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Abstract. The triangle conjecture states that codes formed by words
of the form aibaj are either commutatively equivalent to a prefix code or
not included in a finite maximal code. Thanks to computer exploration,
we exhibit new examples of such non-commutatively prefix codes. In
particular, we improve a lower bound in a bounding due to Shor and
Hansel. We discuss in the rest of the article the possibility of those codes
to be included in a finite maximal code.
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General notation: Let A be the alphabet {a, b}. For n ≥ 0, let A≤n be the
set of words of A∗ of length at most n. For any word w ∈ A∗, let |w|x be the
number of occurrences of the letter x ∈ A in w. For any integer n, let [n] be the
set {k ∈ N : 1 ≤ k ≤ n} and [[n]] be the set {k ∈ N : 0 ≤ k ≤ n− 1}. For a real
number x ∈ R, let dxe be the least integer greater than or equal to x.

Introduction

Our introduction to the theory of codes follows the book [1]. We call a subset
X ⊂ A∗ a code if for all n,m ≥ 0 and x1, . . . , xn, y1, . . . , ym ∈ X the condition

x1x2 · · ·xn = y1y2 · · · ym

implies
n = m and xi = yi for all i ∈ [n].

For example, the set {aabb, abaaa, b, ba} is not a code since

(b)(abaaa)(b)(b) = (ba)(ba)(aabb).

A code is maximal if it is not contained in any other code. A subset X ⊂ A∗ is
prefix if no element of X is a proper prefix of another element in X. A prefix
subset not containing the empty word is a code. A code X is commutatively
prefix if there exists a prefix code P such that the multisets

{(|x|a, |x|b) : x ∈ X} and {(|p|a, |p|b) : p ∈ P}
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are equal. In other words, it states that one can build a prefix code from X by
allowing commutation between the letters. The commutative equivalence conjec-
ture is one of the main open problem in the theory of codes. It states that all
finite maximal code are commutatively prefix.

In this work, we study this conjecture for a particular case of codes called
bayonet code. A code X is a bayonet code if X ⊂ a∗ba∗. This particular case
of the conjecture is also called the triangle conjecture. It states that a non-
commutatively prefix bayonet code is not included in a finite maximal code
(see [10] for recent result). It is known that a bayonet code X is commutatively
prefix if and only if ∣∣X ∩A≤n∣∣ ≤ n, for all n ≥ 0. (1)

In 1984, Shor [9] found the bayonet code

{b, ba, ba7, ba13, ba14, a3b, a3ba2, a3ba4, a3ba6, a8b, a8ba2, a8ba4, a8ba6,
a11b, a11ba, a11ba2} (2)

with 16 elements and included in A≤15, thus it is a non-commutatively prefix
code. It is the only known example of finite non-commutatively prefix code. It
is still unknown if Shor’s code (2) is included in a finite maximal code. If it is
the case, then the commutative equivalence conjecture and a stronger conjecture
called factorisation conjecture (see [2] for a recent note/summary) would be false.

It is known that for all finite maximal code X and for any letter x ∈ A, there
exists k such that xk ∈ X. We call the order of a letter x the smallest integer k
such that xk belongs to X. It has been showed that if Shor’s code (2) is included
in a finite maximal code then the order of the letter a is a multiple of 330.

In the first section, we mainly do some computer explorations of non-com-
mutatively prefix bayonet codes. We exhibit new examples of such codes. In
particular, we exhibit the smallest ones and deduce from these a better lower
bound in a bounding due to by Shor [9] and Hansel [4]. We discuss in the rest of
the article the possibility of those codes to be included in a finite maximal code.
In the second section, we use factorisation of cyclic group theory to prove some
lower bounds for the orders of the letter a. Finally, in the last section, we find
the smallest known codes that are non-commutatively prefix and not included
in a finite maximal code.

1 Non-commutatively prefix bayonet codes

Given a bayonet code X, we call its dual the bayonet code

δ(X) :=
{
aibaj | ajbai ∈ X

}
.

Of course, a bayonet code is commutatively prefix or included in a finite maximal
code if and only if its dual is. Thus we consider in this work a bayonet code and
its dual to be the same. Even if they cannot be equal in the case we are interested
in.
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Proposition 1. If a bayonet code X is non-commutatively prefix then X 6=
δ(X).

Proof. Let X be an auto-dual bayonet code (i.e. X = δ(X)) and n be an integer.
Let Eni be the set (

aiba∗ ∪ a∗bai
)
∩A≤n,

for i ≥ 0. Thus

X ∩A≤n =
⊔

0≤ i≤dn2 e

(X ∩ Eni ) and |X ∩A≤n| =
∑

0≤ i≤dn2 e

|X ∩ Eni | .

It is enough to show that |X ∩ Eni | ≤ 2, for i ≥ 0. Assume that |X ∩ Eni | > 2.
Then there exists j1 ≥ i and j1 < j2 < n− i such that

aibaj1 , aibaj2 , aj1bai, aj2bai ∈ X.

Thus (
aibaj1

) (
aj2bai

)
=
(
aibaj2

) (
aj1bai

)
which contradicts the fact that X is a code. Thus

∣∣X ∩A≤n∣∣ ≤ n and thanks
to (1), we conclude that X is commutatively equivalent to a prefix code. This
concludes the proof by contraposition. ut

Remark 1. Notice that the auto-dual bayonet code {aiban−1−i : 0 ≤ i < n}
reaches the bound (1).

1.1 Computer exploration

We run an exhaustive search issuing the following algorithm directly deduced
from the definition of a code. Given a set X ⊂ a∗ba∗∩A≤n, we build the oriented
graph Gabs(X) defined by the set of vertices [[n]] and by the edges

|i− k| −→ |j − `| ,

for all aibaj , akba` ∈ X with aibaj 6= akba`.

Example 1. Let X be the set
{
a4ba3, a2ba5, aba5, b, ba2

}
, the graph Gabs(X) is

4102

3

5

.

Thus X is a code (see Proposition 2).

Then we use the following proposition.
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Proposition 2. X is a code if and only if Gabs(X) does not contains a non-
empty path from 0 to 0.

Proof. Given X ⊂ a∗ba∗∩A≤n, there is an edge from i to j in the graph Gabs(X)
if and only if there exist U, V ∈ X such that

aiU = V aj or aiUaj = V.

By concatenation, there is a path from i to j in the graph if and only if there
exist U, V ∈ X∗ such that

aiU = V aj or aiUaj = V. (3)

Assume that there is a non-empty path from 0 to 0 going through k 6= 0. Then
by (3) there exist U1, U2, V1, V2 ∈ X∗ such that

U1 = V1a
k and U2 = akV2.

Hence U1V2 = V1U2 with U1 = V1a
k, and thus X is not a code.

Conversely, if X is not a code then there exist ai1baj1 , . . . , ainbajn ,
ak1ba`1 , . . . , aknba`n ∈ X such that(

ai1baj1
) (
ai2baj2

)
· · ·
(
ainbajn

)
=
(
ak1ba`1

) (
ak2ba`2

)
· · ·
(
aknba`n

)
.

Thus, the graph Gabs(X) contains the path

0 = |i1 − k1| → |j1 − `1| = |i2 − k2| → · · · → |jn − `n| = 0 .

ut

Remark 2. There already exist some algorithm to test in general if a given set is a
code [8]. However, we noticed that for an exhaustive search of non-commutatively
prefix bayonet code, our backtracking implementation of our algorithm (using
mostly bitwise operation) runs faster.

We ran an exhaustive search of codes violating the condition (1), for n ≤ 15.
There is no such code for n ≤ 11, n = 13, and n = 14. There are 4 codes for
n = 12. We exhibit them below by representing the bayonet word aibaj by the
two digits xixj , where xi is the i-th digit in base 17 (0, . . . , 9,A, . . . ,G).

ID Non-commutatively prefix bayonet code

X1 00 02 08 0A 18 1A 40 42 50 53 56 90 92

X2 01 03 09 0B 18 1A 40 42 50 53 56 90 92

X3 02 08 0A 10 18 1A 42 50 53 56 60 92 A0

X4 02 08 0A 18 1A 20 42 53 56 60 70 92 B0
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Up to the knowledge of the author, these are the smallest (in cardinality
and maximal word length) known non-commutatively prefix codes. In [9], Shor
asked what is the maximal value of the ratio of the cardinality of a bayonet code
divided by the length of its longest word. Hansel [4] proved an upper bound
and Shor computed the lower bound 16

15 . Thanks to codes (X1-X4), we improve
Shor’s lower bound to 13

12 .

There are 38 such codes for n = 15. They have in common the words

01 07 0D 0E 82 84 86 B1 B2 (4)

Here follow the 38 codes, where for each code we only write the additional
bayonets words.

ID Code

Y1 00 30 32 34 36 80 B0

Y2 00 30 32 34 36 80 B3

Y3 00 30 34 36 3A 80 B0

Y4 00 30 34 36 3A 80 B3

Y5 00 31 33 35 37 80 B0

Y6 00 31 33 35 37 80 B3

Y7 00 31 35 37 3B 80 B0

Y8 00 31 35 37 3B 80 B3

Y9 00 32 34 36 38 80 B0

Y10 00 32 34 36 38 80 B3

Y11 00 33 35 37 39 80 B0

Y12 00 33 35 37 39 80 B3

Y13 00 34 36 38 3A 80 B0

Y14 00 34 36 38 3A 80 B3

Y15 00 35 37 39 3B 80 B0

Y16 00 35 37 39 3B 80 B3

Y17 10 32 34 36 40 90 C0

Y18 10 34 36 3A 40 90 C0

Y19 20 32 34 36 50 A0 D0

ID Code

Y20 20 32 34 36 58 A0 D0

Y21 20 34 36 3A 50 A0 D0

Y22 20 34 36 3A 58 A0 D0

Y23 30 32 34 36 60 B0 E0

Y24 30 32 34 36 60 B3 E0

Y25 30 34 36 3A 60 B0 E0

Y26 30 34 36 3A 60 B3 E0

Y27 31 33 35 37 60 B0 E0

Y28 31 33 35 37 60 B3 E0

Y29 31 35 37 3B 60 B0 E0

Y30 31 35 37 3B 60 B3 E0

Y31 32 34 36 38 60 B0 E0

Y32 32 34 36 38 60 B3 E0

Y33 33 35 37 39 60 B0 E0

Y34 33 35 37 39 60 B3 E0

Y35 34 36 38 3A 60 B0 E0

Y36 34 36 38 3A 60 B3 E0

Y37 35 37 39 3B 60 B0 E0

Y38 35 37 39 3B 60 B3 E0

Notice that code (Y1) is Shor’s code. We also ran a partial search for n = 16.
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ID Non-commutatively prefix bayonet code

Z1 00 01 02 0B 0C 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z2 00 01 02 0B 0C 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z3 00 01 02 0B 0C 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z4 00 01 02 0B 0C 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z5 00 01 0A 0B 0C 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z6 00 01 0A 0B 0C 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z7 00 01 0A 0B 0C 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z8 00 01 0A 0B 0C 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z9 00 02 0B 0C 11 3B 3C 50 52 61 83 85 87 91 D0 D2 E1

Z10 00 02 0B 0C 11 3B 3C 50 5A 61 83 85 87 91 D0 D2 E1

Z11 01 02 03 0C 0D 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z12 01 02 03 0C 0D 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z13 01 02 03 0C 0D 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z14 01 02 03 0C 0D 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z15 01 02 0B 0C 0D 3B 3C 50 51 52 80 82 84 86 D0 D1 D2

Z16 01 02 0B 0C 0D 3B 3C 50 51 52 81 83 85 87 D0 D1 D2

Z17 01 02 0B 0C 0D 3B 3C 50 51 5A 80 82 84 86 D0 D1 D2

Z18 01 02 0B 0C 0D 3B 3C 50 51 5A 81 83 85 87 D0 D1 D2

Z19 01 02 0B 0C 10 3B 3C 51 52 60 82 84 86 90 D1 D2 E0

Z20 01 02 0B 0C 10 3B 3C 51 5A 60 82 84 86 90 D1 D2 E0

Z21 01 02 0B 0C 1D 3B 3C 51 52 60 82 84 86 90 D1 D2 E0

Z22 01 02 0B 0C 20 3B 3C 51 52 70 82 84 86 A0 D1 D2 F0

Z23 01 02 0B 0C 20 3B 3C 51 5A 70 82 84 86 A0 D1 D2 F0

Z24 01 02 0B 0C 2D 3B 3C 51 52 70 82 84 86 A0 D1 D2 F0

Z25 01 02 0B 0C 2D 3B 3C 51 5A 70 82 84 86 A0 D1 D2 F0

There is no such code for n = 17 containing b. However, we found the following
codes showing that there exist codes violating (1) even when n is prime.

01 02 03 0C 0D 3C 3D 51 52 5B 80 82 84 86 D1 D2 D3 G0 (5a)

01 02 03 0C 0D 3C 3D 51 52 5B 81 83 85 87 D1 D2 D3 G0 (5b)

01 02 03 0C 0D 3C 3D 51 52 5B 82 84 86 88 D1 D2 D3 G0 (5c)

Let us recall that if one of these codes is included in a finite maximal code
then the triangle conjecture is false. In the next sections, we try to complete
each of these codes into a finite maximal one.

2 Factorisations of cyclic groups

In this section, we assume that the codes found in the previous section are
included in some finite maximal code. Then we use factorisation of cyclic group
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theory to prove some lower bounds for the orders of the letter a in those finites
codes.

Given n ≥ 1, the ordered pair (L,R) ⊂ [[n]]2 is a factorisation of Z/nZ if for
all k ∈ [[n]] there exists a unique pair (`, r) ∈ L×R such that k = `+ r mod n.

Example 2. The ordered pair ({1, 3, 5} , {1, 2, 7, 8}) is a factorisation of Z/12Z.

In [6], Restivo, Salemi, and Sportelli showed the following link between fac-
torisation and the theory of codes.

Theorem 1. If X is a finite maximal code such that b, an ∈ X then (L,R) is a
factorisation of Z/nZ, where

L =
{
k mod n : akb+ ∈ X

}
and R =

{
k mod n : b+ak ∈ X

}
.

Such a factorisation is called a factorisation associated to X.

In [7], Sands proved the following useful theorem.

Theorem 2. If (L,R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL,R) is a factorisation of Z/nZ.

We call a Sands factorisation a factorisation (L,R) such that p, q ∈ L and
1 ∈ R where p and q are relatively prime. We still do not know if there exists a
factorisation associated to Shor’s code, i.e. if there exists an integer n such that
(L ⊇ {0, 3, 8, 11}, R ⊇ {0, 1, 7, 13, 14}) is a (Sands) factorisation of Z/nZ. We
now study the factorisations associated to the other codes found in the previous
section.

2.1 Known factorisations

The reader can check that for n ≥ 2,{0, 4, 5, 9}, ⊔
i∈[[n]]

{8i, 8i+ 2}

 (6)

is a factorisation of Z/8nZ associated to the code (X1). In general, the integer n
such that there exists a factorisation of Z/nZ associated to the code (X1) must be
a multiple of 4. Indeed, ({0, 4, 5, 9}, 2{0, 2, 8, 10}) and (2{0, 4, 5, 9}, {0, 2, 8, 10})
are not factorisations because 0 + 2 × 2 = 4 + 0 and 2 × 4 + 0 = 0 + 8. Thus
by Theorem 2 we have that |L| and |R| are multiples of 2, hence n is a multiple
of 4. We did not find any factorisation associated to the code (X1) where n is a
multiple of 4 and not a multiple of 8.

The reader can check that for n ≥ 2,

({0, 8, · · · , 8(n− 1)}, {0, 1, 2, 3, 4, 7, 13, 14}) (7)

is a factorisation of Z/8nZ associated to the codes (Y6, Y8, Y10, Y12, Y14, Y16).
By a similar argument, we can show that in general a factorisation of Z/nZ
associated to those codes satisfies the fact that 4 divides n.

The others factorisations associated to codes found in the previous section
are of Sands type or equivalent to a Sands factorisation.
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2.2 Sands factorisations

We did not find Sands factorisation but we can compute some constraints about
their existence.

Assume that the code (Y2) is included in a finite maximal code. Let (L,R) be
a factorisation associated to this code, thus L ⊇ {0, 3, 8} and R ⊇ {0, 1, 7, 13, 14}.
Notice that (L, 8R), (L, 3R), and (L, 5R) are not factorisations since 8 + 8×0 =
0 + 8× 1, 8 + 3× 0 = 0 + 3× 1, and 8 + 5× 0 = 3 + 5× 1, so that by Theorem 2,
we have that |R| is a multiple of 2 × 3 × 5. Thus the order of the letter a is of
the form 30× k, where k ≥ 3.

Following a similar argument we compute the following table.

Codes Order of the letter a

Y2, Y4 2× 3× 5× k = 30k, with k ≥ 3

Y5, Y7, Y9, Y11, Y13, Y15 2× 3× 11× k = 66k, with k ≥ 3

Y1, Y3 2× 3× 5× 11× k = 330k, with k ≥ 4

Z1, Z3, Z5, Z7 2× 3× 5× 13× k = 390k, with k ≥ 4

Z2, Z4, Z6, Z8 2× 3× 5× 13× k = 390k, with k ≥ 3

Z9, Z10 2× 5× 13× k = 130k, with k ≥ 3

Remark 3. It is known [7] that (L,R) is a factorisation if and only if (L,R− r)
is a factorisation, where r ∈ R. Thus if (L ⊇ {0, 5, 13}, R ⊇ {0, 2, 11, 12}) is
a factorisation associated to the codes (Z9, Z10) then (L,R− 11) is a Sands
factorisation.

The factorisations just take into account the words belonging to ba∗ ∪ a∗b.
In the next section, we look for a more powerful tool.

3 Complete modular bayonet code

In this section, we use a theorem by Perrin and Schützenberger to find the
smallest known codes that are non-commutatively prefix and not included in a
finite maximal code. Then, we propose a new approach of the triangle conjecture
thanks to this theorem.

In [5], Perrin and Schützenberger proved the following theorem.

Theorem 3. Let X be a finite maximal code. Let x ∈ A be a letter and let n be
the order of x. For all ω ∈ A∗, the set

Cx(ω) :=
{

(i mod n, j mod n) : xiωxj ∈ X∗
}

has cardinal n.

We call a n-modular bayonet code a bayonet code X such that {an} ∪X is a
code and we said that it is complete if |X| = n. Thanks to Theorem 3, we know
that to be included in a finite maximal code, a bayonet code must be included
in a complete n-modular bayonet code.
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Example 3. We call an n-permutation code a set of bayonet words X ⊆ a<nba<n
such that the square binary matrix M of size n defined by

Mi,j = 1 if and only if aibaj ∈ X

is a permutation matrix. An n-permutation code is a complete n-modular bay-
onet code.

We now try to find a complete n-modular bayonet code containing one of
our codes that is non-commutatively equivalent to a prefix code.

3.1 Computer exploration

We slightly modify the algorithm given in section 1 to test whether or not a given
set is an n-modular bayonet code. Given a set X ∈ a<nba<n, we call Gmod(X)
the oriented graph defined by the set of vertices [[n]] and by the edges

i− k mod n −→ `− j mod n ,

for all aibaj , akba` ∈ X, with aibaj 6= akba`. The set X is an n-modular bayonet
code if and only if the graph Gmod(X) does not contain a non-empty path from
0 to 0.

In the previous section, we show that the codes (X1, Y6, Y8, Y10, Y12, Y14,
Y16) might be included in a finite maximal code where the order of the letter a is
of the form 4× k with k ≥ 4. By an exhaustive computer search, we found that
none of these codes is included in a complete n-modular bayonet code, where
n ≤ 32. Thus if (X1) is included in a finite maximal code then the order of the
letter a is of the form 4 × k, where k ≥ 10 (there is no factorisation of Z/nZ
associated to this code, where 32 < n < 40). If one of the codes (Y6, Y8, Y10,
Y12, Y14, Y16) is included in a finite maximal code then the order of the letter a
is of the form 4×k, where k ≥ 9 (there is no factorisation of Z/nZ associated to
those codes with 32 < n < 36). In particular, the computer exploration implies
the following proposition.

Proposition 3. If X is one of the codes (X1- X4), then X ∪ {a16} is a code
that is non-commutatively equivalent to a prefix code and not included in a finite
maximal code.

Proof. Let X be one of the codes (X1- X4). Then X∪{a16} is a code. Moreover,
we checked by an exhaustive search that X is not included in a complete 16-
modular bayonet code. We conclude the proof thanks to Theorem 3. ut

Up to the knowledge of the author, the four codes given in Proposition 3 are
the smallest (in cardinality and maximal length word) known codes that are not
commutatively equivalent to a prefix code and not included in a finite maximal
code.
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3.2 Transformations

In order to have a better understanding of the complete n-modular bayonet code,
we look at some transformations.

Lemma 1. If X is an n-modular code then for any r ∈ [[n]], the set

sr(X) :=
{
aibaj : aibap, aqbaj ∈ X and p+ q = r mod n

}
is an n-modular code.

Proof. Given an integer r ∈ [[n]], if sr(X) is not an n-modular bayonet code then
there exists ai1baj1 , . . . , aimbajm , ak1ba`1 , . . . , akmba`m ∈ sr(X), with j1 6= `1
such that 

i1 = k1
j1 + i2 = `1 + k2 mod n

...
jm−1 + im = `m−1 + km mod n

jm = `m

By definition of sr(X), there exists ai1bap1 , aq1baj1 , . . . , aimbapm , aqmbajm ∈ X
and ak1bap

′
1 , aq

′
1ba`1 , . . . , akmbap

′
m , aq

′
mba`m ∈ X such that pt + qt = p′t + q′t = r

mod n, for all t ∈ [m]. Thus

i1 = k1
p1 + q1 = p′1 + q′1 mod n
j1 + i2 = `1 + k2 mod n

...
jm−1 + im = `m−1 + km mod n
pm + qm = p′m + q′m mod n
jm = `m

ThusX is not an n-modular code, since it has a double factorisation. We conclude
the proof by contraposition. ut

We use this lemma to prove the following theorem1.

Theorem 4. If X is an n-modular code then |X| ≤ n.

Proof. Assume that X is an n-modular code such that |X| > n. Thanks to
Lemma 1, we know that for any r ∈ [[n]]], sr(X) is a code thus∑

r∈ [[n]]

|sr(X)| = |X|2

Thus there exists r1 ∈ [[n]] such that |sr1(X)| ≥
⌈
|X|2
n

⌉
≥ n + 1. By iteration,

there exists r2, . . . , rn2 ∈ [[n]] such that
∣∣srn2 (· · · sr2 (sr1(X)) · · · )

∣∣ > n2 which
contradicts the fact that X belongs to a<nba<n. ut
1 Shortly after the publication of this article, the author found that this result is

equivalent to Proposition 2.1 in [3] from Restivo and De Felice.
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Thanks to this theorem, we now exhibit five transformations of an n-modular
code that preserve the completeness.

Theorem 5. If X is an n-modular code (respectively complete) then

1. For all α and β, the set

τα,β(X) :=
{
ai+α mod nbaj+β mod n : aibaj ∈ X

}
is an n-modular code (respectively complete).

2. For all q prime to n, the set

ρq(X) :=
{
aqi mod nbaqj mod n : aibaj ∈ X

}
is an n-modular code (respectively complete).

3. The set

ι(X) :=
{
an−1−ibaj : aibaj ∈ X

}
is an n-modular code (respectively complete).

4. The dual code δ(X) is an n-modular code (respectively complete).
5. For any r ∈ [[n]], the set sr(X) is an n-modular code (respectively complete).

Proof. 1. For any α, β ∈ [[n]], the graph Gmod(τα,β(X)) is equal to the graph
Gmod(X). ThusX is an n-modular code if and only if τα,β(X) is an n-modular
code.

2. For any q prime to n, the function that associates to i ∈ [[n]] the integer qi
mod n is a graph isomorphism from Gmod(X) to Gmod(ρq(X)). Thus X is a
code if and only if ρq(X) is a code.

3. If ι(X) is not an n-modular bayonet code then the graph Gmod(ι(X)) contains
the paths

0 −→ i1 −→ i2 −→ · · · im −→ 0

and

0 −→ −i1 mod n −→ −i2 mod n −→ · · · −im mod n −→ 0 ,

for i1, . . . , im ∈ [[n]]. Thus, the graph Gmod(X) contains the path

0 −→ i1 −→ −i2 mod n −→ i3 −→ −i4 mod n −→ · · · −→ 0

which contradicts the fact that X is an n-modular code. We conclude the
proof by contraposition.

4. The graph Gmod(δ(X)) is the graph Gmod(X) with inverted arrows.
5. If X is an n-modular code then, by Lemma 1, sr(X) is an n-modular code.

Let us prove that if |X| = n then for any r ∈ [[n]], |sr(X)| = n. Assume that
|sr(X)| 6= n for r ∈ [[n]] then there exists an r′ ∈ [[n]] such that |sr′(X)| > n
which contradicts Theorem 4.

ut
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The author wonders if the following Sands-like statement (a strong version
of Theorem 5.2) is true.

Conjecture 1 If X is a complete n-modular bayonet code then

ϕq(X) :=
{
aqi mod nbaj : aibaj ∈ X

}
is a complete n-modular bayonet code, for all q prime to n.

If this conjecture is true, then one can compute some lower bound for the order
of the letter a, using all the bayonet words. Notice that we already proved the
case q = n− 1 of Conjecture 1 in Theorem 5, indeed ϕq(X) = τ1,0 (ι(X)).

Conclusion and perspectives

We propose three main perspectives. Firstly, we would like to enumerate the
bayonet codes that are non-commutatively equivalent to a prefix code. As we
saw in the section 1, the codes we found look closely related to each other.
Secondly, we wonder if there exists a code non-commutatively equivalent to a
prefix code smaller then the codes (X1-X4). Such a code would necessarily be a
non-bayonet code. Finally, our main perspective is continuing our effort to find
whether or not there exists a bayonet non-commutatively prefix code that is
included in a complete modular bayonet code.
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