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Abstract. This is the companion document to the talk the author gave at
IHÉS for the Laurent Schwartz seminar on May 3, 2016. The main issue is the
study of qualitative properties for two canonical semilinear equations:

∂tu = ∆u + |u|p−1u, ∂ttu = ∆u + |u|p−1u.

Its aim is threefold: introduce nonspecialists to the blow-up issue and dynamics
near stationary states sometimes leading to their concentration, give an up to
date bibliography on this subject for the two equations and on the existence
and properties of stationary states and backward self-similar solutions, and a
presentation of the author’s work on this issue with a sketch of proof for a recent
result obtained in collaboration with F. Merle and P. Raphaël.

1. Introduction

We consider two model equations, the semilinear focusing heat equation

(NLH)

{
∂tu(t, x) = ∆u(t, x) + |u(t, x)|p−1u(t, x), t ∈ R, x ∈ Rd or Ω,
u(0, x) = u0(x), x ∈ Ω,

† (1.1)

on Rd (we will at some point consider a smooth bounded domain Ω ⊂ Rd in which
case we add the Dirichlet boundary condition u(t, x) = 0 if x ∈ ∂Ω), and the
semilinear focusing wave equation

(NLW )

{
∂ttu(t, x) = ∆u(t, x) + |u(t, x)|p−1u(t, x), t ∈ R, x ∈ Rd,
(u(0, x), ∂tu(0, x)) = (u0(x), u1(x)), x ∈ Rd, (1.2)

on Rd, where p > 1 and ∆ :=
∑d

1 ∂xixi . The two underlying linear equations, the
heat equation introduced by Fourier in 1811, and the wave equation which is the
first partial differential equation formulated by d’Alembert in 1747, have been the
subject of a huge amount of work. In mathematical physics however, many mod-
els involve nonlinear variants of these two equations, and (1.1) and (1.2) appear
as canonical nonlinear extensions in which the space is still homogeneous and the
nonlinearity is a monomial. The study of qualitative properties of solutions of such
equations gained an increasing interest since the middle of the twentieth century
and we refer to the monographs [44, 50] for a general approach to these equations.

For regular and well-localized initial data u0, (NLH) and (NLW ) possess a unique
solution u(t), defined on a maximal time interval [0, T ). The issue of the optimality
of the functional framework in which such a statement holds is now well-understood,
and we refer to [4, 18, 29, 49, 52] for more on the Cauchy problem. If T < +∞,
this means that some singularity happens that prevents the solution to be extended
further. In that case the solution is said to blow-up at time T , and if T = +∞ it is
said to be global. The main issue at stake here is the asymptotic behavior as t→ T
of the solutions.
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In the two equations, the linear term makes the solution decrease, by dissipation
for (NLH) and dispersion for (NLW ), and is in competition with a nonlinear term
that makes the solution increase (the equations are then called focusing). There-
fore, it is interesting to know wether or not these two forces can interact and create
special behaviors, and if a general description of arbitrary solutions is available.

The paper is organized as follows. First, we recall some basic features of the equa-
tions in Section 2. Then we prove formally (and state some rigorous results) a
convergence to stationary or backward self-similar profiles during blow-up in Sec-
tions 3 and 4. Results concerning the scale instability of stationary states are given
in Section 5 and eventually in Section 6 the proof of the classification of the dynam-
ics in a special case obtained in [7].

The notation a . b means that there exists an independent constant C > 0 such
that a ≤ Cb, and a� b means that a

b = o(1).

2. Structure, symmetries and criticality

We first recall some special features of the equations, among which some will be
crucial in the sequel.

2.1. Energy. The two equations admit an energy. (NLH) admits the following
gradient flow structure:

E(u) =
1

2

∫
|∇u|2 − 1

p+ 1

∫
|u|p+1,

d

dt
E(u) = −

∫
u2
t ≤ 0, (2.1)

and for (NLW ) a similar energy is conserved:

E(u) =
1

2

∫
|∇u|2 + |∂tu|2 −

1

p+ 1

∫
|u|p+1, E(u) = E(u(0)).

2.2. Invariances. The two equations are invariant by time and space translations.
They are also invariant by scaling: if u is a solution, then so is

λ
2
p−1u(λ2t, λx) =: (uλ(λ2t, ·))(x),

for (NLH), and

λ
2
p−1u(λt, λx) = (uλ(λt, ·))(x),

for (NLW ). The infinitesimal generator of this semi group is the operator:

Λu :=
2

p− 1
u+ x.∇u.

The transformation appearing, u 7→ uλ, is an isometry on the following homogeneous
Sobolev space:

‖ uλ ‖Ḣsc=‖ u ‖Ḣsc , sc :=
d

2
− 2

p− 1
, (2.2)

where for 0 ≤ s < d
2 , denoting by û the Fourier transform of u:

Ḣs = Ḣs(Rd) := {u,
∫
Rd
|ξ|2s|û|2||}, ‖ u ‖Ḣs :=‖ |ξ|sû ‖L2 .

Note that (NLW ) possesses other important symmetries such as the Lorentz trans-
form, which we avoid here.
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2.3. Criticality. From the above scaling invariance, one distinguishes between
three problems, according to the relative position of the energy (2.1) and the critical
Sobolev space (2.2):

(i) If 1 < p < d+2
d−2 := pc (pc = +∞ for d = 1, 2), then sc < 1 and the problem

is said to be energy subcritical.
(ii) If p = pc then sc = 1 and the problem is energy critical.
(ii) If p > pc, sc > 1 and the problem is energy supercritical.

3. The renormalized flow and asymptotic elliptic equations

The symmetries of the equations play a crucial role in the description of their
solutions. We describe here formally a renormalization procedure for singularity
formation for (NLH), but a similar approach can be made for (NLW ) and for
large time behaviors t → +∞ of global solutions as well. As in renormalization
group theory in physics, the aim is to use the symmetries of the equation to reduce
the number of degrees of freedom of the system in a particular regime; here we will
kill time dependence during singularity formation.

3.1. The renormalized flow for (NLH). For a scale λ(t) > 0, we define the
renormalized time s as a solution of the differential equation:

s(0) = s0,
ds

dt
=

1

λ2
. (3.1)

Then if u is a solution of (1.1),

v(s, ·) = uλ(t, ·) = λ
2
p−1u(t, λ·) (3.2)

is a solution of the renormalized heat equation

vs −
λs
λ

Λv = ∆v + |v|p−1v, Λv =
2

p− 1
v + x.∇v. (3.3)

3.2. Asymptotic equations for blow-up. What follows is a formal reasoning.
Assume that u is radially symmetric and decreasing and blows up at (0, T ): |u(t, 0)| →
+∞ as t → T . We take λ(t) =‖ u(t) ‖−

p−1
2

L∞ and assume λt < 0, so that v given by
(3.2) is such that

∀s, |v(0, s)| = 1, ‖ v ‖L∞= 1. (3.4)

Now assume that v is not only bounded but also convergent (think of compactness
coming from parabolic regularization):

v → w, ∂sv → 0. (3.5)

λ(t) is then the right scale to zoom on what is happening near 0 as t → T . The
diffusion speed yields the bound |λ(t)| .

√
T − t (rigorously this bound is implied

by the lower bound ‖ u(t) ‖L∞≥ C

(T−t)
1
p−1

coming from the Cauchy theory in L∞).

In renormalized time this means

−λs
λ

. 1.
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It also implies from its definition (3.1) that lim
t→T

s(t) = +∞. Therefore there are
two subcases:

Case 1 lim-sup
s→T

− λs
λ = c > 0, (then λ ∼

√
T − t) (3.6)

Case 2 lim-sup
s→T

− λs
λ = 0 (then λ�

√
T − t). (3.7)

(3.8)

3.2.1. Case 1: asymptotically self-similar blow-up. . From (3.3), (3.5) and (3.6) w
must solve:

1

2
Λw = ∆w + |w|p−1w (3.9)

(one can indeed change c to 1
2 by a scale change). This equation is called the

backward self-similar equation. If w solves (3.9) then one obtains an exact solution
of (1.1) under the form

u(t, x) =
1

(T − t)
2
p−1

w

(
x√
T − t

)
which is a solution blowing up at 0. Self-similar solutions are then exact solutions
for which the scale shrinks at the universal diffusion speed.

3.2.2. Case 2: asymptotically stationary blow-up. . From (3.3), (3.5) and (3.7) w
must solve:

0 = ∆w + |w|p−1w. (3.10)
If w solves (3.9) then w is a stationary solution of (1.1). The meaning of this
situation is the following: for a blow-up that happens slower (3.7) than the natural
blow-up speed (3.6), at main order diffusion must cancel nonlinear effects (3.10).

3.3. On self-similar solutions for (NLH). For any p > 1 there exist the following
solutions to (3.9)

0, κ :=

(
1

p− 1

) 1
p−1

, −κ,

corresponding to the constant in space ODE blow-up u(t) = κ

(T−t)
1
p−1

. They are

the only bounded solutions for 1 < p ≤ pc in the non-radial class [17]. Then two
particular numbers arise [25, 27]:

pJL := 1 +
4

d− 4− 2
√
d− 1

> pc, pL := 1 +
6

d− 10
> pJL (3.11)

(pL = pJL = +∞ if d ≥ 10). If pc < p < pJL then there exists an countable family
of new radial solutions to (3.9) [2, 3, 51]. If pJL < p < pL then there exists a finite
number of radial solutions [27] and if p > pL no radial positive solutions other than
κ exist [40]. Note that the unicity of these solutions in the radial class is still open,
as well as the existence of nonradial solutions.

3.4. On stationary solutions. For 1 < p < pc the only nonnegative or radial
solution is 0 [16]. For p = pc the only positive radially decaying solution with
w(0) = 1,

Q(x) :=
1(

1 + |x|2
d(d−2)

) 2
p−1

, ‖ Q ‖Ḣsc< +∞, (3.12)
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is the Talenti-Aubin profile [1, 48]. For p > pc there exists also an only positive
radially decaying solution with w(0) = 1 [9, 19, 28] and its asymptotic behavior
depends on p. For p > pJL:

Q(x) =
c∞

|x|
2
p−1

+
a1

|x|γ
+ o(|x|−γ) as |x| → +∞, a1 6= 0, (3.13)

with

c∞ :=

[
2

p− 1

(
d− 2− 2

p− 1

)] 1
p−1

,

γ :=
1

2
(d− 2−

√
4), 4 := (d− 2)2 − 4pcp−1

∞ (4 > 0 iff p > pJL),

whereas for pc < p < pJL, defining ω :=
√
−4:

Q(x) =
c∞

|x|
2
p−1

+
a2 sin (ωlog(r) + c)

|x|
d−2
2

+ o

(
1

r
d−2
2

)
as |x| → +∞, a2 6= 0, c ∈ R.

(3.14)
In all cases, the action of the symmetry groups gives a d+ 1 manifold of stationary
states: {

1

λ
2
p−1

Q

(
x− y
λ

)
, λ > 0, y ∈ Rd

}
.

Note that in the case p = pc non-radial solutions do exist [8, 10].

4. A priori description of blow-up profiles

We now state some rigorous results in the radial case concerning the convergence
of (1.1) and (1.2) to the asymptotic elliptic equations (3.9) and (3.10) done formally
in the previous section.

Theorem 4.1 ([17, 37, 32]). Assume u is a radial bounded solution of (NLH) that
blows up at the origin at T > 0. Then there exists tn → T such that:

λn :=‖ u(tn) ‖−
p−1
2

L∞ → 0, λn .
√
T − t, uλn(tn)→ w

where w 6= 0 solves either the stationnary equation or the self-similar equation (up
to scale change).

The study of self-similar blow-up for the wave equation has attracted a great
amount of work. However we will only give a result on the blow-up profile in the
nonself-similar setting as it is more related to the results in the sequel. We refer to
[12] for an up to date version of this result.

Theorem 4.2 ([11]). Let p = pc, and u be a radial solution of (1.2) blowing-up at
the origin at T > 0 such that lim-sup

t→T
‖ u(t), ∂tu(t) ‖Ḣsc×Ḣsc−1< +∞. Then there

exist (λn, tn) such that1:

tn → T, λn → 0, λn � T − t, uλn(tn) ⇀
Ḣsc

Q, ∆Q+Qp = 0.

1Here the diffusion speed
√
T − t has to be replaced with the sound speed T − t associated to

the wave propagation.
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The interpretation of these two results is clear: the universal mechanisms for
singularity formation are either self-similarity or the concentration of a stationary
state by scale instability. If self-similar solutions naturally shrink and lead to blow-
up, stationary states themselves are harmless and their possible scale instability
has to be investigated. It is thus unclear if the concentration of a stationary state
can happen, and the above classification results must be completed by existence or
nonexistence results. This is the purpose of the next subsection.

5. On blow-up with a stationary state as blow-up profile

We recall that the smallest value of p for which radial stationary states exist is pc.
In this energy critical case, in low dimensions, the existence of solutions blowing-up
by concentration of the radial stationary state (3.12) has been shown by various
authors in low dimensions.

Theorem 5.1 ([15, 47]). For (NLH), p = pc, d = 3, 4, 5, 6, there exists a radial
solution blowing-up at time T > 0 such that:

u(t) =
1

λ(t)
2
p−1

Q

(
x

λ(t)

)
+ ε, ε(t) −→

Ḣsc

u∗, λ(t)�
√
T − t.

In fact, there exists a countable family of scale speeds λn(t) in [15] and in [46]
only the fundamental one is rigorously constructed. For the wave equation, finite
speed of propagation and singularity propagation allow for a continuum of blow-up
speeds [26]. Classification of the possible blow-up speeds under a suitable regularity
assumption is a very interesting question.

Theorem 5.2 ([22, 23, 26]). For (NLW ), p = pc, d = 3, 4, 5 there exists a radial
solution blowing-up at time T > 0 such that:

u(t) =
1

λ(t)
2
p−1

Q

(
x

λ(t)

)
+ ε, (ε(t), ∂tu(t)) −→

Ḣsc×Ḣsc−1
(u∗, v∗),

λ(t)� T − t.

Surprisingly, due to the difference of the asymptotic behaviors of the radial sta-
tionary states for p = pc, pc < p < pJL and p > pJL ((3.12), (3.13) and (3.14)),
blow-up by concentration of a stationary state ceases to exist for pc < p < pJL for
(NLH) [31, 41]. It is a very interesting open problem to know what happens in the
case of (NLW ). Eventually, When p > pJL, concentration of the radial stationary
state is again possible.

Theorem 5.3 ([21, 30, 38, 39, 42]). For (NLH), p > pJL, Ω = Rd, there exist a
sequence (u`)`> γ

2
− 1
p−1

of smooth radial solutions blowing-up with a stationary state
as blow-up profile, such that the blow-up rates are quantized:

‖ u`(t) ‖L∞∼
c`

(T − t)
2`

(γ− 2
p−1)(p−1)

.

Moreover they are the only possible rates for radial bounded solutions.

The existence of such blow-up solutions was formally predicted in [21] and was a
breakthrough formal computation using matched asymptotics. The authors gave a
rigorous proof in an unpublished paper, and later the rigorous proof was done in [38].
These works however strongly used parabolic techniques that were only available
for radial parabolic problems, and which cannot be applied to the nonradial case
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or to other equations. Using techniques developed in the context of energy critical
dispersive equations [45], the author was able to give a more detailed construction
in the non-radial case and to study the geometrical structure of these particular
solutions, highlighting the role played by the stationary state.

Theorem 5.4 ([6]). Let p > pJL and Ω ⊂ Rd be a smooth open bounded domain.
For x0 ∈ Ω let χ(x0) be a smooth cut-off function around x0 with support in Ω. For
all ` ∈ N satisfying 2` > γ − 2

p−1 there exists a solution u of (1.1) blowing up in
finite time T > 0 at a point x′0 ∈ Ω with |x′0 − x0| � 1:

u(t, x) = χx0(x)
1

λ(t)
2
p−1

Q

(
x− x′0
λ(t)

)
+ v, λ(t) = c(u0)(1 + ot→T (1))(T − t)

`

γ− 2
p−1 .

The Sobolev norms below scaling remain bounded

lim sup
t↑T

‖ u(t) ‖Hs(Ω)< +∞ for all 1 ≤ s < sc

and the convergence to Q in rescaled variables is ensured by

lim
t→T

∥∥∥λ(t)
2
p−1 v (t, x0 + λ(t)x)

∥∥∥
Hs(λ(t)−1(Ω−{x0})

= 0 for all sc < s ≤ s+, s+ � 1.

Theorem 5.5 ([5]). Let p > pJL and ` ∈ N with ` > γ − 2
p−1 . Then there exists a

Lipschitz manifold of codimension `− 1 (≥ 2) in a suitable space of regular radially
symmetric initial data (u0, u1) ∈ Hs+ × Hs+−1(Rd) such that the corresponding
solution to (NLW ) blows up in finite time T > 0 with

u(t, x) =
1

λ(t)
2
p−1

(Q+ ε)

(
x

λ(t)

)
, λ(t) = c(u0)(1 + ot↑T (1))(T − t)

`

γ− 2
p−1

with the boundedness of the solution below scaling:

lim sup
t↑T

‖ u(t), ∂tu(t) ‖Ḣs×Ḣs−1< +∞ for all 1 ≤ s < sc

and the convergence to the stationary state in rescaled variables

lim
t↑T
‖ε(t, ·), λ(∂tu)λ(t, ·)‖Ḣs×Ḣs−1 = 0 for all sc < s ≤ s+, s+ � 1.

Note that there are some technical conditions that were omitted in the statement
of the theorems for the sake of simplicity.

6. Dynamics near the radial stationary state in large dimension for
the energy critical (NLH)

The previous section was filled with exemples of solutions concentrating the ra-
dial stationary state. However, no result existed for the energy critical case in large
dimension. Recently, the author, in a joint work with F. Merle and P. Raphaël,
classified the behavior of all solutions of (NLH) starting close to Q in an opti-
mal topology, ruling out the existence of scale instability in a neighborhood of Q.
Nonetheless, it is still an open problem wether or not slow blow-up can happen in
the radial case for large perturbations of Q. Also, all the results mentioned here deal
with only one nonlinear object, Q, but some blow-up phenomena could involve tow-
ers of radial stationary states concentrating at different speeds. This is an amazing
open problem and we refer to [24] for a related result.

Theorem 6.1 ([7]). Take p = pc, d ≥ 7 and Ω = Rd. For any u0 ∈ Ḣ1(Rd) with
‖ u0 −Q ‖Ḣ1� 1, the solution has one the of the following behavior:
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(i) Stability: the solution is global and

∃(λ∞, z∞), u −→̇
H1

1

λ
2
p−1
∞

Q

(
x− z∞
λ∞

)
as t→ +∞.

(ii) Dissipation: the solution is global and

u −→̇
H1

0 as t→ +∞.

(ii) Self-similar ODE blow up: the solution blows up with the self-similar profile
κ:

‖ u(t) ‖L∞∼ κ(T − t)−
1
p−1 as t→ T.

Note that this theorem is optimal in view of Theorem 5.1. It is an interesting
question to know if this result holds true for (NLW ). We now give a sketch of
the proof and fix for the rest of this section d ≥ 11, the analysis becoming more
degenerate as d is close to 7. The first thing to do is to study the linearized dynam-
ics, which was already known [46] (except for the coercivity). Since the potential
is radial, the results below can be shown using ODE techniques, Sturm Liouville
arguments, and calculus of variation for the coercivity.

Proposition 6.2. H := −∆− pQp−1 has the following spectral structure .
(i) One negative eigenvalue −e0 associated to a strictly positive and well-localized

eigenfunction Y.
(ii) Ker(H) = Span(ΛQ, ∂x1Q, ..., ∂xdQ) (the natural invariances).
(iii) Coercivity: if ε ∈ Span(Y,ΛQ, ∂x1Q, ..., ∂xdQ)⊥ then∫

εH iε &‖ ε ‖2
Ḣi , i = 1, 2, 3. (6.1)

Therefore, there is one direction associated to a well-localized linear instability,
and the orthogonal to the manifold of stationary states and to this instability, H
dissipates like the standard Laplacian (6.1). The second step is to decompose any
solution close to Q according to the above spectral structure. The following lemma
is a consequence of the implicit function theorem.

Lemma 6.3. Any u ∈ Ḣ1 satisfying

inf
z∈Rd, λ>0

∥∥∥∥∥u− 1

λ
2
p−1

Q

(
x− z
λ

)∥∥∥∥∥
Ḣ1

� 1,

can be written in a unique way:

u =
1

λ
2
p−1

(Q+ aY + ε)

(
x− z
λ

)
, a ∈ R,

ε ∈ Ḣ1, ε ∈ Span(Y,ΛQ, ∂x1Q, ..., ∂xdQ)⊥. (6.2)

We now have a suitable geometrical decomposition of any solution close to Q. If
u is a solution of (1.1), then under this decomposition it must solve the equation

∂sε+ asY −
xs
λ
.∇(Q+ aY + ε)− λs

λ
Λ(Q+ aY + ε) = −Hε+ e0aY +NL.

Performing computations on this equation with the help of the orthogonality condi-
tion (6.2), one can quantify how each piece of the decomposition interact with the
others. For the parameters such equations are called modulation equations, and for
the part of the solution on the infinite dimensional subspace, we use energy methods
that are adapted at the linear level (6.1).
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Lemma 6.4. There hold the differential bounds

|as − e0a|+
∣∣∣zs
λ

∣∣∣+

∣∣∣∣λsλ
∣∣∣∣ . |a|2+ ‖ ε ‖2

Ḣ2 ,

d

ds

(
‖ ε ‖2

Ḣ1

)
≈ d

ds

(∫
εHε

)
. − ‖ ε ‖2

Ḣ2 +O(|a|4),

d

ds

(
‖ ε ‖2

Ḣ2

)
≈ d

ds

(∫
εH2ε

)
. − ‖ ε ‖2

Ḣ3 +O(|a|4+ ‖ ε ‖4
Ḣ2).

The interpretation of the above estimates is clear: the instable part evolves ac-
cording to a linear unstable dynamics plus nonlinear terms, the stable part dissipates
at the linear level and undergo nonlinear effects, and the scale and the central points
are only affected by nonlinear effects. A striking additional estimate is given by the
dissipation of the energy (2.1)

|E(u)− E(Q)| . inf
z∈Rd, λ>0

∥∥∥∥∥u− 1

λ
2
p−1

Q

(
x− z
λ

)∥∥∥∥∥
2

Ḣ1

,
d

ds
(E(u)) . −a2− ‖ ε ‖2

Ḣ2 ,

which implies the a priori averaged control of the nonlinear term appearing in the
above identities:∫ s1

s0

a2+ ‖ ε ‖2
Ḣ2. sup

s0≤s≤s1
inf

z∈Rd, λ>0

∥∥∥∥∥u− 1

λ
2
p−1

Q

(
x− z
λ

)∥∥∥∥∥
2

Ḣ1

.

We can now enter in the dynamical system approach. First, as there is only one
direction of linear instability, we construct and characterize the instable manifold
that contains all elements staying close to the manifold of stationary states as t→
−∞. The existence and unicity of solutions having such a behavior as t → −∞
follows from a fixed point arguments involving the estimates of the previous lemma.
Their behavior forward in time is studied using comparison principles, parabolic
regularizing effects and convexity for the blow-up. We also use the fact that any
positive blow-up solution is of type I taken from [31].

Theorem 6.5. There exist two strictly positive radial solutions Q+ and Q− defined
on (−∞, t0]× Rd such that:

Q± = Q± ee0tY +O(e2e0t) on (−∞, t0].

Q+ blows up with self-similar blow-up with profile κ forward in time. Q− is global
and dissipates toward 0. Moreover if u is a solution of (1.1) on (−∞, 0] such that:

sup
t≤0

inf
λ>0, z∈Rd

‖ u(t)−Qz,λ ‖Ḣ1� 1

then u = Q± or u = Q up to the symmetries of the flow.

The behaviors associated to Q+ and Q− are moreover stable. The stability of
dissipation is rather easy to show but the stability of the self-similar blow-up with
profile κ is more involved and adapts to the energy critical setting an argument
from [14]. To end the proof of Theorem 6.1, we now show that for any solution
starting close to Q, either the linear instability dominates and make the solution
exit a universal neighborhood of Q close to Q+ or Q−, either it never takes control,
meaning that the solution is located on the stable infinite dimensional subspace
(6.2) and undergoes dissipation toward Q.
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Lemma 6.6. If for all times t ∈ [0, T ),

|a(t)| .‖ ε(t) ‖2
Ḣ2

then u is in a dissipative regime, is global T = +∞ and converges toward a renor-
malized stationary state 1

λ
2
p−1
∞

Q
(
x−z∞
λ

)
. If for some time Tins,

|a(Tins)| ≈‖ ε(Tins) ‖2Ḣ2

then u enters an instable regime, and there exists Texit > Tins such that:

either ‖ u(Texit)−Q+ ‖Ḣ1� 1 or ‖ u(Texit)−Q− ‖Ḣ1� 1.

If a solution enters the instable regime, it will then have the same behavior as
Q+ or Q− since they are stable for the Ḣ1 topology. The proof of the above Lemma
is more technical and we refer to [7] for more details.

Let us end this document by mentioning some fundamental works related to the
above result. First, a similar case where strong scale instability cannot happen was
studied in [20]. There exist some other classification results, [33, 34, 35, 43], for
the generalized KdV equation and for the nonlinear klein gordon equations, but the
scenarios are less precise. Finally, the study of the instable manifold was done in
[13] for the wave equation, relying on the study of minimal elements started in [36]
.
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