Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary

Distance-Based Shape Statistics

Guillaume Charpiat

Odyssée Team - ENS INRIA ENPC

ICASSP - 2006/05/16

joint work with O. Faugeras, R. Keriven, P. Maurel and J.-P. Pons

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary

Shapes and Shape Metrics Set of Shapes Shape Metrics

Variational Shape Warping

Shape Gradient Gradient Descent Scheme Generalized Gradients

Mean and Modes of Variation

Mean Modes: example

Graph Laplacian

Theory Examples

Summary

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
0				

Shapes and Shape Metrics ► Set of Shapes

A shape: a smooth, closed manifold of \mathbb{R}^n .

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			0	

Shapes and Shape Metrics ► Set of Shapes

A shape: a smooth, closed manifold of \mathbb{R}^n .

Shape Metrics

Explicit

$$d_{H}(\Gamma_{1},\Gamma_{2}) = \max \left\{ \sup_{\mathbf{x}\in\Gamma_{1}} d_{\Gamma_{2}}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_{2}} d_{\Gamma_{1}}(\mathbf{x}) \right\}$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
•				

Shapes and Shape Metrics Set of Shapes

A shape: a smooth, closed manifold of \mathbb{R}^n .

Shape Metrics

Explicit - Implicit

$$d_{W^{1,2}}(\Gamma_1,\Gamma_2)^2 = \left\| \tilde{d}_{\Gamma_1} - \tilde{d}_{\Gamma_2} \right\|_{L^2(\Omega,\mathbb{R})}^2 + \left\| \nabla \tilde{d}_{\Gamma_1} - \nabla \tilde{d}_{\Gamma_2} \right\|_{L^2(\Omega,\mathbb{R}^n)}^2$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
•				

Shapes and Shape Metrics Set of Shapes

A shape: a smooth, closed manifold of \mathbb{R}^n .

Shape Metrics

Explicit - Implicit - Path-based

$$\underset{\substack{v, v(0, \cdot) = \Gamma_1 \\ v(1, \cdot) = \Gamma_2}}{\operatorname{arg min}} \int_t \|v(t, \cdot)\|_{L^2(\Omega, \mathbb{R}^n)}^2 dt$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics • •	Variational Shape Warping O O O	Mean and Modes of Variation o o	Graph Laplacian o oo	Summary
Shape Metrics				

► Hausdorff distance: $d_H(\Gamma_1, \Gamma_2) = \max \left\{ \sup_{\mathbf{x} \in \Gamma_1} d_{\Gamma_2}(\mathbf{x}), \sup_{\mathbf{x} \in \Gamma_2} d_{\Gamma_1}(\mathbf{x}) \right\}$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
Shape Metrics				

► Hausdorff distance: $d_{H}(\Gamma_{1},\Gamma_{2}) = \max \left\{ \sup_{\mathbf{x}\in\Gamma_{1}} d_{\Gamma_{2}}(\mathbf{x}), \sup_{\mathbf{x}\in\Gamma_{2}} d_{\Gamma_{1}}(\mathbf{x}) \right\}$

smooth, differentiable approximation

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics ○ ●	Variational Shape Warping	Mean and Modes of Variation O	Graph Laplacian o oo	Summary
Shape Metrics				

► Hausdorff distance: $d_H(\Gamma_1, \Gamma_2) = \max \left\{ \sup_{\mathbf{x} \in \Gamma_1} d_{\Gamma_2}(\mathbf{x}), \sup_{\mathbf{x} \in \Gamma_2} d_{\Gamma_1}(\mathbf{x}) \right\}$

- smooth, differentiable approximation
- build geodesics : minimize $d_H(\Gamma_1, \Gamma_2)$ with respect to Γ_1 .

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	• • •			

Shape Gradient

Variational Shape Warping Shape Gradient

Directional derivative:

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics Variational	Snape warping initian and modes of variat	tion Graph Laplacian Summary

Shape Gradient

Variational Shape Warping Shape Gradient

Directional derivative: $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \lim_{\varepsilon \to 0} \frac{E(\Gamma + \varepsilon \mathbf{v}) - E(\Gamma)}{\varepsilon}$

Gradient: field ∇E , $\forall \mathbf{v} \in F$, $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \langle \nabla E | \mathbf{v} \rangle_{F}$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics Variational	Snape warping initian and modes of variat	tion Graph Laplacian Summary

Shape Gradient

Variational Shape Warping Shape Gradient

Directional derivative: $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \lim_{\varepsilon \to 0} \frac{E(\Gamma + \varepsilon \mathbf{v}) - E(\Gamma)}{\varepsilon}$

Gradient: field ∇E , $\forall \mathbf{v} \in F$, $\mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) = \langle \nabla E | \mathbf{v} \rangle_{F}$

Usual tangent space: $F = L^2$:

$$\langle f | \boldsymbol{g} \rangle_{L^2} = \int_{\Gamma} f(\mathbf{x}) \cdot \boldsymbol{g}(\mathbf{x}) \, d\Gamma(\mathbf{x})$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Construct Descent Colores				

Build minimizing path:

 $\Gamma(0) = \Gamma_1$ $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Cuadiant Descent Scheme				

Build minimizing path:

 $\Gamma(0) = \Gamma_1$ $\partial \Gamma \qquad - \epsilon - \epsilon$

$$\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{L} E(\Gamma)$$

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Cradient Descent Scheme				

Build minimizing path:

 $\Gamma(0) = \Gamma_1$ $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

$$\blacktriangleright -\nabla_{\Gamma}^{F} E(\Gamma) = \operatorname*{arg\,min}_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma} (E(\Gamma), \mathbf{v}) + \frac{1}{2} \|\mathbf{v}\|_{F}^{2} \right\}$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Cuadiant Descent Scheme				

Build minimizing path:

 $\Gamma(0) = \Gamma_1$ $\frac{\partial \Gamma}{\partial t} = -\nabla_{\Gamma}^{F} E(\Gamma)$

$$\blacktriangleright -\nabla_{\Gamma}^{F} E(\Gamma) = \arg\min_{\mathbf{v}} \left\{ \mathcal{G}_{\Gamma}(E(\Gamma), \mathbf{v}) + \frac{1}{2} \|\mathbf{v}\|_{F}^{2} \right\}$$

F as a prior on the minimizing flow

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Generalized Gradients				

 \blacktriangleright L^2 inner product

$$\langle f | g \rangle_{L^2} = \int_{\Gamma} f(x) \cdot g(x) d\Gamma(x)$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Consultand Cuadianta				

- ► L² inner product
- \triangleright H^1 inner product

$\langle f | g \rangle_{H^1} = \langle f | g \rangle_{L^2} + \langle \partial_x f | \partial_x g \rangle_{L^2}$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Consultand Cuadianta				

- L² inner product
- H¹ inner product
- Set S of prefered transformations (rigid motion)
 Projection on S: P
 Projection orthogonal to S: Q (P + Q = Id)

 $\langle f | g \rangle_{S} = \langle P(f) | P(g) \rangle_{L^{2}} + \alpha \langle Q(f) | Q(g) \rangle_{L^{2}}$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
	•			
Consultand Cuadianta				

- L² inner product
- H¹ inner product
- Set S of prefered transformations (rigid motion)
- Example: two different geodesics for the Hausdorff distance

usual

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
		•		
Mean				

Previous framework: to warp a shape onto another one

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
o	o	●	o	
o	o	○	oo	
Mean				

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M ?

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
o	o	●	o	
o	o	○	oo	
Mean				

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M?
- ► center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M, \Gamma_i)^2$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
o	o	●	o	
o	o	○	oo	
Mean				

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M ?
- center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M, \Gamma_i)^2$
- *N* fields $\beta_i = \nabla_{\Gamma_i} (d_H(M, \Gamma_i)^2)$

Shapes and Shape Metrics ^O ^O	Variational Shape Warping O O O	Mean and Modes of Variation ● ○	Graph Laplacian o oo	Summary
Mean				

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \le i \le N}$ of shapes: their mean M ?
- center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M, \Gamma_i)^2$
- *N* fields $\beta_i = \nabla_{\Gamma_i} (d_H(M, \Gamma_i)^2)$
- Covariance matrix $\Lambda_{i,j} = \langle \beta_i | \beta_j \rangle_M$

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
		•		

- Previous framework: to warp a shape onto another one
- Given a set $(\Gamma_i)_{1 \leq i \leq N}$ of shapes: their mean M ?
- ► center of mass: M minimizes $\sum_{i=1,\dots,N} d_H(M, \Gamma_i)^2$
- $\blacktriangleright N \text{ fields } \beta_i = \nabla_{\Gamma_i} \left(d_H(M, \Gamma_i)^2 \right)$
- Covariance matrix $\Lambda_{i,j} = \langle \beta_i | \beta_j \rangle_M$
- PCA on instantaneous deformation fields β_i: diagonalize Λ ⇒ characteristical modes m_k

Guillaume Charpiat Distance-Based Shape Statistics

Mean

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
		•		

Modes: example

Example: set of 2D corpi callosi contours

First characteristic modes of deformation: 1 2 3

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			•	

Graph Laplacian method

When only knowledge of the distance: distance matrix

Odyssée Team - ENS INRIA ENPC

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			•	

Graph Laplacian method

- When only knowledge of the distance: distance matrix
- K nearest neighbors \implies graph

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			•	

Graph Laplacian method

- When only knowledge of the distance: distance matrix
- \blacktriangleright K nearest neighbors \implies graph
- Symmetric weight matrix W

$$W_{i,j} = \delta_{i \sim j} \ e^{-rac{d(\Gamma_i,\Gamma_j)^2}{2\sigma^2}}$$

where

$$\delta_{i\sim j} = \left\{ \begin{array}{ll} 1 & \text{if } i \in \textit{N}^{j} \quad \text{or } j \in \textit{N}^{i} \\ 0 & \text{otherwise} \end{array} \right.$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			•	

Graph Laplacian method

- When only knowledge of the distance: distance matrix
- \blacktriangleright K nearest neighbors \implies graph
- Symmetric weight matrix W

$$W_{i,j} = \delta_{i \sim j} \ e^{-rac{d(\Gamma_i,\Gamma_j)^2}{2\sigma^2}}$$

▶ Approximation of the Laplacian operator: L = W - D

where

$$D_{i,j} = \sum_{i} W_{i,j} \, \delta_{i \sim j}$$

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			•	

Graph Laplacian method

- When only knowledge of the distance: distance matrix
- \blacktriangleright K nearest neighbors \implies graph
- Symmetric weight matrix W

$$W_{i,j} = \delta_{i \sim j} \ e^{-\frac{d(\Gamma_i,\Gamma_j)^2}{2\sigma^2}}$$

- Approximation of the Laplacian operator: L = W D
- Eigenvector F_k of L: associates to each shape a real value

First eigenvectors \implies best coordinate system: $\Gamma_i \mapsto (F_k(\Gamma_i))$.

es and Shape Metrics	Variational Shape Warping O O O	Mean and Modes of Variation o o	Graph Laplacian ○ ●○	Summary
ples				
]	

Map from the graph Laplacian method for a set of rectangles whose length and orientation have been chosen randomly (K = 15).

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary
			00	

Examples

Two first coordinates for a set of 111 fish from different classes. The elements from each family are got together into clusters (K = 25).

Guillaume Charpiat Distance-Based Shape Statistics

Shapes and Shape Metrics	Variational Shape Warping	Mean and Modes of Variation	Graph Laplacian	Summary

Summary

- Some distances on the set of shapes
- Warping through a gradient descent
 Importance of the inner product (priors on minimizing flows)
- Warping ⇒ Mean and characteristic modes of deformation (first and second order statistics)
- Without warping: graph methods coordinate system, maps.

References:

- Approximations of shape metrics and application to shape warping and empirical shape statistics, in Foundations of Computational Mathematics, Feb. 2005.
- Designing spatially coherent minimizing flows for variational problems based on active contours, in ICCV 2005.