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Introduction to Coding Theory

Variable-length code:
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Difficulty: the frame must be uniquely decomposable!
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Code

Definition
A set X C A" is a code if and only if for all w € X* there exist a
unique n > 0 and a unique sequence x, ..., X, € X such that

W=X1X2 " Xp.
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Code

Definition

A set X C A" is a code if and only if for all w € X* there exist a

unique n > 0 and a unique sequence x, ..., X, € X such that
W= X1 X2 " Xp.

Example

The set {aabb, abaaa, b, ba} is not a code because

babaaabb = (b)(abaaa)(b)(b) = (ba)(ba)(aabb).
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Prefix Code

Definition
A set X C A* is prefix if no element of X is a proper prefix of
another element in X.
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Definition
A set X C A* is prefix if no element of X is a proper prefix of
another element in X.

Example
The set {b, ab, a’b, a%b, a*b, ...} is prefix.
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Prefix Code

Definition
A set X C A* is prefix if no element of X is a proper prefix of
another element in X.

Example
The set {b, ab, a’b,a%b, a*b, ...} is a prefix code.

Proposition
A prefix set different than {¢} is a code.
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Easy to produce!
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Why Prefix Code?

Easy to produce!

Produce the prefix code {aa, abaa, abb, b}.

Easy to decode!
For example: aa, aa, abaa, abb, abaa, b, aa, b
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Commutatively Prefix Conjecture

Definition
A set X C A* is commutatively prefix if there exists a prefix
code P such that the multisets

{(Ixla, Ixlp) = x € X} and {(|pla,[pls) : p € P}

are equal.
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are equal.

Example
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Commutatively Prefix Conjecture

Definition
A set X C A* is commutatively prefix if there exists a prefix
code P such that the multisets

{(Ixla, Ixlp) = x € X} and {(|pla,[pls) : p € P}

are equal.

Example

The set
{a, ba, aabb, baabb, ababb}

is commutatively prefix, because it is equivalent to the prefix code
{a, ba, bbaa, bbaba, bbbaa}.

Conjecture from Perrin and Schiitzenberger (1965)

All finite maximal codes are commutatively prefix.
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Triangle Conjecture

Definition
A bayonet code X is a code such that X C a*ba*.
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Definition
A bayonet code X is a code such that X C a*ba*.

Example
The set {ab, abaa, aaaab} is a bayonet code.
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Triangle Conjecture

Definition
A bayonet code X is a code such that X C a*ba*.

Example
The set {ab, abaa, aaaab} is a bayonet code.

Triangle conjecture (Perrin and Schiitzenberger)

A finite bayonet code is either commutatively prefix or not included
in a finite maximal code.



Non-Commutatively Prefix Bayonet Code

(Well known) Proposition
A bayonet code X is commutatively prefix if and only if

‘xmAS" < n, for all n > 0.
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Non-Commutatively Prefix Bayonet Code

(Well known) Proposition
A bayonet code X is commutatively prefix if and only if

‘xmAS" < n, for all n > 0.

Example
In 1984, Shor found the bayonet code

{ b, ba, ba’,  ba'3, ba'4,
alh, a3ba?, adba*, adbad,
a®b, a®ba?, aPba*, athad,
allb, allba, a'lba? }

with 16 elements and included in AS1%. Hence, it is a
non-commutatively prefix code.
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‘xmAS" < n, for all n > 0.
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Results of the Computer Exploration
n < 11: 0 code.
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Results of the Computer Exploration
n <11: 0 code.
n=12:

i

n = 16: at least 50 codes. ..

n = 17: at least 6 codes. ..




Shor Inequality

A consequence of our computing

Question from Shor

What is the maximum value of
a*ba* N A=" and n an integer?

@ where X is a code belonging to
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Shor Inequality

A consequence of our computing

Question from Shor

What is the maximum value of
a*ba* N A=" and n an integer?

@ where X is a code belonging to

Partial answer from Shor, Hansel, and us
This value in between % and 1+ \%
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Order of a Letter

(Well known) Proposition

For all finite maximal code X and for any letter x € A, there exist
an integer k such that x¥ € X.
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Order of a Letter

(Well known) Proposition

For all finite maximal code X and for any letter x € A, there exist
an integer k such that x¥ € X. We say that k is the order of the
letter x.

Remark
The order of a letter is unique because

() (#) = () ().
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Factorisations of Cyclic Groups

Definition
Given n > 1, the ordered pair (L, R) such that L, R C [0, n[ is a
factorisation of Z/nZ if

Vk € [0,n[, 3'(¢,r) € L x R such that k = ¢+ r mod n.
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Example
The ordered pair ({1,3,5},{1,2,7,8}) is a factorisation of Z/12Z.
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Given n > 1, the ordered pair (L, R) such that L, R C [0, n[ is a
factorisation of Z/nZ if

Vk € [0,n[, 3'(¢,r) € L x R such that k = ¢+ r mod n.

Example

The ordered pair ({1,3,5},{1,2,7,8}) is a factorisation of Z/12Z.
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Factorisations of Cyclic Groups

Definition
Given n > 1, the ordered pair (L, R) such that L, R C [0, n[ is a
factorisation of Z/nZ if

Vk € [0,n[, 3'(¢,r) € L x R such that k = ¢+ r mod n.

Example
The ordered pair ({1,3,5},{1,2,7,8}) is a factorisation of Z/12Z.

2,3,8,9

12/20



Factorisations of Cyclic Groups

Definition
Given n > 1, the ordered pair (L, R) such that L, R C [0, n[ is a
factorisation of Z/nZ if

Vk € [0,n[, 3'(¢,r) € L x R such that k = ¢+ r mod n.

Example
The ordered pair ({1,3,5},{1,2,7,8}) is a factorisation of Z/12Z.

2,3,8,9,4,5,10,11
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Factorisations of Cyclic Groups

Definition
Given n > 1, the ordered pair (L, R) such that L, R C [0, n[ is a
factorisation of Z/nZ if

Vk € [0,n[, 3'(¢,r) € L x R such that k = ¢+ r mod n.

Example
The ordered pair ({1,3,5},{1,2,7,8}) is a factorisation of Z/12Z.

2,3,8,9,4,5,10,11,6,7,0, 1.
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Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b, a” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+€X} andR::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
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a’h, a3ba®, adba*, adbad,
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Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b, a” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+€X} and R::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
Example (Shor's code)
{ b, ba, ba’, bald,  bal?,

a’h, a’ba®, a3ba*, adbad,

a®b, a®ba?, aPba*, abhad,
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A factorisation associated to Shor's code is of the form
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Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b, a” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+€X} and R::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
Example (Shor's code)
{ b, ba, ba’, bald,  bal?,
a’h, a’ba®, a3ba*, adbad,
a®b, a®ba?, aPba*, abhad,
allh, allba, allba® }
A factorisation associated to Shor’'s code is of the form
(L 2{0,3,8,11},R D {0,1,7,13,14})
We do not know any of these factorisations.
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a’b, a’ba® }

13 /20



Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b,a"” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+ex} and R::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
Example (one of our codes)

{ b ba?, ba®,  ba'°,
aba®, abalo,
a*h, a*ba?,
a®b, a°bad, a°bhad,
a’b,  a’ba® }

13/20



Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b,a"” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+ex} and R::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
Example (one of our codes)

{ b ba?, ba®,  ba'°,
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Link Between Factorisations and Codes

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that b,a"” € X then (L,R) is a
factorisation of Z/nZ, where

L::{kmodn:akb+ex} and R::{k modn:b+ak€X}.

Such a factorisation is called a factorisation associated to X.
Example (one of our codes)

{ b ba?, ba®,  ba'°,
aba®, abal®,
a*h, a*ba?,
a®b, a°bad, a°bhad,
a’b,  a’ba® }
A factorisation associated to our code is of the form

(L2>4{0,4,5,9},R 2{0,2,8,10})
We do know some of these factorisations.
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Factorisation Associated to our Code

What we want?
A factorisation of the form

(L2 {0,4,5,9},R 2 {0,2,8,10})
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Factorisation Associated to our Code

What we want?
A factorisation of the form

(L2 {0,4,5,9},R 2 {0,2,8,10})

Some solutions
For n > 2,

({0,4,5,9}, | ] {8i,8i+2})

0<i<n

is a factorisation of Z/8nZ associated to our code.
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Sands Theorem

Theorem from Sands (2000)

If (L, R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL, R) is a factorisation of Z/nZ.
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If (L, R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL, R) is a factorisation of Z/nZ.

Consequence

Recall: the factorisation of Z/nZ associated to Shor's code has the
form

(L2{0,3,8,11},R 2 {0,1,7,13,14})

Notice that (L,3R), (L,5R), (L,8R), and (L,11R) are not
factorisations.
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Sands Theorem

Theorem from Sands (2000)

If (L, R) is a factorisation of Z/nZ and p is an integer relatively
prime to |L| then (pL, R) is a factorisation of Z/nZ.

Consequence

Recall: the factorisation of Z/nZ associated to Shor's code has the
form

(L2{0,3,8,11},R 2 {0,1,7,13,14})

Notice that (L,3R), (L,5R), (L,8R), and (L,11R) are not
factorisations. Thus 3|n, 5|n, 2|n, and 11|n.
Hence n is a multiple of 2 x 3 x 5 x 11 = 330.
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Results About Factorisations

Recall: we found 54 non-commutatively prefix code containing b.

Number of codes H Order of the letter a
4 2 x 3 x5 x k =230k, with kK>3
12 2x3x 11 x k =66k, with kK >3
4 2 x3x5x11x k =330k, with k>4
8 2x3x5x13 x k =390k, with kK > 4
8 2x3x5x13 x k =390k, with kK > 3
4 2 x5 x 13 x k =130k, with k>3
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Complete Modular Bayonet Code

Definition
We call a n-modular bayonet code a bayonet code X C a<"bha<"

such that {a"} U X is a code.
We said that it is complete if | X| = n.
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Complete Modular Bayonet Code

Definition

We call a n-modular bayonet code a bayonet code X C a<"bha<"
such that {a"} U X is a code.

We said that it is complete if | X| = n.

Example

[ ﬂ

is a complete n-modular bayonet code.

17 /20



CMBC: Lower Bound

Theorem (Perrin and Schiitzenberger (1977))

Let X be a finite maximal code. Let x € A be a letter and let n be
the order of x. For all w € A*, the set

Cy(w) = {(/ mod n, j mod n) : x'wx) € X*}

has cardinal n.
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CMBC: Lower Bound

Theorem (Perrin and Schiitzenberger (1977))

Let X be a finite maximal code. Let x € A be a letter and let n be
the order of x. For all w € A*, the set

Cy(w) = {(/ mod n, j mod n) : x'wx) € X*}
has cardinal n.

Corollary

To be included in a finite maximal code, a bayonet code must be
included in a complete n-modular bayonet code.

Computer exploration

None of the 140 non-commutatively prefix bayonet codes satisfies
this condition for n < 32.
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CMBC: an Other Consequence

Theorem
The code

b, ba®, ba®, ba'®, aba®, aba'®, a*b, a*ba®, b, a° ba®
y ) ) ) ) ) )
a°ba®, a%b, agba2} U {316}

is a non-commutatively prefix code and not included in a finite
maximal code.
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CMBC: an Other Consequence

Theorem
The code

{b, ba?, ba®, ba'®, aba®, aba'®, a*b, a*ba?, a°b, a°ba>,
a°ba®, a%b, agba2} U {316}

is a non-commutatively prefix code and not included in a finite
maximal code.

Remark
It is the smallest known code of this type.
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Perspectives

» Conjecture

If X is a complete n-modular bayonet code then
0q(X) = {aqi med npal - albal € X}

is a complete n-modular bayonet code, for all g prime to n.
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Perspectives

» Conjecture

If X is a complete n-modular bayonet code then
0q(X) = {aqi med npal - albal € X}

is a complete n-modular bayonet code, for all g prime to n.

> Is there a code non-commutatively prefix smaller then the bayonet
codes we found?

THANK YOU!
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Annex: is it a Bayonet Code?

Algorithm

Given a set X, we define the graph G(X) by the vertices [0, n[ and
by the edges

i =Kl | — [l -4}

for all a'bal # a¥ba’ € X.
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Annex: is it a Bayonet Code?

Algorithm

Given a set X, we define the graph G(X) by the vertices [0, n[ and
by the edges

i =Kl | — [l -4}

for all a’ba’ # akba® € X. Then X is a code if and only if G(X)
does not contain a path from 0 to 0.

Example
Let X := {a*ba®, a?ba®, aba®, b, ba?}, the graph G(X) is

S

Thus X is a code.
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