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Introduction to Coding Theory
Imagine a communication between a source S and a target
T , where they first agree on a table to encode and decode
each character. This table can be a fixed-length code

S T· · · |0010|1001|0010|0001

Table

0001 a

0010 b

...

or it can be a variable-length code

S T· · · |11|10001|01|01|11

Table

11 a

10001 b

...

This second type of communication works if and only if the
messages sent by S have a unique decomposition in the
element of the table. This notion is formalised by the notion
of code in coding theory.

Definition
A set X ⊂ A∗ is a code if and only if for all ω ∈ X∗ there
exist a unique n ≥ 0 and a unique sequence x1, . . . , xn ∈ X
such that

ω = x1 x2 · · · xn.

For example, the set {aabb, abaaa, b, ba} is not a code
because

babaaabb = (b)(abaaa)(b)(b) = (ba)(ba)(aabb).

A subset X ⊂ A∗ is prefix if no element of X is a proper
prefix of another element in X . For example, the set

{b, ab, a2b, a3b, a4b, . . .}
is prefix.

Proposition

Any prefix set di�erent than {ε} is a code.

Why are we interested in prefix code?
1) Because there are easy to produce! For example, the tree

a b

produces the prefix code {aa, abaa, abb, b}.
2) Because they are easy to decode!
For example, if T receives the message aaaaabaaabbabaab,
then T cuts one by one the prefix of the message that are
elements of the code. Thus, the message is decoded as

aa, aa, abaa, abb, abaa, b.

3) Prefix codes appear in one of the main conjectures in
coding theory.

Conjectures

A set X ⊂ A∗ is commutatively prefix if there exists a
prefix code P such that∑

x∈X
y|x|az|x|b =

∑
p∈P

y|p|az|p|b.

For example, the set {a, ba, aabb, baabb, ababb} is
commutatively prefix, because it is equivalent to the prefix
code {a, ba, bbaa, bbaba, bbbaa}.
Conjecture (Perrin and Schützenberger)

All finite maximal codes are commutatively prefix.

We study here this conjecture on the particular case of
bayonet codes.

A bayonet code X is a code such that X ⊂ a∗ba∗. For
example, the set {ab, abaa, aaaab} is a bayonet code.

Triangle Conjecture (Perrin and Schützenberger)

A finite bayonet code is either commutatively prefix or it is
not included in a finite maximal code.
It is easy to determine if a bayonet code is commutatively
prefix.

Proposition

A bayonet code X is commutatively prefix if and only if∣∣X ∩ A≤n∣∣ ≤ n, for all n ≥ 0.

In 1984, Shor found the bayonet code

{ b, ba, ba7, ba13, ba14,

a3b, a3ba2, a3ba4, a3ba6,

a8b, a8ba2, a8ba4, a8ba6,

a11b, a11ba, a11ba2 }

−→

with 16 elements that is included in A≤15. Hence, it is a
non-commutatively prefix code. We do not know if it is
included in a finite maximal code but it is the only
non-commutatively prefix code that was known. In here,
we show the results of our computer exploration in order to
find new non-commutatively prefix code.

Results of our Computer Exploration
For n ≤ 11: 0 code, n = 12:

,
n = 13, 14: 0 code, n = 15: 76 codes, n = 16: at least 50 codes, n = 17: at least 6 codes. . .

We improved a partial answer to the following question:

�estion from Shor

What is the maximum value of |X|n where X is a code belonging to a∗ba∗ ∩ A≤n and n an
integer?

Partial answer (from Shor, Hansel, and us): this value is between 16
15 ≤

13
12 and 1 + 1√

2
.

Factorisations of Cyclic Groups

Proposition and definition

For all finite maximal code X and for any le�er x ∈ A, there exists an integer k such that
xk ∈ X . Such an integer is called the order of the le�er x.

This notion is linked to the factorisation theory. Given n ≥ 1, the ordered pair
(L,R) ⊂ [0, n[2 is a factorisation of Z/nZ if

∀k ∈ [0, n[, ∃!(`, r) ∈ L×R such that k = ` + r mod n.

For example, the ordered pair ({1, 3, 5} , {1, 2, 7, 8}) is a factorisation of Z/12Z. The
following theorem shows the link between factorisation theory and coding theory.

Theorem (Restivo, Salemi, and Sportelli)

If X is a finite maximal code such that b, an ∈ X then (L,R) is a factorisation of Z/nZ,
where

L :=
{
k mod n : akb+ ∈ X

}
and R :=

{
k mod n : b+ak ∈ X

}
.

In the next section, we use the contraposition of the following theorem.

Theorem (Sands)

If (L,R) is a factorisation of Z/nZ and p is an integer relatively prime to |L| then (pL,R)
is a factorisation of Z/nZ.

Applications of Factorisations of Cyclic Groups
We recall that Shor’s code is

{ b, ba, ba7, ba13, ba14,
a3b, a3ba2, a3ba4, a3ba6,

a8b, a8ba2, a8ba4, a8ba6,

a11b, a11ba, a11ba2 }
Suppose that it is a counter-example to the triangle
conjecture. Then there exists a factorisation of the form

(L ⊇ {0, 3, 8, 11}, R ⊇ {0, 1, 7, 13, 14}) .
However, we do not know any of these factorisations! Note
that (L, 3R), (L, 5R), (L, 8R), and (L, 11R) are not
factorisations. Thus, thanks to Sands Theorem, we know
that 3|n, 5|n, 2|n, and 11|n. Hence n is a multiple of

2× 3× 5× 11 = 330.

Let us apply the same strategy to the codes we have found.

We found 27 non-commutatively prefix codes containing b.
For 7 of them we found some factorisations. For example,
the factorisation associated to the code

{ b, ba2, ba8, ba10,
aba8, aba10,
a4b, a4ba2,

a5b, a5ba3, a5ba6,

a9b, a9ba2 }
has of the form

(L ⊇ {0, 4, 5, 9}, R ⊇ {0, 2, 8, 10}) .
We found the following infinite set of such factorisations:
for n ≥ 2, {0, 4, 5, 9}, ⊔

0≤i<n

{8i, 8i + 2}



is a factorisation of Z/8nZ.
For the other 20 codes containing b, we did not found
factorisations associated to them but we computed the
following lower bound on the order of the le�er a:

Nb of codes Order of the le�er a

2 2× 3× 5× k = 30k, with k ≥ 3

6 2× 3× 11× k = 66k, with k ≥ 3

2 2× 3× 5× 11× k = 330k, with k ≥ 4

4 2× 3× 5× 13× k = 390k, with k ≥ 4

4 2× 3× 5× 13× k = 390k, with k ≥ 3

2 2× 5× 13× k = 130k, with k ≥ 3

Journées Nationales du GDR Informatique Mathématique du 11 au 14 mars 2019 à Orléans en France.


