgroup by Lemma 3.3,
contradicting amenability.

(ii)⇒(iii) Remark that a horocyclic action is never cocompact (see Proposition 3.2).
Therefore an elementary hyperbolic locally compact group is either bounded or
lineal, and it follows that it must contain a cyclic group as a uniform lattice (see
Proposition 5.6 if necessary). In particular, it must be unimodular, and the desired
implication follows.

(iii)⇒(iv) follows from Proposition 5.5 and the fact that any hyperbolic locally
compact group admits a continuous, proper cocompact action by isometries on a
proper hyperbolic geodesic metric space (See Corollary 2.6).

(iv)⇒(v) If β has cyclic image, the desired statement is trivial. We assume hence-
forth that β has non-discrete image. Thus β is surjective. Since G is σ-compact,
the homomorphism β is open and is thus a quotient map. Thus it follows from
Lemma 2.4 that β(G◦) = R. By Yamabe’s theorem (see Theorem 2.2) G◦ is a pro-
jective limit of Lie groups. Therefore, Theorem 4.15.1 from [MZ55] implies that
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there exists some one-parameter subgroup P < G◦ such that β(P) = R. By Propo-
sition 6.15, the action of P on Ker(β) is compacting. By Lemma 6.4(d), it follows
that G is connected-by-compact. By Proposition 6.8, we can write G = H⋊ (K⋊P).
By Lemma 7.4 below, K ⋊ P can be rewritten as a direct product K × R.

(v)⇒(vi) In the first case when G maps onto R, Corollary 6.14 directly applies.
In the second case, we have G = H ⋊ Z and Theorem 7.1 applies.

(vi)⇒(vii) This follows from the remarks preceding Theorem 7.1.

(vii)⇒(iii) Recall from Lemma 3.10 that if X is a proper hyperbolic metric space of
a cocompact isometry group (or, more generally, of bounded geometry), then the
stabilizer Is(X)ξ of every point ξ ∈ ∂X is amenable. Thus (iii) follows from (vii)
since any CAT(−1) space is hyperbolic.

(iii)⇒(ii) The only thing to check is that G is non-unimodular. We know that (iii)
implies (v). Thus it suffices to observe that a group G satisfying (v) cannot be
unimodular. This follows from Proposition 6.5. �

Clearly, Theorem B is immediate from Theorem 7.3(vii).

Proof of Corollary C. Let Γ be a group acting vertex-transitively on a hyperbolic
locally finite graph and fixing a point at infinity, and let G be its closure in the full
automorphism group of the graph. Then G is hyperbolic totally disconnected and
fixes a point on its boundary, so, if non-elementary (the elementary case being
trivial), it satisfies the properties of Theorem 7.3; in particular, it can be written
as N ⋊ Z with a compacting action of Z on the totally disconnected group N. It
follows by Lemma 6.7 that G is quasi-isometric to a regular tree. �

8. Characterizing standard rank one groups

Standard rank one groups were defined after Theorem D in the introduction.
The goal of this section is to prove the following statement.

Theorem 8.1. Let G be a locally compact group. Then the following assertions are
equivalent.

(i) G is hyperbolic of general type and contains a cocompact amenable closed subgroup.
(ii) G is non-elementary hyperbolic and the action of G on its visual boundary is tran-

sitive.
(iii) G is non-elementary hyperbolic and the action of G on its visual boundary is 2-

transitive.
(iv) G is unimodular and contains a compact normal subgroup W such that G/W

contains an element α so that, defining Uα := {g ∈ G/W | limn→∞ αngα−n = 1}
as the contraction subgroup associated with α, the subgroup Uα has noncompact

closure and the closed subgroup 〈α〉Uα is cocompact in G/W.
(v) G has a maximal compact normal subgroup W, and G/W is a standard rank one

group.

Notice that the condition (iv) in Theorem 8.1 is purely in the language of the
category of locally compact groups: no geometric or analytic property is involved.
This feature of Theorem 8.1 is in fact shared by Theorem A: the geometric condition
of negative curvature is deduced from a condition of algebraic/topological nature
through the concept of contraction or compaction.

Let us point out that Theorem D from the introduction follows immediately:
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Proof of Theorem D. All elementary hyperbolic groups are amenable. Moreover,
by Lemma 3.10, a focal hyperbolic group also is amenable. Thus a non-amenable
hyperbolic group is non-elementary of general type. The implication (i)⇒(v) from
Theorem 8.1 therefore yields the desired conclusion. �

8.A. Proof of Theorem 8.1. The proof requires the following classical lemma (see
the corollary to Theorem 8 in [Are46] or Ch. VII, App. 1, Lemme 2 in [Bou63]).

Lemma 8.2. Let G be a locally compact, σ-compact group G and X a locally compact
topological space on which G acts continuously and transitively. Then for every x ∈ X,
the orbital map G/Gx → X is a homeomorphism. �

Proof of Theorem 8.1. We first show that (i) ⇔ (ii) ⇔ (iii), because this is based
only on general arguments of hyperbolic geometry from Section 3. Through-
out the proof, we let X be a proper geodesic hyperbolic space on which G acts
continuously, properly and cocompact by isometries, see Corollary 2.6.

(i) ⇒ (iii) Let us first check that the action on the visual boundary is transitive.
Indeed, let H be a cocompact amenable subgroup. By Proposition 5.5(c), the action
of H on the visual boundary has exactly two orbits, namely one singleton {ω} and
its complement. Since G is of general type, it has no fixed point and therefore
it has only one orbit. Since by Proposition 5.5 the stabilizer H is transitive on
∂X − {ω}, we deduce that the action on the visual boundary is 2-transitive.

(ii) ⇒ (i). Since ∂X is compact and the action on ∂X is continuous, and G is σ-
compact, the stabilizer H of a point is cocompact by Lemma 8.2. By Lemma 3.10,
H is amenable.

(iii)⇒ (ii) is trivial.

Now (i)⇔ (ii)⇔ (iii) is granted and we prove the equivalence of these prop-
erties with the last two ones. That (v) implies (ii) is immediate. To establish
the equivalence of Properties (i), (ii), (iii) with (v) we now tackle the following
implication.

(iii)⇒ (v) Clearly the G-action on X cannot be focal, so G is of general type. By
Lemma 5.1, the group G has a maximal compact normal subgroup W. Upon
replacing G by G/W, there is no loss of generality in assuming that W is trivial.

By Proposition 5.10, G is either virtually a simple adjoint Lie group of rank one
(of the specified type), or is totally disconnected. In the former case (v) follows
and are done. We thus henceforth assume that G is totally disconnected.

Let ω ∈ ∂X be a point at infinity and set H = Gω. By assumption the orbit map
induces a continuous bijection π : G/H → ∂X, which is a homeomorphism by
Lemma 8.2.

Since G is Gromov-hyperbolic, it is compactly generated. Recall that any com-
pactly generated totally disconnected locally compact group acts continuously,
properly and vertex-transitively by automorphisms on some locally finite con-
nected graph g, namely its Cayley–Abels graph (see the discussion following
Proposition 2.1). Since g is quasi-isometric to G, hence to X, we may assume
without loss of generality that g = X or, equivalently, that X is a graph. Since
G/H � ∂X, it follows that ∂X is totally disconnected. Thus X cannot be one-
ended, and must therefore have infinitely many ends. Since the set of ends of X
is a quotient of ∂X, we deduce that G acts transitively on the set of ends of X.
By a result independently due to Möller [Möl92] and Nevo [Nev91], there exists
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an equivariant quasi-isometry from X to a locally finite tree T on which G acts
properly and cocompactly. We can further suppose that this action is minimal and
without inversions. We can also suppose that there is no erasable vertex in T (a
vertex is erasable if it has degree two and its stabilizer fixes both edges emanating
from it). Observe that G is the fundamental group of a certain finite graph of
groups with universal covering T, so that in the graph of groups, all vertex and
edge groups are profinite groups and inclusions are open.

It is easy to check that for every vertex v of degree at least three, the action of
Gv on the set E(v) of neighbouring edges of v is 2-transitive (see [BM00]). This
moreover holds also for vertices of degree two, since no such vertex is erasable. It
follows that the graph of groups is actually an edge. This edge cannot be a loop,
since otherwise the G-action on T would be focal, which is excluded.

It remains to establish the equivalence between (iv) and the other properties.
This follows from the following two implications.

[(i) and (v)]⇒(iv) We start from (i). By Lemma 5.1, G has a maximal compact
normal subgroup W. So by assumption, G/W has a closed amenable cocompact
subgroup G1. Being quasi-isometric to G, the group G1 is non-elementary hyper-
bolic and therefore is, by Theorem 7.3(v), of the form H ⋊Λ, where Λ ∈ {Z,R} acts
by compacting H. Using Propositions 6.6 and 6.9, G1 admits a closed cocompact
subgroup G2 of the form (N × E) ⋊α Z, where N is a simply connected nilpotent
Lie group and E is totally disconnected, the action of Z preserving the direct
decomposition N × E, contracting N and compacting E. Set

Uα(N × E) = {g ∈ N × E : lim
n→+∞

αn(g) = 1} = N ×Uα(E).

Since E is totally disconnected, Corollary 3.17 from Baumgartner-Willis [BW04]

implies that the closure of Uα(E) is cocompact in E. So the group G3 = Uα(N × E)⋊α
Z is a closed, cocompact subgroup of G/W of the required form.

We finally use (v), which implies that the abelianization of G is compact, to
deduce that G is unimodular.

(iv)⇒(i) Let G1 be the subgroup 〈α〉Uα. We are going to show that G1 is hyperbolic,
amenable, and non-unimodular. Taking this for granted, this implies that G1 is
non-elementary hyperbolic by Theorem 7.3, so that G is also non-elementary
hyperbolic. But G cannot be amenable since otherwise by Theorem 7.3, G would
be non-unimodular, so G is of general type and admits the amenable group G1 as
a closed amenable cocompact subgroup.

Let us now check that G1 is indeed hyperbolic, amenable, and non-unimodular.

Note that Uα is normal in G1. By Proposition 6.17, the action of α on Uα is

compacting; moreover Uα is noncompact by assumption. In particular, the Haar

multiplication of α on Uα is less than one, while its Haar multiplication on the

abelian quotient G1/Uα is obviously trivial. Thus ∆G1
(α) , 1 and G1 is non-

unimodular. By Theorem 7.3(iv) (with β = log∆G1
), we deduce that G1 is also

hyperbolic. Finally, G1 is amenable by Proposition 6.5. �

8.B. Relatively hyperbolic non-uniform lattices. Theorem E from the introduc-
tion follows readily from the combination of Theorem 8.1 and the following.

Proposition 8.3. Let X be a proper hyperbolic geodesic metric space with cocompact
isometry group, and let Γ ≤ Is(X) be a closed cusp-uniform subgroup.
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If the Γ-action is not cocompact, then Is(X) is doubly transitive on ∂X.

Proof. If Is(X) stabilizes a point or a pair of points in ∂X, then it is amenable by
Lemma 3.10, and so is Γ. It follows that Γ acts cocompactly by Proposition 5.9,
and we are done.

We may thus assume that Is(X) is of general type, and that the Γ-action is not
cocompact. Thus there is some ξ ∈ ∂X which is bounded parabolic and not conical
with respect to Γ.

Our goal is to show that there is some η ∈ ∂X such that the stabilizer P = Is(X)η
is transitive on on ∂X \ {η}. Since Is(X) is of general type, it follows that Is(X) is
doubly transitive on ∂X, as desired.

Since ξ is not conical with respect to Γ, we have βξ(Γξ) = 0. This means that
every horosphere around ξ, defined with respect to some choice of horofunction,
say h, is preserved by Γξ up to some fixed constant. Let now ρ : R+ → X be a
geodesic ray pointing to ξ. Since Is(X) is cocompact, we can find sequences (gn) in
G and (tn) in R+ such that limn tn = ∞, lim gn(ρ(tn)) = x0 for some x0 ∈ X, and gn.ρ
converges uniformly on compact sets to some geodesic line ℓ passing through x0.
In particular, one of the two endpoints of ℓ, say η, coincides with limn gn.ξ. Let
P = Is(X)η.

We claim that there is some constant R such that P.NR(ℓ) = X, where NR(ℓ)
denotes the R-neighbourhood of ℓ. Since η is an endpoint of ℓ, this immediately
implies that P acts transitively on ∂X \ {η}, so the claim implies the theorem.

Indeed, let x ∈ X be arbitrary. Since g−1
n (x) converges to ξwithin some bounded

neighbourhood of the ray ρ, we have h(g−1
n .x) = −∞, where h is the horofunction

that was chosen above. Now we observe that the assumption that ξ is bounded
parabolic implies that there is some constant R such that for all z ∈ X, if h(z) < 0
then there is some γ ∈ Γ such that γ.z is a distance at most R from ρ. In particular,
for all n large enough, we can find γn ∈ Γξ such that γng−1

n (x) ∈ NR(ρ). Thus

(8.i) gnγng−1
n (x) ∈ NR(gn.ρ).

Combining the fact that g−1
n (x) remains at bounded distance from ρ and βξ(γn) = 0,

we deduce that d(γng−1
n (x), g−1

n (x)) is bounded. Hence the sequence gnγng−1
n is

bounded in Is(X) and we can assume, upon passing to a subsequence, that it
converges to some h ∈ Is(X). Since limn gnξ = η, we have h ∈ P. Passing to the
limit as n→∞ in (8.i), we obtain h(x) ∈ NR(ℓ), which proves the claim. �
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7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et
Industrielles, No. 1306, Hermann, Paris, 1963.



40 P-E. CAPRACE, Y. CORNULIER, N. MONOD, AND R. TESSERA
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