
'

&

$

%

Shape Statistics for Image

Segmentation with Prior

Guillaume Charpiat

Olivier Faugeras

Renaud Keriven

Research Report 07-29

January 2007

CERTIS, ENPC,
77455 Marne la Vallee, France,

http://www.enpc.fr/certis/





Shape Statistics for Image

Segmentation with Prior

Statistiques de formes pour la

segmentation d’images avec a priori

Guillaume Charpiat1

Olivier Faugeras2

Renaud Keriven3

1DI, ENS, 45 rue d’Ulm 75005 Paris, France
2ODYSSEE, INRIA, 2004 route des Lucioles B.P. 93, 06902 Sophia-Antipolis Cedex, France
3CERTIS, ENPC, 77455 Marne la Vallee, France, http://www.enpc.fr/certis/





2 Shape Statistics for Image Segmentation with Prior



Abstract

We propose a new approach to compute non-linear, intrinsic shape statistics and

to incorporate them into a shape prior for an image segmentation task. Given a

sample set of contours, we first define their mean shape as the one that realizes

the infimum of the sum of the square of its distance to each of the samples. We

consider here the Hausdorff distance between shapes, or more exactly a diffe-

rentiable approximation of it. The mean shape is then computed with a gradient

descent framework. We perform statistics on the instantaneous deformation fields

that the mean shape should undergo to move towards each sample. The application

of principal component analysis (PCA) to the deformation fields leads to sensible

characteristic modes of deformation that convey the shape variability. Contour

statistics are then turned into a shape prior which is rigid-motion invariant. Image

segmentation results with the shape prior outperform usual segmentations, which

validates the approach.





Résumé

Nous proposons une nouvelle approche pour calculer des statistiques sur les formes

qui soient non-linaires et intrinsques, et pour les intgrer dans un critre d’a priori

sur la forme dans le cadre d’une tche de segmentation d’images. tant donn un

ensemble d’apprentissage de contours, nous dfinissons tout d’abord leur forme

moyenne comme la forme en laquelle l’infimum de la somme des carrs de sa dis-

tance chacun des chantillons est atteint. Nous travaillons ici avec la distance de

Hausdorff, ou plus exactement avec une approximation drivable de celle-ci. La

forme moyenne est alors calcule par descente de gradient. Nous exprimons en-

suite des statistiques sur les champs de dformation instantans que l’on devrait ap-

pliquer la moyenne pour qu’elle se dplace vers chacun des chantillons. En appli-

quant une analyse en composantes principales (ACP) aux champs de dformation,

on obtient des modes de dformation caractristiques particulirement pertinents, ex-

primant ainsi la variabilit de la forme. Ces statistiques sur les contours sont ensuite

transformes en un critre d’a priori de forme qui est invariant par similitude. Les

rsultats de segmentation d’images sont bien meilleurs avec cet a priori que sans.
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1 Introduction

Finding the contour of an object in an image is a very difficult and ill-posed task.

We are here interested in the precise task of finding an object in an image with

the knowledge of a set of examples, i.e. a set of images such that in each of them

the object appears and has already been segmented. Usually, the only information

retrieved from the set of examples comes from statistics on the intensity of the two

regions (the inside of the object and the background), which does not carry any

information about the shape of the object. Consequently, during an active-contour

based evolution in order to segment a new image, the only restriction concerning

shape will be brought by the regularity term which imposes the smoothness of the

contour. We introduce here a way to take into account shape statistics into the

standard active-contour algorithms for segmentation. The framework is presented

in the context of planar curves but can be easily extended to boundary surfaces

of 3D objects. Our approach is also designed to be rigid-motion invariant. In

comparison to already existing techniques, it is mathematically well-posed, it does

not require a dense sample set, it is not expensive computationally and the shape

variability is well conveyed, even for very small datasets.

2 Shape statistics

2.1 Empirical mean

The first task is to define and compute the mean of a set of shapes in a rigid-motion

invariant framework. Shape stands for any smooth contour, independently on its

parameterization. A rigid motion R is a combination of a translation, a rotation

and a scaling centered on the inertial center of the shape. Thus it can be repre-

sented by few real parameters (rotation angle, scaling factor and two translation

parameters). Inspired by the work of Frchet [5], Karcher [6], Kendall [7], and

Pennec [10], we provide the following

Definition 1 Given N shapes (Γ1, · · · , ΓN), and an energy E(·, ·) which expresses

the distance between any two shapes, we define their empirical mean as any shape

Γ̂ that achieves a local minimum of the function µ defined by

µ : Γ 7→
1

N

∑

i=1,··· ,N

inf
Ri

E2
(

Γ, Ri(Γi)
)

where for each shape Γi the infimum is taken over all rigid motions Ri.

To compute the empirical mean of N shapes, we initialize all rigid motions Ri

automatically so that all rigidly-moved shapes Ri(Γi) have the same center of
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mass and average radius. We start from an initial shape Γ(0), and solve the PDEs

∂tΓ(t) = −∇Γ µ
(

Γ, R1(Γ1), · · · , RN(ΓN)
)

(1)

∂tRi = −∇Ri
E2

(

Γ, Ri(Γi))

The derivative ∇Γ µ of the energy µ with respect to the shape Γ is a normal de-

formation field defined on Γ. The two PDEs are solved simultaneously. The evo-

lution of Γ is done in a level-set framework whereas the parameters of the rigid

motions follow a usual gradient descent in R. Note that there may exist several

means if µ has several local minima. In practice however, we have chosen for E
the differentiable approximation of the Hausdorff distance proposed by Charpiat

et al. in [3], in which the expression of its gradient is also given, and the mean

appears to be unique.

2.2 Empirical covariance

Still inspired by [3], we now define something similar to the covariance matrix

of a set of N shapes given their mean Γ̂. Each shape Γi implies thanks to equa-

tion 1 a normal deformation field αi = −∇
Γ̂
E2

(

Γ̂, Ri(Γi)
)

on Γ̂. This field αi

is the best instantaneous deformation that one should apply to Γ̂ to make it closer

to Ri(Γi). These fields α1, α2, ...αN belong to the same space, the tangent space

of the mean curve Γ̂, and they can be seen as functions from the points of Γ̂ to

R. The correlation between any two fields is 〈αi |αj 〉L2 =

∫

Γ̂

αi(x)αj(x) dx.

To express statistics on the deformation fields, we perform principal component

analysis (PCA) on them and obtain new instantaneous deformation fields βk (with

associated standard deviations σk) which form an orthogonal basis of the previ-

ous set of deformations. As shown in the sequel, these characteristic modes of

deformation are very sensible and convey the shape variability of the sample set

of shapes.

3 Shape Priors

We now propose several shape priors based on different ways to introduce a dis-

tance to the shape distribution (Γ1, Γ2, ..., ΓN).

3.1 Context

Let C be the evolving curve which we would like to fit the contour of the object in

the new given image I . We can express any energy minimization as a probability
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maximization, the two approaches being essentially the same. We would like to

maximize the probability P (C|I) with respect to C:

P (C|I) = P (I|C)
P (C)

P (I)
' P (I|C) P (C).

Then P (I|C) is given by the standard approach (based on intensity gradients,

statistics on textures and so on), while P (C) expresses the probability that C has

such shape. In the sequel P (C) will stand for any positive, upper-bounded energy

depending on C, and its total mass will not necessarily be equal to one.

3.2 Shape Probability

3.2.1 A simplistic method

Given a distance or energy E between shapes, a new distance between C and the

whole shape distribution D = (Γi) could be defined as
∑

i E
2(C, Γi), or better,

as:
∑

i

inf
Ri

E2
(

C, Ri(Γi)
)

But the global minimum of this energy has already been studied and it is the

mean shape Γ̂, so that this energy is not really more interesting than E(C, Γ̂). In

particular the shape variations in D are not taken into account.

Cremers et al. [4] have applied the Parzen method to D and consider the

shape probability
∑

i

exp

(

−
E2(C, Γi)

2σ2

)

but it suffers from highly dense sample

requirements.

3.2.2 Gaussian Eigenmodes (PCA on gradients)

It is also possible to include second order statistics from section 2.2 into the de-

sign of the shape probability. The most significant modes βk are the ones with

highest associated standard deviation σk; therefore you could take only the very

first modes into account. However the issue to determine the number of modes

of interest is not fundamental since the importance of each mode will be related

to its standard deviation and consequently the consideration of some extra modes

with low standard deviation will not change significantly the distribution.

The PCA decomposition supposes implicitly that linear combinations of in-

stantaneous deformation fields αi make sense (which is precisely the expectation

of such an approach) and that their distribution is Gaussian, that is to say, that for

any mode βk, the distribution of the k-th principal component 〈βk |αi 〉L2 of the
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observed fields αi is Gaussian, which implies that the shape probability should be

of the form

P (C) = P (α) =
∏

k

e
−
〈βk|α 〉2

L2

2σ2
k × e

−
‖Rem.(α)‖22

2σ2
noise

where α = −∇
Γ̂
E2

(

Γ̂, R(C)
)

with R being the best rigid motion that minimizes

E2
(

Γ̂, R(C)
)

and where Rem.(α) stands for the remaining part α−
∑

k 〈α |βk 〉L2

that cannot be described by the eigenmodes. The parameter σnoise stands for a

standard deviation associated to this noise and can be chosen for instance equal

to 0.01 times the lowest eigenvalue (σk). Note that the corresponding distance

between a shape and the shape distribution is:

√

∑

k

1

σ2

k

〈α |βk 〉
2 +

1

σ2

noise

‖Rem.(α)‖2

2
.

From a certain point of view, the level sets of this distance are ellipsoidal. This

distance is a variation on the Mahalanobis distance.

3.2.3 Eigenmode Histograms

However the distribution is generally not Gaussian. Then the modes can be com-

puted with ICA (independent component analysis) instead of PCA, and for each

mode k the histogram hk of the observed components 〈βk |αi 〉 can be drawn. The

histograms may need some smoothing if the density of the distribution is low.

Then the empirical probability is given by:

P (C) = P (α) =
∏

k

hk(〈βk |α〉).

3.3 Pre-Computing

Except for the first prior, α appears in the expression of the probability to max-

imize, which implies that the derivative of α with respect to C will have to be

computed:

∇C α = −∇C∇Γ̂
E2

(

Γ̂, R(C)
)

Hence we need to compute the second order cross-derivative of E. In the case of

the approximation of the Hausdorff distance, the computation was heroic but we

were able to complete it; the resulting formula is too complicated to be reproduced

here. It is available in the supplementary material.

The calculations happen to be sometimes much simpler if the energy is based

not on a shape but on its signed distance function as in [11], that is to say if you
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consider that the real object of interest is now a function defined on the whole

space R
n and not only its zero level, regardless of whether it is a distance function

or not. The framework would then be similar to the one of Leventon et al.[8]

which consists in the application of PCA to signed distance functions. However

such an approach is questionable since a linear combination of signed distance

functions is generally not a signed distance function and has sometimes a really

unexpected zero level. That is why we keep on considering the Hausdorff distance

approximation between shapes.

4 Toy Example

Starting with a toy example to show the strength of this approach, a small set of

four similar rectangles with two kinds of outgrowths is considered (figure 1). For

this particular example, there was no optimization concerning rigid motion. With

the Gaussian eigenmode prior, the segmentation of a new rectangle that combines

the two outgrowths as well as a third new one leads to a shape which can be

described as a new combination of the two already observed outgrowths, ignoring

the third one.

One interesting point of this method is that one does not need to choose the

number of relevant eigenmodes since the importance of each of them is naturally

described by its associated standard deviation. In order to show the interest of

these characteristic modes of deformation, the standard deviation associated to

the noise has been chosen to be equal to 5.10−3 times the standard deviation asso-

ciated to the highest eigenmode, that is to say that a “noisy” deformation field with

null component on each mode will cost 200 times more than a field of same norm

but collinear to the first mode. In order to be coherent, if there exist eigenmodes

with eigenvalues smaller than the one associated to the noise, then they have to be

forgotten and considered as noise. In the case of figure 1, the first two eigenmodes

were found to have nearly the same eigenvalue and the two others were about a

hundred times smaller, and indeed the segmentations with all modes or only the

first two modes were the same.

Independently on the value of the weight of the shape prior providing this

one is high enough, the qualitative behavior of the shape prior on the evolution

is to “project” the evolving shape onto a linear combination of the eigenmodes,

in the sense that the gradient of E from the mean Γ̂ to the evolving shape C will

progressively reduce its components on eigenmodes (and remaining noisy part)

according to their standard deviation. As the distribution is here supposed to be

Gaussian, any increasing of the weight of the shape prior will make the result a

little nearer to the mean shape. However in the case of component histograms as

proposed in section 3.2 this phenomenon would not appear since the shape with
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Figure 1: Top row: the four shapes that compose the sample set. Middle, left:

the mean of these shapes (in blue), with the two first eigenmodes (in purple),

successively. Middle, right: the new image to be segmented, built approximately

as a new combination of the previously observed deformations added to a new

non-observed deformation. Bottom: segmentation with the only knowledge of the

mean, eigenmodes and eigenvalues, under the Gaussian distribution assumption

which is obviously not satisfied (left: initialization; middle: some steps of the

evolution; right: result at convergence).

highest a priori probability is not the mean anymore.

5 Rigid Registration

A set of 12 images of starfish2 (see figure 2) has been segmented by hand. This

could be automatized in the general case if the examples of the sample set are

chosen so that they are easy images to segment with usual algorithms. The mean

curve Γ̂ of the set of starfish has been computed with the rigid-motion invariant

framework proposed in section 2. The mean and its first eigenmodes are displayed

2found via Google Images
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on figure 3 with amplitude proportional to their eigenvalue.

Figure 2: Some examples from the learning set of starfish.

We first consider the rigid shape prior E2
(

Γ̂, R(C)
)

in a new image segmenta-

tion task, where C is the current evolving shape and R a rigid motion. The shape

C and the parameters of R are estimated simultaneously within a framework sim-

ilar to the previous one.

There exist many approaches to image segmentation in the computer vision

literature, for instance geodesic active contours [2] or region histograms [1, 9].

We have chosen here a region intensity histogram criterion. More precisely, as an

image has “naturally” 256 grey levels, the intensity histograms of the inside hI

and outside hO of the contour C are real-valued functions of an integer which can

have 256 possible values. They associate to any grey level the number of such

colored pixels in the corresponding region. The two histograms are supposed to

be relatively homogeneous and as much different one from the other as possible.

The segmentation criterion to minimize is a weighted sum of the length |C| of the

contour C plus the correlation between a slightly smoothed version of the intensity

probability distributions of the two regions pI = hI/|I| and pO = hO/|O| (where

|I| is the area of the region I):

1

256

∑

a∈J0,255K

(Gσ ? pI) (a) (Gσ ? pO) (a) + |C|

where Gσ? is the Gaussian smoothing with parameter σ.

The result of the combination of this criterion with the rigid shape prior is

shown on figure 4: the location of the starfish is found, but of course the shape

variability of the sample set has not been taken into account. Consequently, either

the result of the segmentation is exactly the mean without any non-rigid defor-

mation (if the weight of the shape prior is huge), or it is the mean plus any small

deformation (without any priors on this deformation). This algorithm is simplistic

since the prior is a fixed shape (up to rigid motion), but it helps finding a not-too-

varying object as well as an occluded object (see figure 5 for comparison).
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Figure 3: The mean of the set of starfish with its first six eigenmodes.

6 Gaussian Eigenmodes Examples

The results of the segmentation of the original image for different shape priors

are shown in figure 6. On the top row are shown typical results for the previous

segmentation criterion without any shape prior, for two different initializations.

As the region based criterion has many local minima, the segmentation result de-

pends strongly on the initialization. Not that the small white balls around the
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Figure 4: Top left: any reasonable initialization for the region intensity histogram

criterion. A part of the image has been erased in order to increase the difficulty.

Top middle: automatic change for the mean at the same location with similar size.

Rest: some steps of the segmentation process with knowledge of the mean shape.

This rigid criterion finds the location of starfish but lacks information about how

to adapt the final shape. Indeed for a smaller weight of the prior, the result will

include the small white balls connected to the starfish, as in figure 5.

starfish are difficult to distinguish from the starfish, and the shaded regions of the

starfish have colors similar to the background. Then, on the middle row (left hand-

side) is shown the result obtained with a rigid registration of the mean shape (as

in figure 4). This result is much more “stable” in the sense that it can be obtained

from any reasonable initialization. The reason for this is that the minimization is

processed with respect to only few parameters (translation, orientation, scaling)

instead of a whole shape (which is infinite-dimensioned). Therefore in practice

the space to be explored in order to find the solution is much smaller in the case of

rigid registration. In order to allow some deformations around the registered mean

shape, we start from the result of the rigid registration, and minimize the sum of

the square of the distance to the mean shape and of the region histogram criterion.

This minimization is computed with respect to both the evolving shape and the

location parameters of the mean. For high values of the weight of the shape prior,

the result is of course close to the one obtained by only rigid registration. For low
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Figure 5: Top left: same initialization as before. Rest: some steps of segmentation

process without any shape prior, for the same region criterion. The result lacks

the global shape of the starfish and include the small white balls.

values, the result is close to the one obtained without shape prior, that is to say

to one similar to the ones on the top row. A typical example is shown (middle

row, right handside) for a middle value of the weight: as there is no prior on the

deformations applied to the mean shape, the algorithm leads to outgrowths that

are non-sensible for a starfish. For instance it includes the white balls within the

starfish and let a deformation grow far inside the starfish in order to get rid of the

shadow regions.

Finally, still starting from the result of the rigid registration, we minimize the

sum of the Gaussian eigenmode shape prior and of the region histogram criterion.

The evolving shape C is shown in red and the estimated mean shape location

R−1(Γ̂) in blue. The deformations that are required for the inclusion of the white

balls within the starfish have a heavy cost for the shape prior since they are not

characteristic deformations of the mean shape. Consequently the algorithm finds

globally the shape of the starfish, except a part of its shadowed regions which the

region intensity criterion considers as included into the background (see top row).

Note however that the deformations due to the shadow have been described as

best as possible as resulting from a combination of eigenmodes. Therefore they

have been reduced to a reasonable deformation that a starfish can undergo, and
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Figure 6: Segmentation results for different priors. See text for details. Top

row: two examples of results obtained without any shape prior, for two different

initializations. Middle row, left: result of rigid registration. Middle row, right:

result of the segmentation (in red) with the (non-rigid) mean shape prior (whose

estimated location is also shown, in blue). Bottom: result (in red) for the Gaussian

eigenmode prior (with estimated location of the mean in blue).
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they look far better than the observed ones in the other segmentation results.

Another example with a database of 14 boletus contours is shown. The mean

and eigenmodes are shown on figure 7 and a segmentation task is performed on

figure 8. The segmentation criterion is the similar to the previous one except that

colors are considered instead of grey levels. Thus the color histogram is three

dimensioned. The segmentation process of a new image with this criterion is

displayed on the first row of figure 8. With the same initialization but with also

the rigid shape prior we obtain the evolution shown in the second row. Then

the Gaussian eigenmode shape prior is used and leads to the final segmentation

(bottom, right). The difference between the results is striking.

Figure 7: First image: automatic rigid alignment of the samples when computing

the mean (thanks to the optimization with respect to the Ri). Then: mean of the

set of mushrooms with its five first eigenmodes.

For all presented examples, the added computational cost due to the shape

prior is reasonable. In these experiments, the total time cost with the prior was

found to be about three to four times the total time cost without prior. Most of

the time cost is due to the computation of a double integration needed by the

approximation of the Hausdorff distance and could be reduced by optimizations.
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Figure 8: Top left: any reasonable initialization. Left row: without shape prior.

Right row: rigid prior. Bottom right: with Gaussian eigenmodes. See text for

details.
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7 Conclusion

We have shown that it is feasible to define mathematically shape statistics that are

relevant even on very small datasets and to turn them into a rigid-motion invariant

shape prior for image segmentation at a reasonable computational cost. We have

also shown that in practice, usual segmentation results are outperformed by the

additional use of this shape prior.
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