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Introduction to Coding Theory

Variable-length code:

S T

· · · |11|10001|01|01|11

Table
11 a

10001 b
01 c

...

Difficulty: the frame must be uniquely decomposable!
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Code

Definition
A set X ⊂ A∗ is a code if and only if for all ω ∈ X ∗ there exist a
unique n ≥ 0 and a unique sequence x1, . . . , xn ∈ X such that

ω = x1 x2 · · · xn.

Example
The set {aabb, abaaa, b, ba} is not a code because

babaaabb = (b)(abaaa)(b)(b) = (ba)(ba)(aabb).
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Prefix Code

Definition
A set X ⊂ A∗ is prefix if no element of X is a proper prefix of
another element in X .

Example
The set {b, ab, a2b, a3b, a4b, . . . } is .

Proposition
A prefix set different than {ε} is a code.
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Why Prefix Code?

Easy to produce!

a b

b

a

a

Easy to decode!
For example: aaaaabaaabbabaabaab
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Commutatively Prefix Conjecture

Definition
A set X ⊂ A∗ is commutatively prefix if there exists a prefix
code P such that the multisets

{(|x |a, |x |b) : x ∈ X} and {(|p|a, |p|b) : p ∈ P}
are equal.

Example
The set

{a, ba, aabb, baabb, ababb}
is commutatively prefix

, because it is equivalent to the prefix code
{a, ba, bbaa, bbaba, bbbaa}.

Conjecture from Perrin and Schützenberger (1965)
All finite maximal codes are commutatively prefix.
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Triangle Conjecture

Definition
A bayonet code X is a code such that X ⊂ a∗ba∗.

Example
The set {ab, abaa, aaaab} is a bayonet code.

Triangle conjecture (Perrin and Schützenberger)
A finite bayonet code is either commutatively prefix or not included
in a finite maximal code.
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Non-Commutatively Prefix Bayonet Code
(Well known) Proposition
A bayonet code X is commutatively prefix if and only if∣∣∣X ∩ A≤n

∣∣∣ ≤ n, for all n ≥ 0.

Example
In 1984, Shor found the bayonet code

{ b, ba, ba7, ba13, ba14,
a3b, a3ba2, a3ba4, a3ba6,
a8b, a8ba2, a8ba4, a8ba6,
a11b, a11ba, a11ba2 }

↔

with 16 elements and included in A≤15. Hence, it is a
non-commutatively prefix code.
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Results of the Computer Exploration
n ≤ 11: 0 code.

n = 12:

n = 13, 14: 0 code.
n = 15: 76 codes.
n = 16: at least 50 codes. . .

n = 17: at least 6 codes. . .
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Shor Inequality
A consequence of our computing

Question from Shor
What is the maximum value of |X |n where X is a code belonging to
a∗ba∗ ∩ A≤n and n an integer?

Partial answer from , Hansel
This value in between and 1 + 1√

2 .
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Order of a Letter

(Well known) Proposition
For all finite maximal code X and for any letter x ∈ A, there exist
an integer k such that xk ∈ X .

We say that k is the order of the
letter x .

Remark
The order of a letter is unique because(

ai
) (

aj
)

=
(

aj
) (

ai
)

.
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Factorisations of Cyclic Groups

Definition
Given n ≥ 1, the ordered pair (L, R) such that L, R ⊂ [0, n[ is a
factorisation of Z/nZ if

∀k ∈ [0, n[, ∃!(`, r) ∈ L× R such that k = ` + r mod n.

Example
The ordered pair ({, , } , {, , , }) is a factorisation of Z/12Z.
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Link Between Factorisations and Codes
Theorem from Restivo, Salemi, and Sportelli (1989)
If X is a finite maximal code such that b, an ∈ X then (L, R) is a
factorisation of Z/nZ, where

L :=
{

k mod n : akb+ ∈ X
}

and R :=
{

k mod n : b+ak ∈ X
}

.

Such a factorisation is called a factorisation associated to X .

Example (Shor’s code)
{ b, ba, ba7, ba13, ba14,

a3b, a3ba2, a3ba4, a3ba6,
a8b, a8ba2, a8ba4, a8ba6,
a11b, a11ba, a11ba2 }

A factorisation associated to Shor’s code is of the form
(L ⊇ {0, 3, 8, 11}, R ⊇ {0, 1, 7, 13, 14})

We do not know any of these factorisations.
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Factorisation Associated to our Code

What we want?
A factorisation of the form

(L ⊇ {0, 4, 5, 9}, R ⊇ {0, 2, 8, 10})

Some solutions
For n ≥ 2, {0, 4, 5, 9},

⊔
0≤i<n

{8i , 8i + 2}


is a factorisation of Z/8nZ associated to our code.
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Sands Theorem

Theorem from Sands (2000)
If (L, R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL, R) is a factorisation of Z/nZ.

Consequence
Recall: the factorisation of Z/nZ associated to Shor’s code has the
form

(L ⊇ {0, 3, 8, 11}, R ⊇ {0, 1, 7, 13, 14})

Notice that (L, 3R), (L, 5R), (L, 8R), and (L, 11R) are not
factorisations.

Thus 3|n, 5|n, 2|n, and 11|n.

Hence n is a multiple of 2× 3× 5× 11 = 330.
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Results About Factorisations

Recall: we found 54 non-commutatively prefix code containing b.

Number of codes Order of the letter a
4 2× 3× 5× k = 30k, with k ≥ 3

12 2× 3× 11× k = 66k, with k ≥ 3
4 2× 3× 5× 11× k = 330k, with k ≥ 4
8 2× 3× 5× 13× k = 390k, with k ≥ 4
8 2× 3× 5× 13× k = 390k, with k ≥ 3
4 2× 5× 13× k = 130k, with k ≥ 3
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Complete Modular Bayonet Code

Definition
We call a n-modular bayonet code a bayonet code X ⊆ a<nba<n

such that {an} ∪ X is a code.
We said that it is complete if |X | = n.

Example

is a complete n-modular bayonet code.
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CMBC: Lower Bound

Theorem (Perrin and Schützenberger (1977))
Let X be a finite maximal code. Let x ∈ A be a letter and let n be
the order of x. For all ω ∈ A∗, the set

Cx (ω) :=
{

(i mod n, j mod n) : x iωx j ∈ X ∗
}

has cardinal n.

Corollary
To be included in a finite maximal code, a bayonet code must be
included in a complete n-modular bayonet code.

Computer exploration
None of the 140 non-commutatively prefix bayonet codes satisfies
this condition for n ≤ 32.
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CMBC: an Other Consequence

Theorem
The code{

b, ba2, ba8, ba10, aba8, aba10, a4b, a4ba2, a5b, a5ba3,

a5ba6, a9b, a9ba2
}
∪
{

a16
}

is a non-commutatively prefix code and not included in a finite
maximal code.

Remark
It is the smallest known code of this type.
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Perspectives

I Conjecture
If X is a complete n-modular bayonet code then

ϕq(X ) :=
{

aqi mod nbaj : ai baj ∈ X
}

is a complete n-modular bayonet code, for all q prime to n.

I Is there a code non-commutatively prefix smaller then the bayonet
codes we found?

THANK YOU!

20 / 20



Perspectives

I Conjecture
If X is a complete n-modular bayonet code then

ϕq(X ) :=
{

aqi mod nbaj : ai baj ∈ X
}

is a complete n-modular bayonet code, for all q prime to n.

I Is there a code non-commutatively prefix smaller then the bayonet
codes we found?

THANK YOU!

20 / 20



Perspectives

I Conjecture
If X is a complete n-modular bayonet code then

ϕq(X ) :=
{

aqi mod nbaj : ai baj ∈ X
}

is a complete n-modular bayonet code, for all q prime to n.

I Is there a code non-commutatively prefix smaller then the bayonet
codes we found?

THANK YOU!

20 / 20



Annex: is it a Bayonet Code?
Algorithm
Given a set X , we define the graph G(X ) by the vertices [0, n[ and
by the edges

|i − k| −→ |j − `| ,

for all ai baj 6= akba` ∈ X .

Then X is a code if and only if G(X )
does not contain a path from 0 to 0.

Example
Let X :=

{
a4ba3, a2ba5, aba5, b, ba2}, the graph G(X ) is

4102

3

5

Thus X is a code.
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