Explorations de la conjecture du triangle

Christophe Cordero

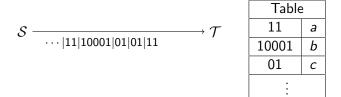
Université Paris-Est Marne-la-Vallée Laboratoire d'Informatique Gaspard-Monge

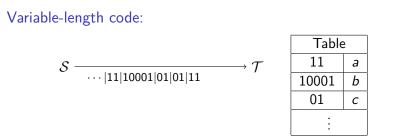
5 novembre 2019

Variable-length code:

Variable-length code:

Variable-length code:





Difficulty: the frame must be uniquely decomposable!

Code

Definition

A set $X \subset \mathcal{A}^*$ is a **code** if and only if for all $\omega \in X^*$ there exist a unique $n \ge 0$ and a unique sequence $x_1, \ldots, x_n \in X$ such that

$$\omega = x_1 x_2 \cdots x_n.$$

Code

Definition

A set $X \subset \mathcal{A}^*$ is a **code** if and only if for all $\omega \in X^*$ there exist a unique $n \ge 0$ and a unique sequence $x_1, \ldots, x_n \in X$ such that

$$\omega = x_1 x_2 \cdots x_n.$$

Example

The set {aabb, abaaa, b, ba} is not a code because

babaaabb = (b)(abaaa)(b)(b) = (ba)(ba)(aabb).

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Example

The set $\{b, ab, a^2b, a^3b, a^4b, \dots\}$ is prefix.

Prefix Code

Definition

A set $X \subset \mathcal{A}^*$ is **prefix** if no element of X is a proper prefix of another element in X.

Example

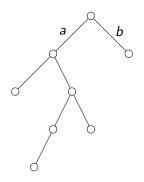
The set $\{b, ab, a^2b, a^3b, a^4b, \dots\}$ is a prefix code.

Proposition

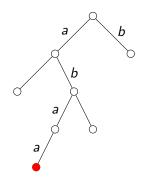
A prefix set different than $\{\varepsilon\}$ is a code.

Easy to produce!

Easy to produce!

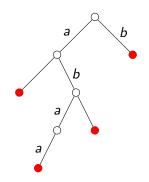


Easy to produce!



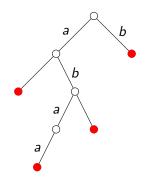
Produce the word *abaa*.

Easy to produce!



Produce the prefix code {*aa*, *abaa*, *abb*, *b*}.

Easy to produce!

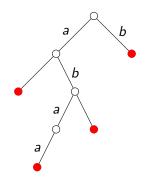


Produce the prefix code $\{aa, abaa, abb, b\}$.

Easy to decode!

For example: aaaaabaaabbabaabaab

Easy to produce!

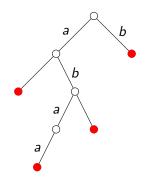


Produce the prefix code {*aa*, *abaa*, *abb*, *b*}.

Easy to decode!

For example: *aa*, *aaabaaabbabaabaab*

Easy to produce!

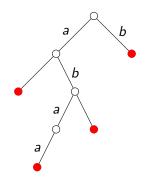


Produce the prefix code {*aa*, *abaa*, *abb*, *b*}.

Easy to decode!

For example: *aa*, *aa*, *abaaabbabaabaab*

Easy to produce!

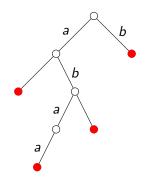


Produce the prefix code {*aa*, *abaa*, *abb*, *b*}.

Easy to decode!

For example: *aa*, *aa*, *abaa*, *abbabaabaab*

Easy to produce!

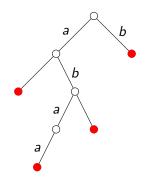


Produce the prefix code $\{aa, abaa, abb, b\}$.

Easy to decode!

For example: *aa*, *aa*, *abaa*, *abb*, *abaabaab*

Easy to produce!

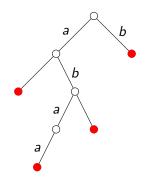


Produce the prefix code $\{aa, abaa, abb, b\}$.

Easy to decode!

For example: *aa*, *aa*, *abaa*, *abb*, *abaa*, *baab*

Easy to produce!

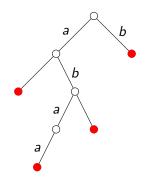


Produce the prefix code $\{aa, abaa, abb, b\}$.

Easy to decode!

For example: *aa*, *aa*, *abaa*, *abb*, *abaa*, *b*, *aab*

Easy to produce!



Produce the prefix code $\{aa, abaa, abb, b\}$.

Easy to decode!

For example: *aa*, *aa*, *abaa*, *abb*, *abaa*, *b*, *aa*, *b*

Definition

A set $X \subset A^*$ is **commutatively prefix** if there exists a prefix code *P* such that the multisets

 $\{(|x|_a, |x|_b) : x \in X\}$ and $\{(|p|_a, |p|_b) : p \in P\}$

are equal.

Definition

A set $X \subset A^*$ is **commutatively prefix** if there exists a prefix code *P* such that the multisets

$$\{(|x|_a, |x|_b) \, : \, x \in X\}$$
 and $\{(|p|_a, |p|_b) \, : \, p \in P\}$

are equal.

Example

The set

```
\{a, ba, aabb, baabb, ababb\}
```

is commutatively prefix.

Definition

A set $X \subset A^*$ is **commutatively prefix** if there exists a prefix code *P* such that the multisets

$$\{(|x|_a, |x|_b) \, : \, x \in X\}$$
 and $\{(|p|_a, |p|_b) \, : \, p \in P\}$

are equal.

Example

The set

 $\{a, ba, aabb, baabb, ababb\}$

is commutatively prefix, because it is equivalent to the prefix code $\{a, ba, bbaa, bbaba, bbbaa\}$.

Definition

A set $X \subset A^*$ is **commutatively prefix** if there exists a prefix code *P* such that the multisets

$$\{(|x|_{a},|x|_{b}) \, : \, x \in X\}$$
 and $\{(|p|_{a},|p|_{b}) \, : \, p \in P\}$

are equal.

Example

The set

```
\{a, ba, aabb, baabb, ababb\}
```

is commutatively prefix, because it is equivalent to the prefix code $\{a, ba, bbaa, bbaaa, bbaaa\}$.

Conjecture from Perrin and Schützenberger (1965) All finite maximal codes are commutatively prefix.

Triangle Conjecture

Definition

A **bayonet** code X is a code such that $X \subset a^*ba^*$.

Triangle Conjecture

Definition

A **bayonet** code X is a code such that $X \subset a^*ba^*$.

Example

The set $\{ab, abaa, aaaab\}$ is a bayonet code.

Triangle Conjecture

Definition

A **bayonet** code X is a code such that $X \subset a^*ba^*$.

Example

The set {*ab*, *abaa*, *aaaab*} is a bayonet code.

Triangle conjecture (Perrin and Schützenberger)

A finite bayonet code is either commutatively prefix or not included in a finite maximal code.

Non-Commutatively Prefix Bayonet Code

(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}
ight|\leq n$$
, for all $n\geq 0$.

Non-Commutatively Prefix Bayonet Code

(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}
ight|\leq n$$
, for all $n\geq 0.$

Example

In 1984, Shor found the bayonet code

$$\{ \begin{array}{ccccc} b, & ba, & ba^7, & ba^{13}, & ba^{14}, \\ a^3b, & a^3ba^2, & a^3ba^4, & a^3ba^6, \\ a^8b, & a^8ba^2, & a^8ba^4, & a^8ba^6, \\ a^{11}b, & a^{11}ba, & a^{11}ba^2 \end{array} \}$$

with 16 elements and included in $\mathcal{A}^{\leq 15}.$ Hence, it is a non-commutatively prefix code.

Non-Commutatively Prefix Bayonet Code

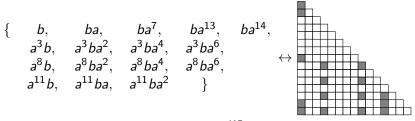
(Well known) Proposition

A bayonet code X is commutatively prefix if and only if

$$\left|X\cap\mathcal{A}^{\leq n}
ight|\leq n$$
, for all $n\geq 0.$

Example

In 1984, Shor found the bayonet code



with 16 elements and included in $\mathcal{A}^{\leq 15}$. Hence, it is a non-commutatively prefix code.

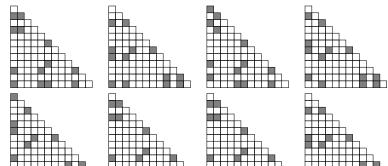
 $\underline{n \leq 11:} 0$ code.

$\underline{n \leq 11}$: 0 code.

<u>*n* = 12:</u>

$\underline{n \leq 11}$: 0 code.

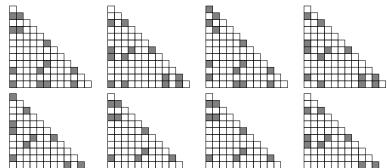
<u>*n* = 12:</u>



n = 13, 14: 0 code.

$\underline{n \leq 11:} 0$ code.

<u>*n* = 12:</u>



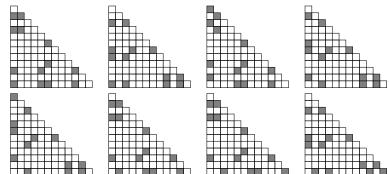
n = 13, 14: 0 code.

<u>n = 15</u>: 76 codes.

Results of the Computer Exploration

$\underline{n \leq 11}$: 0 code.

<u>*n* = 12:</u>



- n = 13, 14: 0 code.
- <u>n = 15</u>: 76 codes.
- $\underline{n=16:}$ at least 50 codes...
- $\underline{n=17:}$ at least 6 codes...

Shor Inequality

A consequence of our computing

Question from Shor

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Shor Inequality

A consequence of our computing

Question from Shor

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Partial answer from Shor and Hansel This value in between $\frac{16}{15}$ and $1 + \frac{1}{\sqrt{2}}$.

Shor Inequality

A consequence of our computing

Question from Shor

What is the maximum value of $\frac{|X|}{n}$ where X is a code belonging to $a^*ba^* \cap \mathcal{A}^{\leq n}$ and n an integer?

Partial answer from Shor, Hansel, and us This value in between $\frac{13}{12}$ and $1 + \frac{1}{\sqrt{2}}$.

Order of a Letter

(Well known) Proposition

For all finite maximal code X and for any letter $x \in A$, there exist an integer k such that $x^k \in X$.

Order of a Letter

(Well known) Proposition

For all finite maximal code X and for any letter $x \in A$, there exist an integer k such that $x^k \in X$. We say that k is the **order** of the letter x.

Order of a Letter

(Well known) Proposition

For all finite maximal code X and for any letter $x \in A$, there exist an integer k such that $x^k \in X$. We say that k is the **order** of the letter x.

Remark

The order of a letter is unique because

$$\left(a^{i}\right)\left(a^{j}\right)=\left(a^{j}\right)\left(a^{i}\right).$$

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, <mark>3</mark>

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, <mark>8</mark>

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8, 9

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8, 9, 4, 5, 10, 11

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8, 9, 4, 5, 10, 11, 6, 7, 0, 1.

Definition

Given $n \ge 1$, the ordered pair (L, R) such that $L, R \subset [0, n[$ is a **factorisation** of $\mathbb{Z}/n\mathbb{Z}$ if

 $\forall k \in [0, n[, \exists!(\ell, r) \in L \times R \text{ such that } k = \ell + r \mod n.$

Example

The ordered pair $(\{1,3,5\},\{1,2,7,8\})$ is a factorisation of $\mathbb{Z}/12\mathbb{Z}$.

2, 3, 8, 9, 4, 5, 10, 11, 6, 7, 0, 1.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{a}}^k{\mathsf{b}}^+\in X
ight\} \ {\mathsf{and}} \ {\mathsf{R}}:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{b}}^+{\mathsf{a}}^k\in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{a}}^k{\mathsf{b}}^+\in X
ight\} \ {\mathsf{and}} \ {\mathsf{R}}:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{b}}^+{\mathsf{a}}^k\in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X. Example (Shor's code)

$$\{ \begin{array}{ccccc} b, & ba, & ba^7, & ba^{13}, & ba^{14}, \\ a^3b, & a^3ba^2, & a^3ba^4, & a^3ba^6, \\ a^8b, & a^8ba^2, & a^8ba^4, & a^8ba^6, \\ a^{11}b, & a^{11}ba, & a^{11}ba^2 \end{array} \}$$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L := \left\{k \mod n : a^k b^+ \in X
ight\}$$
 and $R := \left\{k \mod n : b^+ a^k \in X
ight\}$.

Such a factorisation is called a **factorisation associated** to X. Example (Shor's code)

$$\{ \begin{array}{ccccc} b, & ba, & ba^{7}, & ba^{13}, & ba^{14}, \\ a^{3}b, & a^{3}ba^{2}, & a^{3}ba^{4}, & a^{3}ba^{6}, \\ a^{8}b, & a^{8}ba^{2}, & a^{8}ba^{4}, & a^{8}ba^{6}, \\ a^{11}b, & a^{11}ba, & a^{11}ba^{2} \end{array} \}$$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L := \left\{k \mod n : a^k b^+ \in X
ight\}$$
 and $R := \left\{k \mod n : b^+ a^k \in X
ight\}$.

Such a factorisation is called a **factorisation associated** to X. Example (Shor's code)

$$\{ \begin{array}{ccccc} b, & ba, & ba^{7}, & ba^{13}, & ba^{14}, \\ a^{3}b, & a^{3}ba^{2}, & a^{3}ba^{4}, & a^{3}ba^{6}, \\ a^{8}b, & a^{8}ba^{2}, & a^{8}ba^{4}, & a^{8}ba^{6}, \\ a^{11}b, & a^{11}ba, & a^{11}ba^{2} \end{array} \}$$

A factorisation associated to Shor's code is of the form $(L \supseteq \{0, 3, 8, 11\}, R \supseteq \{0, 1, 7, 13, 14\})$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L := \left\{k \mod n : a^k b^+ \in X
ight\}$$
 and $R := \left\{k \mod n : b^+ a^k \in X
ight\}$.

Such a factorisation is called a **factorisation associated** to X. Example (Shor's code)

$$\{ \begin{array}{ccccc} b, & ba, & ba^{7}, & ba^{13}, & ba^{14}, \\ a^{3}b, & a^{3}ba^{2}, & a^{3}ba^{4}, & a^{3}ba^{6}, \\ a^{8}b, & a^{8}ba^{2}, & a^{8}ba^{4}, & a^{8}ba^{6}, \\ a^{11}b, & a^{11}ba, & a^{11}ba^{2} \end{array} \}$$

A factorisation associated to Shor's code is of the form $(L \supseteq \{0, 3, 8, 11\}, R \supseteq \{0, 1, 7, 13, 14\})$ We do not know any of these factorisations.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{a}}^k{\mathsf{b}}^+\in X
ight\} \ {\mathsf{and}} \ {\mathsf{R}}:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{b}}^+{\mathsf{a}}^k\in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X.

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$$L:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{a}}^k{\mathsf{b}}^+\in X
ight\} \ {\mathsf{and}} \ {\mathsf{R}}:=\left\{k egin{array}{c} {\mathsf{mod}} \ {\mathsf{n}}:{\mathsf{b}}^+{\mathsf{a}}^k\in X
ight\}.$$

Such a factorisation is called a **factorisation associated** to X. Example (one of our codes)

$$\{ \begin{array}{cccc} b, & ba^2, & ba^8, & ba^{10}, \\ aba^8, & aba^{10}, \\ a^4b, & a^4ba^2, \\ a^5b, & a^5ba^3, & a^5ba^6, \\ a^9b, & a^9ba^2 & \} \end{array}$$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$${m L}:=\left\{k mmod n: a^k b^+ \in X
ight\}$$
 and ${m R}:=\left\{k mmod n: b^+ a^k \in X
ight\}.$

Such a factorisation is called a **factorisation associated** to X. Example (one of our codes)

$$\begin{cases} b, & ba^{2}, & ba^{8}, & ba^{10}, \\ aba^{8}, & aba^{10}, \\ a^{4}b, & a^{4}ba^{2}, \\ a^{5}b, & a^{5}ba^{3}, & a^{5}ba^{6}, \\ a^{9}b, & a^{9}ba^{2} \end{cases}$$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$${m L}:=\left\{k mmod n: a^k b^+ \in X
ight\}$$
 and ${m R}:=\left\{k mmod n: b^+ a^k \in X
ight\}.$

Such a factorisation is called a **factorisation associated** to X. Example (one of our codes)

$$\begin{cases} b, & ba^{2}, & ba^{8}, & ba^{10}, \\ aba^{8}, & aba^{10}, \\ a^{4}b, & a^{4}ba^{2}, \\ a^{5}b, & a^{5}ba^{3}, & a^{5}ba^{6}, \\ a^{9}b, & a^{9}ba^{2} \end{cases}$$

A factorisation associated to our code is of the form $(L \supseteq \{0, 4, 5, 9\}, R \supseteq \{0, 2, 8, 10\})$

Theorem from Restivo, Salemi, and Sportelli (1989)

If X is a finite maximal code such that $b, a^n \in X$ then (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$, where

$${m L}:=\left\{k mmod n: a^k b^+ \in X
ight\}$$
 and ${m R}:=\left\{k mmod n: b^+ a^k \in X
ight\}.$

Such a factorisation is called a **factorisation associated** to X. Example (one of our codes)

$$\begin{cases} b, & ba^{2}, & ba^{8}, & ba^{10}, \\ aba^{8}, & aba^{10}, \\ a^{4}b, & a^{4}ba^{2}, \\ a^{5}b, & a^{5}ba^{3}, & a^{5}ba^{6}, \\ a^{9}b, & a^{9}ba^{2} \end{cases}$$

A factorisation associated to our code is of the form $(L \supseteq \{0, 4, 5, 9\}, R \supseteq \{0, 2, 8, 10\})$ We do know some of these factorisations.

Factorisation Associated to our Code

What we want?

A factorisation of the form

 $(L \supseteq \{0, 4, 5, 9\}, R \supseteq \{0, 2, 8, 10\})$

Factorisation Associated to our Code

What we want?

A factorisation of the form

$$(L \supseteq \{0, 4, 5, 9\}, R \supseteq \{0, 2, 8, 10\})$$

Some solutions For $n \ge 2$, $\left(\{0,4,5,9\}, \bigsqcup_{0 \le i \le n} \{8i, 8i+2\}\right)$

is a factorisation of $\mathbb{Z}/8n\mathbb{Z}$ associated to our code.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Consequence

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code has the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Consequence

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code has the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

Notice that (L, 3R), (L, 5R), (L, 8R), and (L, 11R) are not factorisations.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Consequence

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code has the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

Notice that (L, 3R), (L, 5R), (L, 8R), and (L, 11R) are not factorisations. Thus 3|n, 5|n, 2|n, and 11|n.

Theorem from Sands (2000)

If (L, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$ and p is an integer relatively prime to |L| then (pL, R) is a factorisation of $\mathbb{Z}/n\mathbb{Z}$.

Consequence

Recall: the factorisation of $\mathbb{Z}/n\mathbb{Z}$ associated to Shor's code has the form

$$(L \supseteq \{0,3,8,11\}, R \supseteq \{0,1,7,13,14\})$$

Notice that (L, 3R), (L, 5R), (L, 8R), and (L, 11R) are not factorisations. Thus 3|n, 5|n, 2|n, and 11|n. Hence *n* is a multiple of $2 \times 3 \times 5 \times 11 = 330$.

Results About Factorisations

Recall: we found 54 non-commutatively prefix code containing b.

Number of codes	Order of the letter a
4	$2 \times 3 \times 5 \times k = 30k$, with $k \ge 3$
12	$2 imes 3 imes 11 imes k=$ 66 k , with $k\geq 3$
4	$2 \times 3 \times 5 \times 11 \times k = 330k$, with $k \ge 4$
8	$2 \times 3 \times 5 \times 13 \times k = 390k$, with $k \ge 4$
8	$2 \times 3 \times 5 \times 13 \times k = 390k$, with $k \ge 3$
4	$2 \times 5 \times 13 \times k = 130k$, with $k \ge 3$

Complete Modular Bayonet Code

Definition

We call a *n*-modular bayonet code a bayonet code $X \subseteq a^{< n}ba^{< n}$ such that $\{a^n\} \cup X$ is a code. We said that it is complete if |X| = n.

Complete Modular Bayonet Code

Definition

We call a *n*-modular bayonet code a bayonet code $X \subseteq a^{< n}ba^{< n}$ such that $\{a^n\} \cup X$ is a code. We said that it is complete if |X| = n.

Example

is a complete *n*-modular bayonet code.

CMBC: Lower Bound

Theorem (Perrin and Schützenberger (1977))

Let X be a finite maximal code. Let $x \in A$ be a letter and let n be the order of x. For all $\omega \in A^*$, the set

$$C_x(\omega) := \left\{ (i \mod n, j \mod n) : x^i \omega x^j \in X^* \right\}$$

has cardinal n.

CMBC: Lower Bound

Theorem (Perrin and Schützenberger (1977))

Let X be a finite maximal code. Let $x \in A$ be a letter and let n be the order of x. For all $\omega \in A^*$, the set

$$C_x(\omega) := \left\{ (i \mod n, j \mod n) : x^i \omega x^j \in X^*
ight\}$$

has cardinal n.

Corollary

To be included in a finite maximal code, a bayonet code must be included in a complete *n*-modular bayonet code.

CMBC: Lower Bound

Theorem (Perrin and Schützenberger (1977))

Let X be a finite maximal code. Let $x \in A$ be a letter and let n be the order of x. For all $\omega \in A^*$, the set

$$C_x(\omega) := \left\{ (i \mod n, j \mod n) : x^i \omega x^j \in X^* \right\}$$

has cardinal n.

Corollary

To be included in a finite maximal code, a bayonet code must be included in a complete *n*-modular bayonet code.

Computer exploration

None of the 140 non-commutatively prefix bayonet codes satisfies this condition for $n \leq 32$.

CMBC: an Other Consequence

Theorem The code

$$\left\{ b, ba^2, ba^8, ba^{10}, aba^8, aba^{10}, a^4b, a^4ba^2, a^5b, a^5ba^3, \\ a^5ba^6, a^9b, a^9ba^2 \right\} \cup \left\{ a^{16} \right\}$$

is a non-commutatively prefix code and not included in a finite maximal code.

CMBC: an Other Consequence

Theorem The code

$$\left\{ b, ba^2, ba^8, ba^{10}, aba^8, aba^{10}, a^4b, a^4ba^2, a^5b, a^5ba^3, \\ a^5ba^6, a^9b, a^9ba^2 \right\} \cup \left\{ a^{16} \right\}$$

is a non-commutatively prefix code and not included in a finite maximal code.

Remark

It is the smallest known code of this type.

Perspectives

Conjecture

If X is a complete *n*-modular bayonet code then

$$\varphi_q(X) := \left\{ a^{qi \mod n} b a^j : a^i b a^j \in X \right\}$$

is a complete n-modular bayonet code, for all q prime to n.

Perspectives

Conjecture

If X is a complete *n*-modular bayonet code then

$$arphi_q(X) := \left\{ a^{qi \mod n} b a^j : a^i b a^j \in X
ight\}$$

is a complete n-modular bayonet code, for all q prime to n.

Is there a code non-commutatively prefix smaller then the bayonet codes we found?

Perspectives

Conjecture

If X is a complete *n*-modular bayonet code then

$$arphi_q(X) := \left\{ a^{qi \mod n} b a^j : a^i b a^j \in X
ight\}$$

is a complete n-modular bayonet code, for all q prime to n.

Is there a code non-commutatively prefix smaller then the bayonet codes we found?

THANK YOU!

Algorithm

Given a set X, we define the graph $\mathcal{G}(X)$ by the vertices [0, n[and by the edges

$$|i-k| \longrightarrow |j-\ell|,$$

for all $a^i b a^j \neq a^k b a^\ell \in X$.

Algorithm

Given a set X, we define the graph $\mathcal{G}(X)$ by the vertices [0, n[and by the edges

$$|i-k| \longrightarrow |j-\ell|$$

for all $a^i b a^j \neq a^k b a^{\ell} \in X$. Then X is a code if and only if $\mathcal{G}(X)$ does not contain a path from 0 to 0.

Algorithm

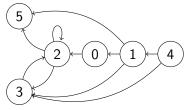
Given a set X, we define the graph $\mathcal{G}(X)$ by the vertices [0, n[and by the edges

$$|i-k| \longrightarrow |j-\ell|,$$

for all $a^i b a^j \neq a^k b a^\ell \in X$. Then X is a code if and only if $\mathcal{G}(X)$ does not contain a path from 0 to 0.

Example

Let $X := \{a^4ba^3, a^2ba^5, aba^5, b, ba^2\}$, the graph $\mathcal{G}(X)$ is



Algorithm

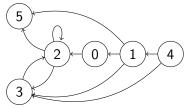
Given a set X, we define the graph $\mathcal{G}(X)$ by the vertices [0, n[and by the edges

$$|i-k| \longrightarrow |j-\ell|,$$

for all $a^i b a^j \neq a^k b a^\ell \in X$. Then X is a code if and only if $\mathcal{G}(X)$ does not contain a path from 0 to 0.

Example

Let $X := \{a^4ba^3, a^2ba^5, aba^5, b, ba^2\}$, the graph $\mathcal{G}(X)$ is



Thus X is a code.