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Abstract. This is the companion document to the talk the author gave at Cen-
tre de Mathématiques Laurent Schwartz at École Polytechnique for the Laurent
Schwartz seminar on July 3, 2018. The main issue is the singularity formation
problem for the two dimensional Prandtl’s system on the upper half plane, as well
as for related models. The scaling invariance of the equation is partly responsi-
ble for the appearance of a self-similar phenomenon. It involves the formation
of a shock along the tangential direction, together with an expansion along the
transversal component due to incompressibility.

1. Introduction

We consider Prandtl’s equations in two dimensions on the upper half-plane: ut − uyy + uux + vuy = −pEx (t, x, y) ∈ [0, T )× R× R+,
ux + vy = 0,
u|y=0 = v|y=0 = 0, u|y→∞ = uE ,

(1.1)

where u is the tangential (with respect to the boundary R×{0}) velocity and v the
normal velocity. The trace at the boundary of the tangential component of the outer
inviscid flow and the pressure are denoted by uE and pE . This equation is used to
describe the behaviour of a fluid close to a boundary at large Reynolds numbers, as
a formal limit of the Navier-Stokes equation. For more on the derivation of these
equations, we refer to [45, 46, 37, 48].

In [7, 8], we investigated the singularity formation problem for (1.1) and related
problems. Our analysis brings a new perspective on (1.1), and also on the usual
Burgers equation, the inviscid Prandtl’s equations, and Burgers equation with trans-
verse viscosity. The aim of the present document is to sum up these results, and
present them in a way that explains the role of each term in (1.1). The spirit behind
the study is that of the obtention of blow-up profiles, which describe the solution
to leading order near the singularity.

Early reliable numerical evidences for the possibility of blow-ups for (1.1) were ob-
tained by Van Dommelen and Shen [50]. Additional numerical and formal results
have been obtained since then, see [10, 19, 27, 29, 44] and references therein. How-
ever, there is still no precise description of the singularity formation. E and Engquist
[14] proved the existence of finite time blow-up for certain solutions of (1.1), and
Theorems 4.3 and 4.4 here can be viewed as a refinement of their result. Their
approach by contradiction does unfortunately not provide a description of the sin-
gularity formation. For a more general class of outer inviscid flows, the existence
of singularity formation was proved in [35], where also no precise details about the
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singularity are available.

Many other interesting issues arise in the study of Prandtl’s equations. Local ex-
istence of solutions is obtained within the analytical setting [45, 36, 34, 13]. If the
solution satisfies in addition some monotonicity properties, the regularity require-
ment can be lowered and local well-posedness is established in Sobolev regularity
[43, 38, 1] and global weak solutions were constructed in [53]. The singular solu-
tions we consider here do not possess this monotonicity property. In this case, (1.1)
can be ill-posed in the Sobolev setting [20, 24]. Related instabilities can prevent the
Prandtl’s equations from being a good approximation of the Navier-Stokes equations
in the inviscid limit [23]. Indeed, either the monotonicity property and/or Gevrey
regularity in the tangential variable x are necessary to insure that approximation,
see [45, 21]. Finally, in the steady case solutions might also be singular, which is the
so-called Goldstein singularity, and which has been rigorously established recently
in [11]. We believe this singularity is different than the singularities of the unsteady
case.

The document is organised as follows. In Section 2 we describe the singularity
formation for Burgers equation, which encodes the tangential compression in (1.1).
Then we investigate how singularities of the unsteady Prandtl’s equation might form
in Section 3. The main result of this document concerning (1.1) is then stated in
Theorems 4.3 and 4.4 of Section 4, and a sketch of proof is given. Finally, a full
description of the singularity formation is given for Burgers equation with transverse
viscosity in Section 6.

2. Compression along the tangential variable: Burgers equation

Taking only in account the horizontal convection in (1.1), Prandtl’s equations
reduce to the inviscid Burgers equation, sometimes also called Hopf equation. This
is the simplest model for nonlinear one-dimensional wave propagation:

Ut + UUx = 0, U(0, x) = U0(x) (2.1)

for x ∈ R and U : I × R→ R. This equation, as well as other nonlinear hyperbolic
systems, has been extensively studied, see [12, 39, 47]. The discussion here borrows
mostly from [8], and from [15]. We would like to emphasise the roles played in
singularity formation by the scaling invariances and by the strong "locality" of the
equation. There should be some similarities with the singularity formation for the
unsteady Prandtl’s system (1.1), as we will point out in Section 4.

The invariances are the following. If U is a solution to (2.1) then so is

µ

λ
U

(
t− t0
λ

,
x− x0 − ct

µ

)
+ c,

for any time and space scales λ, µ > 0, time and space shifts parameters t0, x0 and
Galilean transformation of speed c ∈ R. The strong locality lies in the transport
aspect of the equation. Namely, the equation can be solved using the method of
characteristics, which are straight lines along which the solution u is conserved.
There indeed holds the following formula for solutions to (2.1):

U(t, x) = U0(Φ
−1
t (x)), Φt(X) = X + tU0(X), (2.2)
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Φt being the diffeomorphism from Lagrangian coordinates X towards Eulerian co-
ordinates x. From the above formula, one easily sees that finite time singularity
happens under the condition infx ∂xU0 < 0, as Φt will cease to be a diffeomorphism.
If we assume that U0 is C1 and compactly supported for example, then the blow-up
time is T = (−min(∂xU0))

−1 and one has wave steepening, ∂xU → +∞ as t→ T ,
announcing a shock formation.

Shocks in one-dimensional hyperbolic equations are mostly studied so that unique
global weak solutions can be constructed. The formation of shocks is more difficult
to study for higher order hyperbolic systems or in higher dimensions. Two points
of view on shock formation exist. The first one, starting from the seminal work
[30] is to study how the solution is compressed by differentiating the gradient of the
solution. Here, along the characteristics:

d

dt
∂xU(t,Φt(X)) = −|∂xU(t,Φt(X))|2 (2.3)

which makes the Ricatti equation bt = −b2 appear. This equation has indeed finite
time blow-up solutions of the form b = −(T−t)−1 and shows how the gradient of the
solution becomes unbounded. Another point of view is the study of the geometry
of the characteristics, and how they degenerate, see [2, 6]. Here we propose another
one, in which the focus is put on the existence and stability of self-similar blow-up
profiles. Note that these profiles were sometimes implicitly used in some works on
the vanishing viscosity limit of Burgers equation [28].

Among all finite time blow-up solutions, the backward self-similar ones are those
enjoying extra symmetries. Thanks to the invariances of the equation, one can
always choose the blow-up time to be zero, and the characteristic on which the
shock is forming to be stationary at the origin, which is summed up in the following
hypothesis (HP):

(HP ) T = 0, minUx(−1, x) = Ux(−1, 0) = −1 and U(−1, 0) = 0

(we choose −1 as a reference negative time here but it can be any other negative
time without loss of generality). Self-similarity refers to such solutions that are left
invariant by one scaling transformation, i.e. with a nontrivial stabilizer:

Gs :=

{
(λ, µ) ∈ (0,+∞)2,

µ

λ
U

(
t

λ
,
x

µ

)
= U(t, x) ∀t, x

}
6= {(1, 1)}.

For Burgers equation (2.1), these solutions can be classified.

Proposition 2.1 ([8]). Consider U ∈ C1 a solution of (2.1) which satisfies (HP ),
such that U 6= x/t. Then Gs is non-trivial if and only if one the following holds.

(i) Self-similarity (SS): There exists i > 0 with

U(t, x) = µ−1(−t)
1
2iΨi

(
µ

x

(−t)1+
1
2i

)
, µ > 0,

where Ψi is a profile which is analytic if i ∈ N∗, else C1+2i.

(ii) Discrete self-similarity (DSS): There exists i > 0, λ > 1 such that

U(t, x) = λ
k
2iU

(
t

λk
,

x

λk(1+
1
2i)

)
, ∀k ∈ Z,

and U /∈ C1+2i.
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Remark 2.2. - It is remarkable to see on such a simple equation already a
vast range of behaviours. There are several possible scaling laws, which
has to do with the fact that the scaling group is two-dimensional. The
self-similarity is then said to be of the second type [3].

- The scaling laws are clearly linked to the regularity of the profiles. This is an
issue for nonlinear wave equations in higher dimensions [33, 32]. Regularity
brings rigidity, since there is only a countable number of analytic profiles.

- For discrete self-similarity, U must have some kind of fractal behaviour near
the point where the shock will form, which is highly instable. For other
equations, discrete self-similar blow-up is unfortunately still poorly under-
stood.

Proof. The proof involves direct computations using the characteristics. We refer
to [8] for further developments regarding Burgers equation.

�

We now restrict ourselves to the case of smooth solutions, and focus on the role
played by the family of analytic profiles.

Lemma 2.3. The profile Ψi : R → R for i ∈ N involved in Proposition 2.1 is odd,
analytic and solves the implicit equation:

X = −Ψi −Ψ2i+1
i . (2.4)

It is decreasing, positive on (−∞, 0) and admits the development near the origin
Ψi(X) ≈ −X +X2i+1 and Ψi(X) ∼ ∓|X|1/(2i+1) as X → ±∞.

These profiles are important thanks to the fact that they are the attractors of the
singularity formation. It is worth noting that they appear as profiles for compactly
supported solutions even though they are unbounded at infinity.

Proposition 2.4. Let U0 ∈ C∞(R) be such that ∂xU0 is minimal at x0 with

U0(x0) = c, ∂xU0(x0) < 0, ∂jxU0(x0) = 0 for j = 2, ..., 2i, and ∂2i+1
x U0(x0) > 0

for some i ∈ N. Then the associated solution of (2.1) U blows up at time T =
−1/Ux(x0) at the point x∞ = x0 + cT with:

U(t, x) = µ−1(T − t)
1
2iΨi

(
µ
x− x0 − ct
(T − t)1+

1
2i

)
+ c+ w(t, x) (2.5)

for some µ, c ∈ R, where the remainder is negligible
w

(T − t)
1
2iΨi

(
µ x−x0−ct
(T−t)1+

1
2i

) → 0 as (x, t)→ (x∞, T ).

Proof. Again, the proof involves direct computations and we refer to [8].
�

To sum up, the picture for Burgers equation is the following. Smooth solutions
may become singular in finite time. When they do so, a profile appears near the
singularity, which belongs to a universal countable family of backward self-similar
profiles. The structure of these profiles is intimately linked to the scaling invariance
of the equation, and to the limited development near the characteristics where the
shock will form.
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3. On singularity formation for the inviscid Prandtl’s system

Having in mind the singularity formation scenarios described in the previous
Section 2 for Burgers equation, we now move to what happens for the inviscid two-
dimensional Prandtl’s system. It corresponds to (1.1) without the normal viscosity:{

ut + uux + vuy = 0,
u(t, x, 0) = 0 = v(t, x, 0), ux + vy = 0

(3.1)

and with a vanishing outer flow for simplification. This is a nonlinear hyperbolic
transport equation, and we claim that the singularity formation here is somehow
similar to the case of Burgers equation (2.1). This is ongoing work and will be the
subject of an upcoming article, so that we just give partial results here. The locality
is reflected in the fact that the equation can be solved using characteristics, see for
example [27]. We now explain the characteristics of (3.1). In (3.1), the tangential
velocity is u, and u is transporting itself along the tangential direction. Hence,
given a particle with initial position (X,Y ) (in Lagrangian variables), the tangential
coordinate in Eulerian variables at time t of this particule will be x = X+tu0(X,Y ).
The tangential displacements are thus those of Burgers equation (2.2). One then
retrieves the normal displacements by using the fact that the characteristics must
preserve volume since (u, v) is divergence free. The characteristics x(t,X, Y ) and
y(t,X, Y ) are then given by the following formula:

x = ξ[t, Y ](X) = X + tu0(X,Y ), y =

∫ η

0

dZ

1 + tu0x(ξ−1[t, Z](x(t,X, Y )), Z)
.

Above, ξ[t, Y ] : X 7→ X is thought of as a mapping where t and Y are fixed
parameters, which to X associates the value x(t,X, Y ). ξ−1[t, Y ](x) is then its
inverse as a function of X alone. We see from the above formula that the solution
becomes singular under the condition infx ∂xU0 < 0, and that the singularity occurs
at time T = (− infx ∂xU0)

−1. This is the same as for Burgers equation (2.1). We
claim that there exist backward self-similar solutions for (3.1). Here, we only state
the existence of a particular profile which is involved in our main Theorem 4.3
concerning the original Prandtl’s system (1.1).

Proposition 3.1. There exists a function Θ ∈ C1(R× [0,+∞),R), such that

u(t, x, y) = (T − t)
1
2 Θ

(
x

(T − t)
3
2

,
y

(T − t)−
1
2

)
(3.2)

is a solution of (3.1) for any T ∈ R. The profile Θ is odd in X, with Θ(X,Y ) ≥ 0
for X ≤ 0 and Θ(X,Y ) ≤ 0 for X ≥ 0. In addition, infX ∂XΘ being attained only
at (0, π) with:

Θ(X,π + Y ) = −X +X3 +
Y 2

4
X +O(|X|5 + |Y |4X) as (X,Y )→ (0, 0).

Moreover, the restriction of the tangential derivative on the vertical axis satisfies:

∂XΘ(0, Y ) = − sin2

(
Y

2

)
10≤Y≤2π. (3.3)

Proof. For the proof of the above Proposition and additional properties of the profile
Θ, we refer to the upcoming article.

�

For the solution (3.2), what happens is the following. The flow compresses par-
ticles onto the vertical axis X = 0, with a typical tangential scale of x ∼ (T − t)3/2
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for the singularity which is the same as for the stable blow-up of Burgers equation
((2.5) with i = 1). This results in an expansion along the normal direction thanks
to incompressibility, with a typical normal scale of y ∼ (T − t)−1/2. The blow-up
point’s position is (0, π/

√
T − t), so this point is ejected toward infinity in finite time.

Note that the profile Θ in (3.2) does not correspond to the so-called terminal profiles
of [16, 49], and the normal scale here of y ∼ (T − t)−1/2 is different than there which
is y ∼ (T − t)−1/4. This has to do with the fact that Θ is not the generic profile
due to the particular symmetry of oddness in X.

The existence of other backward self-similar profiles for (3.1), as well as the proof
of stability and universality for the induced blow-up dynamics, will be treated in a
forthcoming article. We end this section here by raising the following question: can
the inviscid blow-up dynamics induced by the profile Θ and described above appear
for the full original Prandtl’s system (1.1)? Section 4 gives a partial positive answer
to that question, and Section 6 gives a complete answer for the simplified model of
Burgers equation with transverse viscosity.

4. Main result for the unsteady Prandtl’s system

We describe in this section our main result for the system (1.1). We show precisely
for a particular class of solutions how tangential compression happens. This can be
interpreted as a stability result for the inviscid blow-up dynamics induced by the
self-similar profile Θ described in Proposition 3.1, even in the presence of transverse
viscosity. Countably many other unstable dynamics are also found. Let us assume
that there is no outer flow for simplicity, uE = 0 and pE = 0 so that (1.1) can be
rewritten as: ut − uyy + uux + vuy = 0 (t, x, y) ∈ [0, T )× R× R+,

ux + vy = 0,
u|y=0 = v|y=0 = 0.

(4.1)

Our result is also hold true for a class of outer flows preserving oddness in x for
the solution, as will be mentioned in the remarks after the main Theorems 4.3 and
4.4. indeed, the presence of a nontrivial outer flow gives rise to forcing terms. As
it is the case in many blow-up dynamics, though such forcing terms might play
a role in the onset of the singularity formation, near the blow-up time a universal
blow-up mechanism takes place and they cease to play a role, being of a lower order.

We now want to study tangential compression via looking at the gradient of a
solution, having the identity (2.3) for Burgers equation in mind. If u solves (4.1)
and is odd in x, the trace of the derivative ξ(t, y) := −ux(t, 0, y) solves on the
vertical ray y ∈ [0,+∞):{

ξt − ξ2 +
(∫ y

0 ξ(t, ỹ)dỹ
)
ξy − ξyy = 0,

ξ(t, 0) = 0.
(4.2)

E and Engquist [14] showed that some solutions to (4.2) blow up in finite time using
a convexity argument, without describing the singularity on the vertical axis, and
also outside the axis. Note that in (4.2), the singular dynamics is due to the qua-
dratic term ξ2, while the solution also undergoes dissipation and a nonlinear and
nonlocal transport.
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Without the nonlocal nonlinear transport term and the boundary condition, (4.2)
reduces to the nonlinear heat equation:

ξt − ξ2 − ξyy = 0. (4.3)

The blow-up dynamics for the above equation is now completely understood. We
state the following result in the setting of even function to avoid taking into account
the position of the blow-up point.

Theorem 4.1 ([4, 22, 26, 40, 51]). There exists an open set of even functions in
L∞(R) of solutions to (4.3) that blow-up at some time T > 0 with as t→ T :

ξ(t, y) =
1

T − t
1

1 + y2

8(T−t)|log(T−t)|

+OL∞(R)

(
1

(T − t)|log(T − t)|η

)
, η > 0,

and instable solutions for each k ∈ N, k ≥ 2 such that as (t, y)→ (T, 0):

ξ(t, y) =
1

T − t
1

1 + ay2k

(T−t)

+OL∞(R)


(

(T − t)
1
2k + |y|

) 1
2

T − t+ y2k

 , a > 0.

We will show that the blow-up dynamics of (4.2) is deeply affected by the addition
of nonlinear transport, when compared to that of (4.3) described in the Theorem
above. But first, let us give a local well-posedness result for (4.2). If ξ is a solution,
then so is λ2ξ(λ2t, λy). The problem is then L

1
2 critical. The problem might then

be well-posed in supercritical Lebesgue spaces, and this is indeed the case for L1.

Proposition 4.2. Let ξ0 ∈ L1([0,+∞)). There exists T (‖ξ0‖L1) > 0 and a unique
solution to (4.2) in Duhamel formulation such that ξ ∈ C([0, T ], L1([0,+∞))),
ξ(0, ·) = ξ0(·) and ‖∂yξ(t)‖L1 . t−1/2. Moreover, there holds the regularisation
ξ ∈ C∞((0, T ] × [0,+∞)) and for each k ∈ R, ∂ky ξ ∈ C((0, T ], L1([0,+∞))). For
any k ∈ N and 0 < T1 ≤ T , the flow is locally uniformly continuous from L1 into
C([T1, T ],W k,1[0,+∞)). Finally, there holds the blow-up criterion for the maximal
time of existence T :

T < +∞ iff lim sup
t↑T

‖u(t)‖L∞([0,+∞)) = +∞.

Proof. The above proposition can be proved by adapting the ideas of [52].
�

We now turn to our main result. First, note that the reduced one dimensional
problem (4.2) with a different domain and different boundary conditions was also
studied in [18], appearing for a particular class of infinite energy solutions to the
three dimensional Navier-Stokes equations. In [18], the authors investigate the exis-
tence of a similar stable blow-up dynamics as described below, and for a particular
class of solutions. The approach however is based on different techniques, involving
parabolic regularity, maximum principles and comparison principles. It allows for a
non-perturbative argument, but also requires numerous additional assumptions. As
a consequence, their argument cannot be applied to the problem that we consider
here. Moreover, our approach, which is based on energy methods, is more robust,
and allows us to prove the stability of the fundamental profile, as well as to con-
struct unstable blow-ups and to derive weighted estimates. The first result, for the
stable dynamics (within the symmetry class), is the following.
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Theorem 4.3 (Stable blow-up for Equation (4.2) [7]). There exists λ∗0 � 1 such
that for all λ0 ≥ λ∗0, an ε(λ0) > 0 exists such that if initially:

ξ0(y) = λ20 cos2
(
y − λ0π

2λ0

)
10≤y≤2λ0π + ξ̃0(y), with ‖ξ̃0‖L1([0,+∞)) ≤ ε(λ0),

then the solution to (4.2) blows up at some time T > 0, with:

ξ(t, y) = λ2 cos2
(
y − y∗(t)
2λ(t)µ(t)

)
1−π≤ y−y∗

λµ
≤π + ξ̃,

where, for some µ∞ > 0:

λ(t) =
1 +O((T − t)

3
2 )√

T − t
, µ(t) = µ∞ +O((T − t)), y∗(t) =

µ∞π +O((T − t)
1
4 )√

T − t
,

and
‖ξ̃‖L∞ ≤ (T − t)−1+

1
8 .

Moreover, on any compact set, the solution remains uniformly regular up to time T ,
so that for any y ∈ [0,+∞), the limit at blow-up time limt↑T ξ(t, y) = ξ∗(y) exists
and satisfies:

ξ∗(y) ∼ y2

4µ2∞
as y → +∞.

Other blow-up profiles also exist, but the corresponding dynamics is linearly
unstable. The result is the following.

Theorem 4.4 (Instable blow-ups for Equation (4.2) [7]). For any k ∈ N, with
k ≥ 2, there exists a solution to (4.2) blowing up at time T > 0, with:

ξ(t, y) = λ
2k

2k−1Gk

(
y − y∗(t)
λ(t)µ(t)

)
1−ak≤ y−y

∗
λµ
≤ak

+ ξ̃,

where ak = π/(2k sin(π/2k)). Above, Gk is an even nonnegative C1 function sup-
ported on [−ak, ak] increasing on [−ak, 0] with Gk(Z) ≈ 1 − Z2k near 0. The
parameters satisfy for some µ∞, ν > 0:

λ(t) =
1 +O((T − t)ν

(T − t)1−
1
2k

, µ(t) = µ∞+O((T−t)ν), y∗(t) =
µ∞ak

(T − t)1−
1
2k

(1+O((T−t)ν),

and
‖ξ̃‖L∞ ≤ (T − t)−1+ν .

Moreover, on any compact set, the solution remains uniformly regular up to time T ,
so that for any y ∈ [0,+∞), the limit limt↑T ξ(t, y) = ξ∗(y) exists and satisfies:

ξ∗(y) ∼
(

2k − 1

µ∞

) 2k
2k−1

y1+
1

2k−1 as y → +∞.

Comments on the results. 1. Implications for the boundary layer. One does not
know a priori that if, given u0 an initial condition of Prandtl’s equations (1.1), the
maximal time of existence for u the corresponding solution of (1.1), and ξ the asso-
ciated solution of (4.2), are the same. It could be the case that another singularity
happens before outside the vertical axis. However, if the singularity of u happens
indeed on the vertical axis, our result shows that the point where the shock will form
is ejected to infinity. The typical scale for the normal variable being y ∼ (T−t)−1/2,
the transverse viscosity is asymptotically negligible in the blow-up dynamics near T .
This indicates that the blow-up mechanism could be that of the inviscid Prandtl’s
equations (3.1). In light of Proposition 3.1 and (3.3), this conclusion is supported by
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the interpretation of (4.3) as a partial stability result for the self-similar dynamics
of the inviscid equations (3.1) driven by the profile Θ.

2. On more general outer flows. Our results above can be extended to other non-
trivial outer flows satisfying suitable symmetry assumptions (e.g. uE odd and pE
even in x). Indeed, this will just induce the presence of new terms that are of lower
order asymptotically during singularity formation, and will not perturb the blow-up
mechanism. Hence the statements of Theorems 4.3 and 4.4 remain true. This is
the case, in particular, of the impulsively started cylinder [50] uE = κ sinx and
pE = (κ2/4) cos(2x), for which the reduced equation (4.2) becomes:{

ξt − ξyy − ξ2 +
(∫ y

0 ξ
)
ξy = −κ2,

ξ(t, 0) = 0, ξ(t, y) −→
y→+∞

−κ.

5. Sketch of proof of Theorem 4.3

We give in this document a sketch of the proof of Theorem 4.3, with a focus on
the main ideas. The full proof of Theorem 4.3 and its adaptation to prove Theorem
4.4 can be found in [7].

5.1. Formal matched asymptotics to find the scaling exponents. Assume
ξ(t, y) solves (4.2), that its maximum is at y∗(t), with its speed is given by the
transport part of the equation: y∗t =

∫ y∗
0 φ. In the parabolic self-similar variables

(which amounts to zoom near the maximum y∗ of the solution at scale
√
T − t):

Y =
y − y∗√
T − t

, s = −log(T − t), f(s, Y ) = (T − t)ξ(t, y), (5.1)

the renormalised function f solves, neglecting the boundary conditions:

fs + f +
Y

2
∂Y f − f2 + ∂−1Y f∂Y f − ∂Y Y f = 0.

An obvious static solution to the above equation is f = 1. It however does not satisfy
the boundary conditions, so that there is a "free boundary" encoding where the
function f starts to deviate from 1 and goes to zero. To find this "free boundary",
we write the evolution of the correction ε = f − 1:

εs + Lε = NL, Lε := −ε+
3

2
Y ∂Y ε− εyy. (5.2)

Above, the operator L is well known (linked to hypergeometric functions), self-
adjoint on L2(e−3Y

2/4) with spectrum {3i/2− 1, i ∈ N}. The corresponding eigen-
functions hi are Hermite polynomials of order i. One then looks for the dominant
mode as t → T (equivalently as s → ∞). The first eigenvalue is −1 associated to
the constant in space instable eigenfunction 1, but this mode is in fact not excited
(this instability being linked to the invariance of the equation by time translation,
it is under control by choosing suitably the time T in (5.1)). The second mode,
h1 = y, cannot be excited since it would violate the fact that the maximum is at
y = y∗ (Y = 0) (this is linked to the invariance by translation of the equation).
Assuming that the i = 2 mode dominates gives, with h2 = 3y2 − 2:

ε(s, Y ) ≈ Ce−2s(3Y 2 − 2), i ≥ 1.
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f then starts to deviate from 1 where the correction ε starts to be of the same size
as the leading order term 1, which is in the zone

Y ∼ es, i.e. y − y∗ ∼ (T − t)−
1
2 .

This introduces the new variable (and the guess y ∼ (T − t)−1/2 for the scaling in
original variable):

Z :=
Y

es
=

y − y∗

(T − t)−
1
2

, F (s, Z) := f(s, Y ) (5.3)

and F solves

Fs + F − F 2 +

(
−1

2
Z +

∫ Z

0
F (s, Z̃)dZ̃

)
∂ZF − e−s∂ZZF = 0. (5.4)

5.2. The profiles. In (5.4), the viscosity is negligible as s → ∞. Assuming that
the renormalisation done in the previous subsection is correct, F should converge
towards some steady state, solution to

F − F 2 +

(
−1

2
Z +

∫ Z

0
F (Z̃)dZ̃

)
∂ZF = 0 (5.5)

Lemma 5.1. Equation (5.5) admits the one-parameter family of solutions

F1

(
Z

µ

)
, µ > 0, F1(Z) = cos2

(
Z

2

)
1−π≤Z≤π.

Remark 5.2. Assuming that higher order modes in (5.2) dominate yields other
scaling exponents for the free boundary (5.3), which in turn gives another equation
than (5.5) for the profiles. Such a case is possible, but instable due to the linear
structure of L, and corresponds to Theorem 4.4.

5.3. Bootstrap argument: the setup. We prove Theorem 4.3 by considering a
solution close to the concentrating blow-up profile, stabilising the resulting dynamics
by choosing appropriately the corresponding parameters: scaling parameter λ (in
direct correspondance with the blow-up time T since limt→T λ = ∞), position of
the blow-up point y∗, spatial scale µ. Such an argument is standard in blow-up
problems, and such a solution is said to be in the "bootstrap" regime. The first
step is to decompose in a suitable way the solution. We write

ξ(t, y) = λ2(t)F1

(
y − y∗(t)
µ(t)λ(t)

)
+ ξ̃(t, y)

such that in the variables:

s =

∫ t

0
λ2(t̃)dt̃, Y = λ(y − y∗), Z =

y − y∗

λµ
, f(s, Y ) = F (s, Z) = λ−2ξ(t, y),

(5.6)
one has

f(s, Y ) = F1

(
Y

λ2µ

)
+ ε, ε ⊥ h0, h1, h2 in L2(e−

3Y 2

4 ) (5.7)

where the hi are the eigenmodes of L. Such a decomposition can be proved to be
unique in the vicinity of the set (λ2(F1(·/(λµ))))λ,µ>0. We also introduce a suitable
decomposition for the blow-up point:

y∗ = λµ(π + a).
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5.4. Modulation equations and interior Lyapunov functional. The most
sensitive part of the dynamics happens close to the maximum of the function y∗.
The variables (5.6) are suitable to show local stability of F1 near the maximum
(that is to say the decay of ε given by (5.7)), and to compute the evolution of the
modulation parameters. It is possible to show the following estimates (where L2

ρ̃

is a Lebesgue space with measure e−3Y 2/4dY with the appropriate renormalised
boundary):

Lemma 5.3 (Modulation equations). In the bootstrap regime there holds:∣∣∣∣µsµ − 1

2λ4µ2

∣∣∣∣ . λ−8 + ‖ε‖L2
ρ̃

+ hot,∣∣∣∣λsλ − 1

2
+

1

4λ4µ2

∣∣∣∣ . λ−12 + λ−4‖ε‖L2
ρ̃

+ hot,∣∣∣∣as +
a

2
−
∫ −π
−π−a

F1 −
1

λ2µ

∫ 0

−λy∗
ε

∣∣∣∣ . λ−4 + ‖ε‖L2
ρ̃

+ hot.

Remark 5.4. The lemma above says roughly that µs = 0, λs = λ/2 and as = −a/2
to leading order. This explains why µ will stabilise to a finite limit, λ will tend to
∞ at the desired rate es/2 and a will tend to 0.

Lemma 5.5 (Interior Lyapunov functional). In the bootstrap regime there holds:
d

ds

(
1

2
‖ε‖2L2

ρ̃

)
+ e−ηs‖∂Y ε‖2L2

ρ̃
≤ −

(
7

2
− Ce−ηs

)
‖ε‖2L2

ρ̃
+ C‖ε‖L2

ρ̃
λ−12 + Ce−e

s
.

Proof of Lemmas 5.3 and 5.5. The key idea is that the dynamics is driven by the
operator L defined in (5.2) for Y close to the origin, and that what happens further
away is not important, which is reflected by the fact that the measure L2(e−

3
4
Y 2

)
decays quickly. The proof then uses the orthogonality conditions (5.7) linked to
a decoupling between the parameters and the remainder, the spectral structure
for the linearised operator L, the Taylor expansion of F1 near the origin and the
Poincare inequality

∫
R(1 + Y 2)u2(Y )e−Y

2
.
∫
R(u2 + (∂Y u)2)e−Y

2 . The control of
the nonlinear terms is done through direct L∞ estimates. This argument originates
from [4, 17, 40, 51]

�

5.5. Exterior Lyapunov functional. What we did in the previous subsection
gives only the control of the remainder ε near the maximum y∗, in the variable
Y (i.e. at a scale of order

√
T − t in original variable). To control it on a scale of

order (T −t)−1/2 in original variables (which corresponds to the scale of the blow-up
profile), we need to perform a different analysis. We change variables using (5.6)
for the remainder: ε(s, Y ) = u(s, Z). It then solves, where hot denotes higher order
error and nonlinear terms:

us + T∂Zu+ V u+ ∂−1Z u∂ZF1 −
1

λ4µ2
∂ZZu = hot, (5.8)

with the transport and the potential term being defined by

T (Z) :=


−
(
Z
2 + π

2

)
if Z ≤ π,

1
2 sinZ if −π ≤ Z ≤ π,
−
(
Z
2 −

π
2

)
if π ≤ Z,

V (Z) :=

 1 if Z ≤ −π,
− cosZ if −π ≤ Z ≤ π,
1 if π ≤ Z,

and the integral term being ∂−1Z u =
∫ Z
0 udZ. We adopt a kinetic point of view to

look at (5.8). The transport term T∂Z pushes away from the origin towards the
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points −π and π. It however vanishes at the origin so that particles may take an
infinite amount of time to escape from a neighbourhood of the origin. The po-
tential term V is negative close to the origin and positive away. The problem for
the dynamics generated by T∂Z + V lies therefore at the origin, where particles
may spend a lot of time while the remainder u is being amplified. The integral term
∂−1Z u∂ZF1 will not generate problems: the integral is computed from the origin, and
T∂Z pushes away from the origin, hence in appropriate weighted spaces ∂−1Z u∂ZF1 is
"slaved" by ∂−1Z u∂ZF1. Finally, the viscosity 1

λ4µ2
∂ZZ only plays a role at the scale

Z ∼ e−s, which corresponds to the zone Y ∼ 1 studied in the previous subsection.

We thus control u in a zone outside the maximum of ξ (which is located at Z = 0),
treating the information coming from the origin as a forcing term controlled in
Y variable in the previous subsection, and in a suitable weighted space adapted to
T∂Z+V , where ∂−1Z u∂ZF1 and 1

λ4µ2
∂ZZ are lower order. The weight is the following,

for an even function q, q(0) = 0, q(1) = 1, q′ > 0 on (0, π) with some additional
properties:

w(s, Z) :=


1+cosZ

(1−cosZ) sin4 Z
1

sin(−Z)4(π + Z)3 1
sq(Z) if Z ∈ (−π, 0),

1+cosZ
(1−cosZ) sin4 Z

1
sinZ 4(π − Z)3 1

sq(Z) if Z ∈ (0, π),
1
s , if |Z| ≥ π.

We only state the corresponding result on the left Z = 0, the result being exactly
the same on the right.

Lemma 5.6 (Exterior Lyapunov Functional on the left). Let M � 1. Assume that
u solves (5.8), then:

d

ds

(
1

2

∫ −Me−s

−π−a
u2wdZ

)
+

1

λ2µ

∫ −Me−s

−π−a
|∂Zu|2wdZ

≤
(
−1

2
+

C

M2
+

C

ln s

)∫ −Me−s

−π−a
u2wdZ

+Ce6su2(−Me−s) + e−8s(∂Zu)2(−Me−s) + hot

Remark 5.7. In the energy estimate of the lemma above, one notices a dissipative
term which has a correct sign and makes the quantity decrease. Then, for M and
s large enough, −1/2 + C/M2 + C/ ln s ≈ −1/2 which shows a linear exponential
decay of exponent 1/2 for the exterior Lyapunov functional. Formally, for M large
enough we are far away from the origin and the dissipation is lower order, and for
s large enough the integral term ∂−1Z u is of lower order in the L2(wdZ) space as
w depends on s. The terms Ce6su2(−Me−s) + e−8s(∂Zu)2(−Me−s) are boundary
terms corresponding to the information coming from the origin, and are estimated
using the information obtained in Lemma 5.5.

Proof. Having in mind that the leading order terms are T∂Z + V , the above Lya-
punov estimate is an approximation of a corresponding weighted L∞ estimate on
the characteristics, that is put in an L2 form via a duality method. The penalisation
of the nonlocal term is obtained via a suitable time dependent modification of the
weight. The nonlinear terms are estimated by L∞ bounds.

�

We end this subsection by mentioning that in order to obtain L∞ estimates to
control the nonlinear terms, we also control derivatives of u with similar energy
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estimates. To take derivatives we use the vector field A∂Zu where A

A(Z) :=

 −1 for Z ≤ −π
2 ,

sinZ for − π
2 ≤ Z ≤

π
2 ,

1 for π
2 ≤ Z.

commutes well with the linear operator T∂Z + V .

5.6. Behaviour near the origin. After having controlled the solution near the
maximum, and away from the maximum at the scale of the profile, one finally needs
to control the solution near the boundary y = 0 to control the various boundary
terms. A refinement of a no blow-up argument from [22], also inspired by [25] to
obtain the trace of the solution at the blow-up time, yields:

Lemma 5.8 (No blow-up near the origin). Let N,L,L′ ≥ 1, q ∈ 2N, b ∈ R. Assume
ξ ∈ C3([0, t(s1)]× [0, 2N ]), with:

ξ(t(s0)) = by2 + ξ̃(t(s0)), ‖ξ̃(t(s0))‖L∞([0,2N ]) ≤ L, ‖∂y ξ̃(t(s0))‖L2([0,2N ]) ≤ L′.
and for all t ≥ t(s0):

‖ξ‖L∞([0,2N ]) ≤ e(1−
1
8)s, ‖∂yξ(t(s0))‖L2([0,2N ]) ≤ es,

then, writing ξ = by2 + ξ̃, for all t ≥ t(s0):

‖ξ̃‖Lq([0,N ]) . LN
1
q +N

2+ 1
q e−

s0
16 , ‖∂y ξ̃‖L2([0,N ]) . L

′ +N
3
2 e
− s0

8q .

Remark 5.9. The above lemma states that if a solution is close to by2 on some
compact set of y going up to the boundary, then it will remain close to by2 up to
the blow-up time. In particular, by parabolic regularisation, the solution remains
smooth up to the blow-up time on any compact set.

Proof. The proof relies on a standard parabolic bootstrap argument using parabolic
regularisation, with a careful control of the forcing and nonlinear terms.

�

6. On Burgers equation with transverse viscosity

An interesting question linked to Theorems 4.3 and 4.4 is wether or not the
information obtained on the vertical axis there can be enough to understand the
shock formation for the full solution, i.e. outside the vertical axis. We believe the
answer is yes in some cases, and solved this problem for a simplification of (1.1) in
[8] and now describe this result. According to Theorem 4.3, some blow-ups of (1.1)
happen away from the boundary and the boundary does not have effects on the
singularity. If one removes the vertical transport term in (1.1) and the boundary,
one obtains Burgers equation with transverse viscosity:

ut + uux = uyy. (6.1)

We look again for a reduced equation encoding tangential compression, similar to
(2.3) for Burgers and (4.2) for Prandtl. For a solution u to (6.1) that is odd in
x, the behaviour on the transverse axis {x = 0} is encoded by a closed system,
which is the motivation for this symmetry assumption. It admits solutions blowing
up simultaneously with a precise behaviour. Indeed, assume ∂jxu0(0, y) = 0 for all
y ∈ R for 2 ≤ j ≤ 2i for some integer i ∈ N. This remains true for later times and
the trace of the derivatives

ξ(t, y) := −∂xu(t, 0, y) and ζ(t, y) = ∂2i+1
x u(t, 0, y) (6.2)
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solve the parabolic system{
(NLH) ξt − ξ2 − ∂yyξ = 0,
(LFH) ζt − (2i+ 2)ξζ − ∂yyζ = 0.

(6.3)

Solutions to the nonlinear heat equation (NLH) might blow up in finite time, see
Theorem 4.1. For the singular solutions ξ to (NLH) of Theorem 4.1, the solution
to the linearly forced heat equation (LFH) may also blow-up in finite time with
a related precise asymptotic. From precise information on ξ and ζ on the vertical
axis, we are able to infer precise information on u the solution of (6.1), i.e. to gain
information outside the vertical axis. The main result of [8] is the construction and
precise description of finite time blow-up solutions for which the gradient become
unbounded. At the main order, a solution is given by a backward self-similar solu-
tion of (2.1) (the inviscid Burgers equation) along the tangential x variable, whose
associated scaling parameters depend on the vertical variable y and are directly
related to the solutions of (6.3).

Theorem 6.1. For any i ∈ N∗ and b > 0, there exists solution to (6.1) blowing up
at time T with

u(t, x, y) = b−1λ−
1
2i (t, y)Ψi

(
bλ1+

1
2i (t, y)x

)
+ ũ(t, x, y)

where Ψi is defined by (2.4), the transverse scale satisfies

λ(t, y) =
1

T − t
1

1 + y2

8(T−t)|log(T−t)|

,

one has the convergence in self-similar variables (X,Z)

(T−t)−
1
2iu
(

(T − t)1+
1
2iX,

√
(T − t)|log(T − t)|Z

)
→ b−1(1+Z2/8)

1
2iΨi

(
bX

(1 + Z2/8)1+
1
2i

)
(6.4)

in C1 on compacts sets, and for some constants C > 0 the remainder satisfies

‖∂xũ‖L∞ ≤ C(T − t)−1|log(T − t)|−
1
4 . (6.5)

Remark 6.2. - Theorem 6.1 states that there exist solutions to (6.1) which
concentrate any backward self-similar profile of Burgers equation (2.4) along
the horizontal variable, at a scale related to the stable blow-up of the semi-
linear heat equation (4.3) along the transverse variable (see Theorem 4.1).
Let us mention that it is also possible to concentrate any profile of Burgers
equation at a scale related to any instable blow-up of (4.3), see [8].

- There are only few results concerning anisotropic singularity formation, de-
spite its relevance for fluid mechanics. In [9, 41], anisotropic blow-ups were
constructed for the supercritical semi-linear heat equation in large dimen-
sions.

Proof. We do not detail the proof of Theorem 6.1 here, and refer to [8]. Let us men-
tion that there, a new framework to deal with the mixed hyperbolic and parabolic
features is developed and that we revisit the construction of flat blow-up profiles for
the semi-linear heat equation.

�
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