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Abstract
We study the dissipation of moving magnets in levitation above a super-
conductor. The rotation motion is analyzed using optical tracking techniques. It
displays a remarkable regularity together with long damping time up to several
hours. The magnetic contribution to the damping is investigated in detail by
comparing 14 distinct magnetic configurations and points towards amplitude-
dependent dissipation mechanisms. The non-linear dynamics of the mechanical
rotation motion is also revealed and described with an effective Duffing model.
The magnetic mechanical damping is consistent with measured hysteretic cycles
M(H) that are discussed within a modified critical state model. The obtained
picture of the coupling of levitating magnets to their environment sheds light on
their potential as ultra-low dissipation mechanical oscillators for high precision
physics.

Keywords: levitation, mechanical oscillator, superconductor, damping, non-
linear, optomechanics

Mechanical oscillators with ultra-low dissipation find applications as frequency standards, as
probes of minute forces (e.g., atomic force microscopy), or in signal processing, where they can
serve as fine radio-frequency filters. At a basic science level, they received attention in the past
for their impact in high precision physics and metrology [1, 2]. More recently, they have
become a central subject for a whole community of physicists aiming at observing the quantum
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behavior of mesoscopic mechanical systems [3, 4]. This quest has seen impressive advances
notably thanks to optomechanical systems [5–7] that use the concepts of coupling light and
mechanical motion, possibly in the regime where the quantumness of the mechanics starts being
tangible [8, 9]. In all these situations, low dissipation of the mechanical degree of freedom is
required to protect it against quantum decoherence or classical fluctuations of its environment.

Sources of dissipation are manyfold, but one ubiquitous amongst mechanical systems is
the anchoring (clamping) loss, which stems from the fact that the system is mechanically
attached to a support. To circumvent this source of loss, one obvious solution is to levitate the
mechanical system. If we disregard optical levitation [10–13], which restricts to nanoscopic
mass objects, diamagnetic effects in superconductors (SCs) are the most established technique
to levitate a macroscopic mass and hence isolate a mechanical oscillator from its support.
Superconducting magnetic levitation has been extensively studied in the context of bearings for
transportations [14], but surprisingly, the applications of these systems in high precision physics
remains relatively scarce [15]. At the microscopic scale, the dissipation and decoherence of
atoms trapped on top of superconducting surfaces has been investigated recently [18–21]. At the
macroscopic scale, magnetic levitation was mentioned in early discussions of quantum effects
in mechanical systems [2], and it has been the topic of recent theoretical works investigating
quantum-control protocols [16, 17]. However, a gap remains between proposals and
experiments when it comes to quantitative prediction of mechanical dissipation in magnetic
levitating bodies. Despite a series of work focusing on the centre of mass motion of magnets
above some superconductors [23], the motional damping of levitating macroscopic objects still
calls for additional documentation, as a complete understanding and parameter-free modeling of
underlying mechanisms is still lacking. There is, for example, no exhaustive picture of which
ultimate level of dissipation such a levitating system could reach in a refined low-amplitude
force sensing experiment or in the quantum regime. This paper is a first step to try to answer
these questions. To that aim, we carry out simple but systematic experiments on one of the most
ubiquitous systems: a magnet levitating over a high critical temperature (Tc) superconductor.

We employ commercial NdFeB sphere magnets (SMs)1 with large coercivity of
∼900 −kA m 1 of diameters varying between 5–26mm and position them one after another over
a high-Tc −Y Ba Cu O x1.65 2 3 7 superconducting cylinder pad2. We use two types of super-
conductors in the experiments. The Tc is 90.5 K, and the critical current jc is in the range of
20–40 −kA cm 2 for both. The two types of superconductor differ in terms of levitation forces
because of a difference in their grain structure. One is a ‘melt-textured unseeded material’
superconductor that traps lesser amount of field and will be referred to as ‘soft anchoring’ pad.
The second is a ‘melt-textured single-grain’ superconductor that can trap a larger amount of
magnetic field and will hence be named ‘hard anchoring’. The soft or hard anchoring nature of
the material is directly appreciable when manually moving the magnet trapped above the
superconductor.

As illustrated in figure 1, the superconducting pad is kept at a low temperature below its Tc
by contacting it with apiezon grease to a large copper cylinder immersed into a liquid nitrogen
bath. In order to increase thermal inertia and stability of the set-up during hour-long
measurements, a polystyrene box of very large liquid capacity is used as the bath and placed on

1 From Supermagnete, spheres with a Ni-Cu-Ni-Cr coating.
2 From ATZ, HTS YBCO elements, melt textured, unseeded material (soft anchoring, pad thickness 4 mm and
diameter 40 mm) and melt textured, single grain (strong anchoring, pad thickness 6 mm and diameter 30 mm).
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a mechanically isolating bench. Air turbulence and convection are kept to a low level during
measurements.

In this work, we focus on the rotation motion of the sphere magnet around its magnetic
axis, because this motion presents a very low dissipation. Indeed, in the case of a perfectly
homogeneous and spherical magnet, the magnetic configuration of the experiment is invariant
upon rotation of the sphere around this axis. As a consequence, strictly no magnetic damping of
the sphere rotation motion should occur. As we will see, even in a real and non-ideal
experimental situation, this argument still holds to some extent, and very long damping times of
hours can be observed for this rotation motion. Note that other types of motion involving
millimeter scale displacements of the magnet centre of mass are systematically observed to
damp rapidly in much less than a minute, and will hence not be considered here.

A video camera is positioned near the magnet to register its motion. The camera optical

axis is superposed to the sphere magnetic axis defined by the magnetic dipole
→
M . In order to

allow systematic data analysis of the motion, a black mark spot is drawn on the magnet, and a
treatment of each video image is performed to increase its contrast. After treatment, a typical
image displays the isolated black mark spot over a white background, where the magnet
spherical boundary is hardly visible (see inset of figure 1). This strong contrast allows for each
image to run an automated search of the mark spot barycenter, leading its radial coordinate
(amplitude and phase) with respect to the centre of the spherical boundary. In a rotation around
→
M , the amplitude remains constant, and the motion is analyzed by registering the phase
evolution upon time. In the following, we use this method to measure both rotation motion
(with increasing phase upon time) and rotation-oscillation motion (with oscillating phase upon
time). The observed motion damping is highly dependent on the orientation of the magnet

dipole
→
M with respect to the rest of the set-up, with a minimum damping consistently observed

when the axis is horizontal to the pad plane. We therefore adopt this orientation for all reported
experiments (figure 1). Second, the damping also depends on the height at which the magnet is
levitating above the superconducting pad. Hence, in our experiments we employ a constant
levitation height defined as being the distance between the upper pad plane and the bottom of

Figure 1. Schematics of the experiment. A spherical magnet (SM) levitates and
experiences a rotational motion over a superconductor (SC) pad thermally connected to

a copper (Cu) cylinder plunged into liquid nitrogen.
→
M is the magnetic dipole moment

of the magnet. Inset shows a typical video image after treatment with the mark spot (in
black) within the rotating magnet boundaries (dashed circle).
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the sphere. To that purpose, every sphere magnet is first deposited at room temperature on an
interstitial Teflon element of fixed height of about 12 mm sitting on the pad. The system is then
cooled in a field cooled process and the interstitial element removed before setting the levitating
magnet in rotation.

Figure 2 shows a typical measurement of the phase upon time after the levitating sphere
magnet has been put in rotation manually. A rotation motion first lasts about 35 min before
reaching a plateau where the phase oscillates upon time, corresponding to a rotation-oscillation
motion, as seen clearly in the lower inset. During the first rotation part, the rotation speed
progressively decreases, and the phase is very accurately described by a time exponential
function typical of a linear damping model. In the second part where rotation-oscillation takes
place, the oscillation amplitude is itself damped in a time exponential manner as seen in the top
right inset of figure 2. This behavior is again reminiscent of the harmonic oscillator model with
linear damping. It is worth noting that the rotation motion of some magnets is observed to last
for more than 8 h, reaching the limit of our ability to measure it reliably. In the following, we
study in details the origin of the observed damping.

First, as our experiments are run under ambient conditions, the surrounding air can be a
source a friction for the rotation motion. However, we do not expect air to produce a restoring
torque, while the existence of such torque is implied by the observation of oscillatory rotation
motion in the experiments. The forces responsible for this torque act at a distance on the spheres

Figure 2. Typical rotation motion of a levitating sphere magnet. Time evolution of the
phase for a sphere magnet of diameter 12.7 mm levitating over a soft anchoring
superconductor. Solid lines are employed for experimental data in order to illustrate
their remarkable regularity, while cross symbols are employed for the exponential fit.
The top-right inset is a first close-up on the rotation-oscillation motion, where the
envelope of the phase trace is apparent. The lower inset is a second close-up focusing on
the time oscillation, where a time period of a few seconds is visible.
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and may be magnetic in nature, contradicting the picture of a rotation invariance of the sphere
around its magnetic axis. The rotation invariance is also questioned by our independent
observation of an inhomogeneous magnetic field as one rotates the magnetic sphere, which we
could reveal in the orientation of iron filings or by using a magnetic foil. We conclude that the
employed magnetic spheres are not perfectly rotation-invariant around their magnetic axes and
that a strictly null magnetic damping of the rotation cannot be expected. In the appendix, we
show a more complete characterization of these magnetic inhomogeneities by a macroscopic
Hall probe.

To study the role of magnetic effects in the damping of the rotation motion, we now vary
both the magnetic configuration of the spheres and their magnetic environment. To that aim, we
vary the diameter of the spheres and employ the two different types of superconductor
introduced above, one with a large trapped magnetic field (hard anchoring) and one with a
lower trapped field (soft anchoring). In each configuration, we systematically measure the
rotation damping during the first part of the motion, where the phase decays exponentially.

Figure 3 reports the measured damping time as a function of the sphere diameter, exploring
14 different configurations in total. The open square symbols correspond to the superconductor

Figure 3. Damping of the rotation motion for different magnetic configurations. The
main plot shows the total damping time as a function of the sphere diameter for the soft
anchoring (squares) and hard anchoring (circles) superconductor. Dashed lines are
guides to the eye. The dashed-dotted line is a calculation of the damping time induced
by air viscosity. The inset shows the intrinsic damping time as a function of the
magnetic field B on the top surface of the superconducting pad (see text for details),
showing the role of magnetic effects in the damping. ΔB is the amplitude (peak to peak)
of the inhomogeneity of the magnetic field applied by the magnetic sphere on the top
surface of the superconductor pad (see appendix).
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with soft anchoring; the circle symbols correspond to the superconductor with hard anchoring.
The dash-dotted line is a theoretical value for the air damping contribution, which is obtained
using the Stokes model for a rotating sphere in a non-turbulent incompressible fluid [23]. In
figure 3 the damping measured for the spheres of small diameter (5 and 6 mm) seem to be
explained by air damping, but as the magnet diameter increases, there is a strong departure from
this contribution. Air damping has a negligible contribution on the spheres of large diameter
like 12.7, 18 and 26 mm. On these spheres, the measured damping time varies when using the
hard or the soft anchoring superconductor, showing that the magnetic properties of the
superconductor play a key role in the rotation dynamics. To reveal even more clearly these
magnetic effects, we plot in the inset of figure 3 the damping time as a function of the sphere
magnetic field on the superconductor pad B and of its inhomogeneity ΔB. To obtain these data,
we measure the magnetic field of the sphere alone (with no superconductor) with a Teslameter
at a distance from the sphere corresponding to the levitation height, on the magnetic equatorial
line where the pad lies in the levitating configuration (see appendix). The theoretical air
damping contribution is removed from the inset data to make the ‘intrinsic damping time’
directly appear. The plot clearly reveals that the ‘intrinsic damping’ increases as the magnetic
field on the pad increases, and tends to be larger for the ‘hard anchoring’ pad as compared to the
‘soft’ (see appendix for a discussion of this trend).

These observations points towards the role of vortices in the damping of rotation motion.
Indeed, the larger the magnetic field applied by the magnet to the superconductor pad, the larger
the amount of vortices accommodated in the pad. The vortices are known to be responsible for
the rigidity of the superconducting levitation configuration, but this rigidity is also accompanied
by a dissipative contribution. In early experiments a magnet was displaced above a
superconductor and a lossy hysteric was observed that revealed energy dissipation as vortices
move in the superconductor [24–26]. In our experiments, because the sphere magnet is not
perfectly symmetrical (see appendix), the rotation motion modulates the stray magnetic field on
the pad with an amplitude ΔB and consequently the vortices configuration in the
superconductor, producing dissipation. Our measurements, notably the inset of figure 3,
confirm that dissipation of the rotation motion grows with ΔB. In the rotation-oscillation case,
where the amplitude of rotation is smaller, the field variation experienced by the superconductor
is also smaller, such that a lesser amount of dissipation is expected. This picture suggests a
mechanical damping that depends on the motion amplitude [22]. There has been a recent strong
interest in such non-linear damping mechanisms in nanoscale mechanical systems, which would
make them depart from the conventional damped harmonic oscillator behavior [28, 29]. In the
following we will not specifically focus on the linear and non-linear aspects of the damping but
will show on a more general foot that strong non-linearities are indeed present in the dynamical
behavior of rotating magnets in levitation above superconductors.

Figure 4(a) shows the phase time evolution of a 19 mm diameter sphere magnet in rotation-
oscillation above a strong anchoring superconductor. The evolution is qualitatively different from
the one shown in figure 2, in that several abrupt changes are now visible in the envelope
evolution. These abrupt changes cannot be explained by a harmonic oscillator model and convey
the picture of an oscillation motion within multiple adjacent potential wells. As the mechanical
energy dissipates upon time, the system progressively restricts its motion to fewer wells until it
resides within a single of these, where the mechanical energy finishes to be dissipated. Figure 4(b)
shows such final evolution in the last well for a 26 mm diameter sphere levitating over the same
superconductor. Even in this case, where a unique well is involved, the phase evolution reveals a
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non-linearity. The envelope amplitude is strongly asymmetric with respect to the zero axis,
implying an anharmonicity in the related trapping potential. Indeed, the harmonic oscillator with
linear damping predicts a symmetrical envelope and a constant angular frequency of the
oscillation upon time. In our experiments, the potential anharmonicity is also witnessed by the
time-evolution of the angular frequency ω t( ), which is reported in figure 4(c) for the damped
motion of figure 4(b). Each value of ω t( ) is obtained by analyzing the oscillation motion over 10
oscillations. The measured angular frequency is not constant but follows an exponential time
evolution. We analyze this behavior by adopting a simple Duffing model with damping:

Θ λΘ ω Θ ω Θ¨ + ˙ + + =t t t B t( ) ( ) ( ) ( ) 0, (1)0
2

0
2 3

with B < 0 as the Duffing coefficient. To deal with this non-linear equation, we propose a
mathematical ansatz inspired by our experimental results. We inject the following expression
for the phase evolution:

Θ λ ω= −⎜ ⎟⎛
⎝

⎞
⎠t A

t
t t( ) exp

2
cos ( ( ) ) (2)

Figure 4. Non-linearities in the rotation of magnets levitating above a superconductor.
(a) The time evolution of the phase of a rotation-oscillation motion, in a case where the
envelope experiences several abrupt changes upon time. (b) The final evolution after the
last abrupt change, displaying an asymmetry of the envelope. (c) The corresponding
time evolution of the instantaneous angular frequency. The open circles are data, and
the dashed line is the fit function predicted by the effective Duffing model (see text for
details).
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in the equation and try to solve for ω t( ). To that aim, we make several simplifications, which
are again justified by our experimental results. These simplifications, valid for any time t of our
experimental analysis, are the following:

λ ω ω ω ω ω≪ ˙ ≪ ¨ ≪ ˙t t t t t t t( ), ( ) ( ), ( ) ( ), (3)

from which we obtain a simplified equation for the time evolution of ω t( ), once the terms in λω
are disregarded with respect to the terms in ω2:

ω
ω

λ ω= + −t
BA t t t

( )
1 exp ( ) cos ( ( ) ), (4)

2

0
2

2 2

At this stage, we now integrate over a period of the cosine, considering that ω t( ) does not
evolve at this time scale. This last step allows to smooth out the rapid time evolution and obtain
the correct slow evolution of ω t( ) in the form of:

ω ω λ= + −
⎛
⎝⎜

⎞
⎠⎟t

BA
t( ) 1

2
exp ( ) . (5)2

0
2

2

This is the form employed now to obtain the fit in figure 4(c), with λ of 0.82min−1

extracted from the envelope evolution measured in figure 4(b), and = −B 1.6 taken as an
adjustable parameter. The agreement with experimental data is very satisfactory, considering
the simplified mathematical solving of our non-linear model. This agreement further confirms
the non-linear dynamics of magnets levitating above superconductors, an aspect that would
need to be considered for high precision experiments.

In this work, we have focused on the rotation motion of millimeter-sized magnetic spheres.
The studied motion has a very large amplitude. During hour-long rotation levitating above a
superconductor, a point on the sphere surface would typically be displaced over at least several
tens of meters of curve coordinate. On the other hand, the smallest amplitude of motion that can
be detected in the present experiments is commensurate with the mark spot size, on the order of
the millimeter. This size scale is still close to the magnetʼs dimensions, a scale at which the
mechanical motion is not expected to be governed by linear couplings. This is put under light in
our experiments, where a non-linear dynamics is revealed in several different aspects of the
rotation motion. We also measured the mechanical damping associated to the dissipative
pinning of vortices in the superconductor, which also lends itself to non-linearities [14, 26].

In the appendix, we show that the standard Bean critical state model does not allow a
proper description of the observed damping and leads to wrong quantitative predictions for our
experiments. The magnetic damping is better discussed within the modified critical state model
of Irie and Yamafuji [26, 27], which also implies non-linear damping. For magnetically
levitating systems above superconductors, the question of the dissipation at very low amplitude,
in such range that the vortices can rest on their pinning centres on a whole cycle, is still open
[30]. As discussed by Campbell [31], the linear response of a superconductor to a low amplitude
field is not correctly described by a critical state model. The implications of this harmonic
regime for the mechanical damping of levitating bodies remains to be investigated. For all these
reasons, there is a clear need for measuring the rotation of levitating sphere magnets in a purely
linear regime, where best performances in terms of a precision oscillator are expected. Such a
regime is currently not accessible to our observation. This situation calls for another level of
sensitivity in our measurements to resolve directly the Brownian mechanical motion of these
levitating systems and reach a situation where mechanical energy originates merely from
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fluctuations. Optomechanical cavity detection techniques are a natural candidate for reaching
this regime and will open a route for the optomechanics of macroscopic levitating objects.
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Appendix A: Sphere magnet inhomogeneity

We have employed a magnetic probe (macroscopic Hall probe) to sense the magnetic stray field
of the sphere magnets. The probe was positioned at a distance to the sphere that equalled the
levitation height of the magnet above the superconducting pad. The orientation of the probe was
chosen in order to evaluate the maximum magnetic field penetrating in the superconductor
during the field-cooled process before levitation. The measurement of the stray field was carried
out when rotating the sphere magnet around its magnetic axis or with the sphere at rest.

The time trace of the measured field, with the sphere rotating, revealed rather regular time
behavior, also apparent in the fast Fourier transform (FFT), where a limited number of
harmonics was observed. Most often one single harmonic, positioned in the 3–5Hz window,
dominated the spectrum. This harmonic corresponded to the rotation frequency, which was also
independently measured with a timer. Figure A1 plots an example of such an FFT spectrum,
acquired for a 26 mm diameter sphere magnet, showing the magnetic field amplitude as a
function of frequency. The blue curve is for the sphere rotating with a frequency of about
0.85Hz; the red curve is for the sphere ‘at rest’ meaning that no rotational motion is visible to
the eye. The fact that one harmonic at the rotation frequency dominates the spectrum indicates
that the heterogeneity of the stray field is at first order of description approximated by a θcos ( )
profile, where θ is the phase of the rotational motion (one field maximum in one rotation period

Figure A1. Fast Fourier transform (FFT) of the measured field B when rotating the
sphere magnet (26 mm diameter) around its magnetic axis with a frequency of about
0.85 Hz (blue curve) and for the sphere ‘at rest’ (red curve).
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in this first order description). The peak-to-peak variation of the magnetic field (as inferred from
the time trace measurement) is of 2.4 mT when the sphere rotates, corresponding to a value of
ΔH H/ of 3.2% (the mean field is ±75.1 0.3 mT). When the sphere is ‘at rest’ the peak-to-peak
variation is 0.3 mT. Such measurements were carried out on spheres of varying diameter, with
an average of 4 measurements per diameter. The results are summarized in the following
table A1 , together with the coercivity of the magnets.

The table shows an average ΔH H/ in the few percents upon one π2 rotation. Regarding the
coercivity of the magnets in table A1, it remains in the Tesla range when expressed in the
dimension of a magnetic field. This value is several orders of magnitude larger than the
maximum stray field that we measured, which itself is an upper bound of the field that could
back-act on the magnet during levitation. Magnetic hysteresis in the sphere magnet can thus be
safely ruled out in our experiments. We have also evaluated the maximum eddy current losses
(for the largest sphere) and checked that they can be neglected in our set of investigations.

Appendix B: Discussion of results within critical state models

Bean critical state model

Within the Bean critical state model [32], losses are produced by the hysteric response of the
system when immersed in an external time-varying magnetic field. A formula can be obtained
for the dissipated power per cycle in some specific geometries and allows discussing qualitative
behaviors and sometimes even quantitative aspects. In this model, the dissipated power scales
with the inverse of jc such that a high jc (sometimes referred to as a hard pinning) would
dissipate less than a small jc (sometimes referred to as a soft pinning). In our experiments, we
employ two types of superconductors: ‘soft anchoring’ and ‘hard anchoring’ with a similar
critical current value jc of 20-40 kA cm−2. The Tc is 90.5 K for both superconductors, specified
by the material provider and checked directly in a measurement of the magnetization as a
function of temperature. The difference between the two superconductors in terms of levitation
forces (one strong and one weak) is due to a different maximal trapped field resulting from a
difference in the grain structure. The first superconductor is a ‘melt-textured, unseeded material’
superconductor (smaller grain size and multi-domain structure) that traps a lesser amount of
field. The second is a ‘melt-textured, single-grain’ superconductor (a mono-domain of larger
size) that can trap a larger amount of magnetic field. A complete discussion of these different
materials and their impact on levitation forces can be found in Jin et al [33]. As shown in this
reference, the area within the hysteresis curve of a single-grain material can be larger than for a
multi-domain material, such that the associated dissipation is also larger. In this sense a ‘hard

Table A1. Peak-to-peak variation (ΔB) of the magnetic field (as inferred from the time
trace measurement) when the sphere rotates. Mean field B and corresponding ΔB/B.
Measurements are carried out on spheres of varying diameter, with an average of 4
measurements per diameter. Coercivity field of the magnets are also reported.

Sphere diameter (mm) ΔB(mT) B(mT) ΔB/B (%) Hc (kA/m)

8 ±0.2 0.1 ±11.8 0.1 ±1.9 0.8 −860 915
12.7 ±0.45 0.03 ±29.6 0.3 ±1.5 0.1 −860 955
26 ±2.4 0.1 ±75.1 0.3 ±3.2 0.3 −860 915
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anchoring’ superconductor can sometimes dissipate more than a ‘soft-anchoring’, showing that
arguments coming solely from the Bean model, if not discussing structural aspects of the
material, do not explain all observed trends.

Still, even if the Bean model does not allow complete understanding, we attempted to
employ it in our case. The Bean formula on dissipated energy E per cycle is based on an
assumption of a time-varying magnetic field parallel to the surface of a semi-infinite
superconductor π μ Δ=E R H j2/3 /2

0
3

c
, considering that the volume in which dissipation takes

place is πR W2 (surface projection of the sphere πR2 and thickness of the pad sample W). We
employed this formula to evaluate dissipation in the data of figures 4(b) and (c) and found the
energy dissipated per hysteretic cycle to be · −4 10 11 J when using jc = 30 kA cm−2, R = 13
mm, and Δ π=B (2.4/2 ) mT for the rotation motion of figure 4(c), where the amplitude of
rotation at time t = 0 is of 1 radian instead of π2 . This value of · −4 10 11 J is evaluated for the
motion of figure 4(c) at time t = 0. Within the Bean model, the area within the hysteretic curve
decreases as the amplitude of field variation decreases. At time t = 4 min, the amplitude of
rotation is of 0.25 radian, leading to a reduction of a factor of 64 of the dissipated power per
cycle to · −6 10 13 J. On average, the Bean model predicts a dissipated power per cycle of about

−10 12 J in the data of figures 4(b) and (c). In our manuscript, we interpreted the data of figure 4
within a Duffing model with linear damping, which proved efficient to describe the observed
non-linearity, the trends in the damping and the evolution of the rotation angular frequency.
Let us now discuss the energy dissipated per cycle within this model. In the data of
figures 4(b) and (c), the energy dissipated in the first cycle ( ≈t 0) amounts to λ ω π× ×/ 20

Stored Energy = λ ω π ω× × = −mR A/ 2 /5 100
2

0
2 2 6 J using the values for A, with λ and ω0

obtained from the fit by equation (4) of the manuscript. Similarly, the energy dissipated in
a cycle at time t = 4min amounts to λ ω π ω= × × = ×t mR t A/ ( 4 min ) 2 /5 ( 4 min ) exp2 2 2

λ− · = · − J( 4 min ) 6 10 8 . On average, we obtain an energy dissipated per cycle of −10 7 J. In
conclusion, the Bean model underestimates the energy dissipated per cycle by about 5 orders
of magnitude for the rotation-oscillation data of figures 4(b) and (c).

In the same line, we estimated whether the damping measured in figure 2 (rotation) could be
compared to expectations from the Bean model. We note here that the measured exponential decay
of the phase cannot be directly obtained from the Bean model that implies a constant dissipated
power per cycle. However, the dissipated power per cycle expected from the Bean model can
still be compared to experimental data, and a dissipation time td can be computed. We obtain

ωμ Δ=t Tj H R3 /d c 0
2 2, considering that all of the kinetic energy T is lost after a time td. We have

ω= × ×T mR1/2 2/5 2
0
2, and we approximate ω ω= 0 to obtain ω μ Δ=t m j H3/5 /d 0 c 0

3. In
figure 2 we have ω = 40

−radian s 1; the sphere is 12.7 mm in diameter with a mass of 8.8 g.
Δ Δ μ=H B/

0
with Δ =B 0.45 mT for that sphere, as indicated in table A1. The numerical

illustration gives =t 1803d min, to be compared to 17min found from the exponential fit of
experimental data in figure 2. Here again for the rotation motion, the standard Bean model
underestimates the damping by several orders of magnitude.

Modified critical state model

To understand the gap between the standard Bean critical state model and our experimental
observations, we carried out additional magnetic hysteretic cycle measurements (M versus H) at 77
K. These measurements employed an MPMS Squid Magnetometer set-up (Magnetic Properties
Measurement System, from Quantum Design company). We measured both the ‘soft anchoring’
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and ‘hard anchoring’ superconducting material in a time-varying external magnetic field. The field
varied around a mean value in the few tens of mT, close to the field amplitude applied on the
superconductor in the levitation experiments. The amplitude of the field variation was tuned from a
few mT, close to its value during levitation, to a few tens of mT. The area comprised within the M
(H) hysteretic curve was extracted from each measurement and converted into energy dissipated
per hysteretic cycle. Figure B1 shows the resulting energy dissipated by cycle, per unit volume, as
a function of the amplitude of the field variation, and for different field mean values, for both
superconductors. The logarithmic plot reveals a scaling of the dissipated power with ΔH with an
exponent of 2.55–2.62 (soft anchoring) and 2.70–2.76 (hard anchoring), when the standard Bean
model predicts an exponent of 3. These measurements indicate that the critical state model must be
modified to account for the magnetic hysteretic behavior of the two superconductors employed in
our levitation experiments.

References [26, 27] propose a formula for the energy dissipated during a hysteretic cycle
per unit volume for a modified version of the critical state model (Irie–Yamafuji model)

γ μ Δ= · − · γ γ− −( )E H j W2/3 (2 ) /
0

4
c

2
, where γ is a free parameter that usually varies in the

literature between 0–1.4. γ = 1 corresponds to the standard Bean model. For the energy
dissipated, the data of figure B1 indicate a scaling value γ as a function of ΔH between
1.23–1.42, with a pre-factor that is let free in the fits.

We now compare the findings of these MPMS data to the levitation experimental data. The
comparison can be done on a sphere magnet of diameter 26 mm in rotation motion, in the same
manner as above. The experiments measuring the rotation phase upon time lead us to evaluate an
energy dissipated per cycle of · −1.3 10 7 J. This value, normalized to the dissipation volume πW R2,
has been reported for comparison in figure B1 by a star symbol, showing a reasonable agreement
with values obtained by MPMS. Figure B1 also shows an energy dissipated by magnetic cycle per
unit volume that is about the same (within a factor of two) for the ‘soft anchoring’ superconductor
and the ‘hard anchoring’. In the levitation experiments, the ‘hard anchoring’ superconductor pad had
a thickness W of 6 mm, against 4 mm for the ‘soft anchoring’ pad. In the modified critical state
model (Irie–Yamafuji model), the volume loss scales inversely with W with a factor γ−2 . Once
multiplied by a loss volume of πW R2, the scaling with W becomes γ − 1, which amounts to about

Figure B1. Energy dissipated by cycle, per unit volume, as a function of the amplitude
of the field variation, and for different field mean values, for both ‘soft anchoring’ and
‘hard anchoring’ superconducting material extracted from magnetic hysteretic cycles
measurements (M versus H) at 77 K in an MPMS Squid Magnetometer set-up.
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0.35 for our superconducting materials. In this case, the difference of thickness in the pads used in the
levitation experiments produces a damping 15% larger for the hard anchoring pad when compared to
the soft anchoring one. In this case, a mere geometric effect produces more damping of rotation
motion when using the ‘hard anchoring’ superconductor, contrary to what would be usually expected
in the Bean model picture.

In conclusion, the Irie–Yamafuji model (modified critical state model) allows a description
of the magnetic behavior of the superconductors employed in our experiments. The hysteretic
losses measured by a squid magnetometer reproduce the order of magnitude of the damping
observed during levitating rotational motion. A complete agreement of the model to our data is
beyond the scope of this work, as it would involve geometrical factors that are difficult to
compute (finite size of the superconductor pad and spherical geometry of the magnet). For
example, the 26 mm diameter sphere is commensurate to the pad diameter (30 mm for the
‘hard’ superconductor and 40 mm for the ‘soft’). Additionally the sphere magnet stray field is
not strictly described by a single spatial component θcos ( ), when our simplified modeling relies
on this assumption. Still, the findings reported in these appendixes strongly point toward
magnetic losses in the levitation being governed by the physics of an Irie–Yamafuji model.
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