
Enumerative Combinatorics of Prographs
Christophe Cordero

Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est Marne-la-Vallée, France

Prographs
A generator is an operator with a fixed number of inputs
and outputs. We represent a generator x with e inputs and s
outputs by

x
· · ·

· · ·

s

e

.

We can combine generators to build prographs. Formally,
we define prographs by the following recursive grammar:

I A generator with e inputs and s outputs is a prograph
with e inputs and s outputs;

I The wire | is a prograph with 1 input and 1 output;

I Given two prographs

P

· · ·

· · ·

s

e

and P ′
· · ·

· · ·

s′

e′

the assemblies

P ↔ P ′ := P
· · ·

· · ·
P ′
· · ·

· · ·

s + s′

e + e′

and
P ′

l
P

:=

P
· · ·

· · ·
e

P ′
· · ·
s′

are prographs with respectively e + e′ inputs and s + s′ out-
puts and e inputs and s outputs. The second assembly is well
defined if and only if s = e′.
Here is an example of prograph with 6 generators, 6 inputs
and 7 outputs:

♠ ♦

♥

♣

♥

�

(1)

Problem

For a set of generators G and a triple (e, s, n) ∈ N3, we denote by Pe,s,n(G) the set of pro-
graphs with e inputs, s outputs and using exactly n generators from G:

Pe,s,n(G) =


· · · ,

· · ·

· · ·

s

e

n , · · ·


For example, the progaph (1) belongs to the set

P6,7,6

({
� , ♦ , ♠ , ♣ , ♥ , �

})

Given a set of generators G and a triple (e, s, n) ∈ N3, our goal is to count the pro-
graphs ofPe,s,n(G). The main di�iculty in counting prographs is that the grammar provided
by their definition is ambiguous:(

↔

)
l(
↔

) = l = = = = l =

(
↔

)
l(
↔

)

Example P2, n+2, n

({ })
n = 0: n = 1: n = 2: n = 3: n = 4:

· · · · · ·
We obtain the sequence 1, 1, 2, 6, 22, 92, 420, 2042, . . . which is the sequence of rooted tandem duplication trees on n gene segments [OEIS: A264868].

Bijection between prographs and some lattice paths

We denote by Le,n,k,s(G) the set of la�ices paths:
I from (0, 1, e) to (n, k, s)
I using paths U and the paths from the set {ω(g), g ∈ G}, where U is the path (0, 1, 0)

and

ω

 g
· · ·

· · ·

β

α

 is the path

 1

1− α
β − α

 labelled by g

I such that in any point of the paths the ordinate is between 1 and the applicate
(1 ≤ ”y” ≤ ”z”).

Theorem I
For (e, s, n) ∈ N3, we have |Le,n,s,s(G)| = |Pe,s,n(G)|.
The bijection works as follows:
I We numbered generators by a depth-le� first numbering with the additional

condition that a generator can be numbered only if all the generators connected to its

inputs are already numbered;

I Then we match in the order, a generator gk to the path U ik+↓(gk)−1−ik−1 ω(gk), where ik is
the number of wires on the le� of gk and ↓(gk) is its number of inputs.

For example:

♠ ♦

♥

♣

♥

�

→

1♠ 2♦

3♥

5♣

6♥

4�

→

x

y

z

0

1

1

1

♠ ♦ ♥

�
♣

♥

Recurrence formulas
We have a direct recurrence relation on these la�ices paths:

x

y

z

0

1

1

1

♥
♣

♦ U

Proposition

The sequence |Le,n,k,s(G)| satisfies the following
recurrence relation:

1 if n = 0, k = 1 and s = e;

|Le,n,k−1,s(G)| +
d∑
i=1

mi |Le, n−1, k−1+αi, s−βi+αi(G)|

if n ≥ 0 and 1 ≤ k ≤ s;

0 otherwise.

According to Theorem I, it is enough to specialize k to s in order to obtain a re-
currence relation satisfied by prographs. The following theorem gets rid of the re-
finement parameter k, so it provides a recurrence relation directly on the prographs.

Theorem II
Let an,s := |Le,n,s,s(G)| = |Pe,s,n(G)|. It satisfies the recurrence relation:

an,s=


1 if n = 0 and s = e;
n∑̀
=1

(−1)`+1
∑

c1+···+cd=`

(
`

c1, . . . , cd

)(
s + `−

d∑
i=1

ciβi

`

)
mc1

1 . . .m
cd
d a

n−`, s−
d∑
i=1

ci(βi−αi)
if n, s≥ 1;

0 otherwise.

The 30th international conference on Formal Power Series and Algebraic Combinatorics. Dartmouth College, Hanover (USA). July 16–20 2018.

