A Note with Computer Exploration on the Triangle Conjecture

Christophe Cordero

Université Paris-Est Marne-la-Vallée Laboratoire d'Informatique Gaspard-Monge

29 mars 2019

Variable-length code:

Variable-length code:

Table	
11	а
10001	b
01	С
:	

Variable-length code:

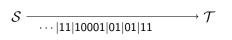
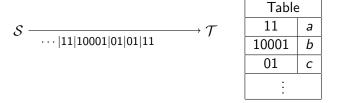


Table	
11	а
10001	b
01	С
:	

Variable-length code:



Difficulty: the frame must be uniquely decomposable!

Code

Definition

A set $X \subset \mathcal{A}^*$ is a **code** if and only if for all $\omega \in X^*$ there exist a unique $n \geq 0$ and a unique sequence $x_1, \ldots, x_n \in X$ such that

$$\omega = x_1 x_2 \cdots x_n$$
.

Code

Definition

A set $X \subset \mathcal{A}^*$ is a **code** if and only if for all $\omega \in X^*$ there exist a unique $n \geq 0$ and a unique sequence $x_1, \ldots, x_n \in X$ such that

$$\omega = x_1 x_2 \cdots x_n$$
.

Example

The set $\{aabb, abaaa, b, ba\}$ is not a code because

$$babaaabb = (b)(abaaa)(b)(b) = (ba)(ba)(aabb).$$

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Example

The set $\{b, ab, a^2b, a^3b, a^4b, \dots\}$ is prefix.

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Example

The set $\{b, ab, a^2b, a^3b, a^4b, \dots\}$ is a prefix code.

Proposition

A prefix set different than $\{\varepsilon\}$ is a code.

Definition

A set $X \subset \mathcal{A}^*$ is **commutatively prefix** if there exists a prefix code P such that the multisets

$$\{ \big(|x|_a, |x|_b \big) \, : \, x \in X \} \ \ \text{and} \ \ \{ \big(|p|_a, |p|_b \big) \, : \, p \in P \}$$
 are equal.

Definition

A set $X \subset \mathcal{A}^*$ is **commutatively prefix** if there exists a prefix code P such that the multisets

$$\{(|x|_a,|x|_b):x\in X\}$$
 and $\{(|p|_a,|p|_b):p\in P\}$

are equal.

Example

The set

$$\{a, ba, aabb, baabb, ababb\}$$

is commutatively prefix.

Definition

A set $X \subset \mathcal{A}^*$ is **commutatively prefix** if there exists a prefix code P such that the multisets

$$\{(|x|_a,|x|_b):x\in X\}$$
 and $\{(|p|_a,|p|_b):p\in P\}$

are equal.

Example

The set

$$\{a, ba, aabb, baabb, ababb\}$$

is commutatively prefix, because it is equivalent to the prefix code

$$\{a, ba, bbaa, bbaba, bbbaa\}.$$

Definition

A set $X \subset \mathcal{A}^*$ is **commutatively prefix** if there exists a prefix code P such that the multisets

$$\{(|x|_a,|x|_b):x\in X\}$$
 and $\{(|p|_a,|p|_b):p\in P\}$

are equal.

Example

The set

$$\{a, ba, aabb, baabb, ababb\}$$

is commutatively prefix, because it is equivalent to the prefix code { a, ba, bbaa, bbaaa, bbbaa}.

Conjecture from Perrin and Schützenberger (1965)

All finite maximal codes are commutatively prefix.

Triangle Conjecture

Definition

A **bayonet** code X is a code such that $X \subset a^*ba^*$.

Triangle Conjecture

Definition

A **bayonet** code X is a code such that $X \subset a^*ba^*$.

Example

The set $\{ab, abaa, aaaab\}$ is a bayonet code.

Triangle Conjecture

Definition

A **bayonet** code *X* is a code such that $X \subset a^*ba^*$.

Example

The set $\{ab, abaa, aaaab\}$ is a bayonet code.

Triangle conjecture (Perrin and Schützenberger)

A finite bayonet code is either commutatively prefix or it is not included in a finite maximal code.

Non-Commutatively Prefix Bayonet Code

(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}\right|\leq n$$
, for all $n\geq 0$.

Non-Commutatively Prefix Bayonet Code

(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}\right|\leq n$$
, for all $n\geq 0$.

Example

In 1984, Shor found the bayonet code

with 16 elements and included in $\mathcal{A}^{\leq 15}$. Hence, it is a non-commutatively prefix code.

Non-Commutatively Prefix Bayonet Code

(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}\right|\leq n$$
, for all $n\geq 0$.

Example

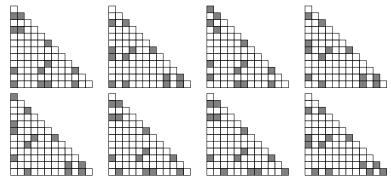
In 1984, Shor found the bayonet code

with 16 elements and included in $\mathcal{A}^{\leq 15}$. Hence, it is a non-commutatively prefix code.

 $n \leq 11$: 0 code.

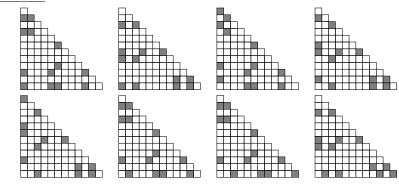
 $n \le 11$: 0 code.

n = 12:



 $n \le 11$: 0 code.

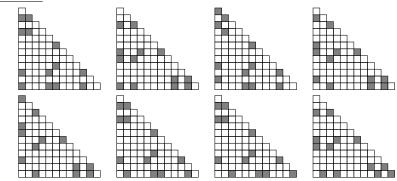
n = 12:



n = 13, 14: 0 code.

 $n \le 11$: 0 code.

n = 12:

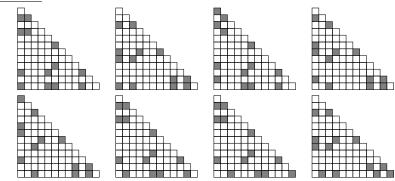


n = 13, 14: 0 code.

n = 15: 76 codes.

 $n \le 11$: 0 code.

n = 12:



n = 13, 14: 0 code.

n = 15: 76 codes.

 $\underline{n=16}$: at least 50 codes...

n = 17: at least 6 codes...

Shor Inequality

A consequence of our computing

Question from Shor (1984)

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Shor Inequality

A consequence of our computing

Question from Shor (1984)

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Partial answer from Shor and Hansel

This value in between $\frac{16}{15}$ and $1 + \frac{1}{\sqrt{2}}$.

Shor Inequality

A consequence of our computing

Question from Shor (1984)

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Partial answer from Shor, Hansel, and us This value in between $\frac{13}{12}$ and $1 + \frac{1}{\sqrt{2}}$.

Definition

Given $n \ge 1$, the ordered pair $(L, R) \subset [0, n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2,3

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists ! (\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8, 9

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

Factorisations of Cyclic Groups

Definition

Given $n \ge 1$, the ordered pair $(L,R) \subset [0,n[^2$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \text{ mod } n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k \text{ mod } n: a^kb^+ \in X
ight\} \text{ and } R:=\left\{k \text{ mod } n: b^+a^k \in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k \text{ mod } n: a^kb^+ \in X
ight\} \text{ and } R:=\left\{k \text{ mod } n: b^+a^k \in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Example (Shor's code)

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k \text{ mod } n: a^kb^+ \in X
ight\} \text{ and } R:=\left\{k \text{ mod } n: b^+a^k \in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Example (Shor's code)

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k \text{ mod } n: a^kb^+ \in X
ight\} \text{ and } R:=\left\{k \text{ mod } n: b^+a^k \in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Example (Shor's code)

A factorisation associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k \text{ mod } n: a^kb^+ \in X
ight\} \text{ and } R:=\left\{k \text{ mod } n: b^+a^k \in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Example (Shor's code)

A factorisation associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

We do not know any of these factorisations.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Theorem from Sands (2000)

If (L,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Application

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\}).$$

Theorem from Sands (2000)

If (L,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Application

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\}).$$

Notice that (L,3R), (L,5R), (L,8R), and (L,11R) are not factorisations.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Application

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\}).$$

Notice that (L,3R), (L,5R), (L,8R), and (L,11R) are not factorisations. Thus 3|n,5|n,2|n, and 11|n.

Theorem from Sands (2000)

If (L,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL,R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Application

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code is of the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\}).$$

Notice that (L,3R), (L,5R), (L,8R), and (L,11R) are not factorisations. Thus 3|n, 5|n, 2|n, and 11|n.

Hence *n* is a multiple of $2 \times 3 \times 5 \times 11 = 330$.

Results About Factorisations

Recall: we found 54 non-commutatively prefix code containing b.

Number of codes	Order of the letter a
4	$2 \times 3 \times 5 \times k = 30k$, with $k \ge 3$
12	$2 \times 3 \times 11 \times k = 66k$, with $k \ge 3$
4	$2 \times 3 \times 5 \times 11 \times k = 330k$, with $k \ge 4$
8	$2 \times 3 \times 5 \times 13 \times k = 390k$, with $k \ge 4$
8	$2 \times 3 \times 5 \times 13 \times k = 390k$, with $k \ge 3$
4	$2 \times 5 \times 13 \times k = 130k$, with $k \ge 3$

Lower bound

A corollary of a theorem from Perrin and Schützenberger (1977)

To be included in a finite maximal code, a bayonet code must be included in a bayonet code $X \subseteq a^{< n}ba^{< n}$ such that |X| = n and $\{a^n\} \cup X$ is a code, for an integer n.

Lower bound

A corollary of a theorem from Perrin and Schützenberger (1977)

To be included in a finite maximal code, a bayonet code must be included in a bayonet code $X \subseteq a^{< n}ba^{< n}$ such that |X| = n and $\{a^n\} \cup X$ is a code, for an integer n.

Computer exploration

None of the 140 non-commutatively prefix bayonet codes satisfies this condition for $n \le 32$.

Lower bound

A corollary of a theorem from Perrin and Schützenberger (1977)

To be included in a finite maximal code, a bayonet code must be included in a bayonet code $X \subseteq a^{< n}ba^{< n}$ such that |X| = n and $\{a^n\} \cup X$ is a code, for an integer n.

Computer exploration

None of the 140 non-commutatively prefix bayonet codes satisfies this condition for $n \le 32$.

THANK YOU!