Master de Psychologie PSY73B : Informatique : traitement des données - TD N°2 Analyse de variance - analyse de covariance

8. Analyse de variance à un facteur de variation. Plan S<A>.

Des groupes indépendants de sujets ont été soumis aux différents niveaux d'un facteur A. On souhaite tester l'effet des différents niveaux du facteur A sur le comportement des sujets, évalué à l'aide d'une variable dépendante X. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Résidu aléatoire. La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de variation	Somme des Carrés	ddl	Carrés Moyens	F	р
Facteur A	SC_A	a – 1	CM_A	$F_{Obs} = \frac{CM_A}{CM_{S(A)}}$	
Résidu S(A)	$SC_{S(A)}$	N-a	$CM_{S(A)}$		
Total	SC_T	N-1			

La statistique F suit une loi de Fisher Snedecor à (a-1) et (N-a) degrés de liberté.

8.1. Première méthode

On reprend l'énoncé "Bransfor" :

On demande à des sujets d'écouter un texte dans quatre conditions expérimentales différentes :

Le but visé par Bransford et al. est de montrer l'importance du contexte dans la compréhension et la mémorisation d'un texte. Pour ce faire, ils utilisent quatre groupes expérimentaux:

- Un groupe "sans contexte" entend simplement le texte.

- Le groupe "avec contexte avant" regarde une figure suggérant un contexte approprié pendant qu'il entend le texte.

- Le groupe "avec contexte après" entend le texte puis regarde la figure précédente.

- Le groupe "avec contexte partiel" regarde une figure suggérant un contexte inapproprié pendant qu'il entend le texte.

A proprement parler cette étude comprend un groupe expérimental (le groupe 2: contexte pendant) et trois groupes contrôles (les groupes 1, 3 et 4). Les groupes contrôles doivent permettre d'éliminer des explications concurrentes (en particulier, effet facilitateur sur la mémoire de l'imagerie, de l'aspect concret du matériel, etc.). L'expérimentateur s'attend, donc, à observer une performance pour le groupe 2 supérieure aux trois autres groupes.

Il choisit de mesurer le comportement des sujets par la variable dépendante "nombre d'idées correctement rappelées".

GR1	GR2	GR3	GR4
3	5	2	5
3	9	4	4
2	8	5	3
4	4	4	5
3	9	1	4

Définissez un nouveau classeur Statistica et insérez une nouvelle feuille de données dans ce classeur. Saisissez les données selon un plan d'expérience S<A> (c'est-à-dire, définissez une variable "Groupe" et une variable "Variable dépendante" ou "VD"). Enregistrez ensuite le classeur sous le nom Bransfor.stw.

Utilisez ensuite le menu <u>Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur</u>. Sélectionnez l'onglet "Tables individuelles" et indiquez les variables utilisées par l'analyse :

🖾 Statistiques par Groupe (Décomposition) : Bransfor.sta	? _ 🔀
Tables individuelles	E OK
Variables dépendantes: VD de classement: Groupe	Annuler
B Codes des variables de classement : Sélectionné	

Sélectionnez l'onglet "Base" ou l'onglet "ANOVA et Tests" et cliquez sur le bouton "Analyse de variance". On obtient le résultat suivant :

	Analyse de la Variance (Bransfor.sta) Effets significatifs marqués à p < ,05000							
	SC	dl	MC	SC	dl	MC	F	р
Variable	Effet	Effet	Effet	Erreur	Erreur	Erreur		
VD	50,95	3	16,98	37,60	16	2,35	7,23	0,002782

Tous les éléments du tableau d'analyse de variance sont présents, mais la disposition n'est pas celle qui est traditionnellement utilisée.

On peut aussi illustrer la situation à l'aide d'un graphique. Par exemple, sous l'onglet "Stats Descriptives", on pourra utiliser le bouton "Boîtes à moustaches catégorisées" et l'item "Moyenne/Erreur-Type/1.96*Erreur-Type" :

On obtient ainsi le graphique suivant :

8.2. Deuxième méthode

On utilise toujours le classeur Bransford.stw.

Utilisez le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et "Spécifications rapides".

Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica), cliquez ensuite sur le bouton OK, puis le bouton "Tous les effets". Vous devriez obtenir le résultat suivant :

	Tests Univariés de Significativité pour VD (Bransfor.sta) Paramétrisation sigma-restreinte Décomposition efficace de l'hypothèse					
Effet	SC	Degr. de Liberté	MC	F	р	
ord. origine	378,4500	1	378,4500	161,0426	0,000000	
Groupe	50,9500	3	16,9833	7,2270	0,002782	
Erreur	37,6000	16	2,3500			

Lecture du résultat :

On reconnaît les colonnes "somme de carrés", "carrés moyens", "degrés de liberté" et F. Cependant, la présentation du résultat diffère de celle adoptée en cours (et utilisée par la plupart des autres logiciels). Dans la première ligne du tableau, la somme des carrés est égale à :

(moyenne générale)² x nombre d'observations

Le test de cette première ligne correspond à l'hypothèse nulle : $\mu = 0$, où μ désigne la moyenne de la VD, avant prise en compte de l'effet du facteur "Groupe".

Les deux lignes suivantes correspondent aux lignes "Inter-groupes" et "Intra-groupes" du tableau d'ANOVA classique. Enfin, Statistica n'affiche pas de ligne de synthèse. Il nous appartient donc de la reconstituer pour obtenir le tableau habituel :

Sources de	Somme des	ddl	Carrés Moyens	F	р
variation	Carrés				-
Inter-groupes	50,9500	3	16,9833	7,2270	0,278%
Intra-groupes	37,6000	16	2,3500		
Total	88,5500	19			

Indication du résultat dans une publication

Dans un article ou un rapport, le résultat pourra par exemple être indiqué sous la forme : "nous avons observé un effet significatif du contexte sur le rappel (F(3,16)=7,23, p<.03)."

8.3. Troisième méthode

Tous les traitements d'analyse de variance que nous nous proposons d'étudier sont également disponibles dans le module <u>Modèles linéaires / non linéaires avancés - Modèle linéaire général</u>. Bien que l'interface soit un peu plus complexe, il peut être intéressant d'utiliser le même item de menu pour tous les traitements d'ANOVA que nous nous proposons d'étudier.

On utilise toujours le classeur Bransford.stw.

Utilisez le menu <u>Statistiques - Modèles linéaires / non linéaires avancés</u>, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>".

Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica):

Sélectionnez les variables dénendantes, prédicteurs catégoriels et co 😨 🕄	🛗 GLM Modèles linéaires généraux : Données Bransford	dans Brans ? 💶 🔀
1-Groupe 1-Groupe 0K 2VD 2VD 0K	Base Options	⊡ OK Annuler ▶ Options
DétailZoomDétailZoomDétailZoom Variables dépendantes : Prédicteurs catégoriels : Prédicteurs continus : [2]	Prédicteurs continus : ~- Groupe	😰 Editeur de synta <u>x</u> e

Cliquez ensuite sur le bouton OK, puis le bouton "Tous les effets". On obtient ainsi le résultat sous une forme identique à celle obtenue avec la méthode 2.

8.4. Conditions d'application de l'ANOVA à un facteur

Comme le test de Student, l'ANOVA à un facteur suppose :

- la normalité des distributions parentes pour la variable dépendante dans chacun des niveaux du facteur A ;
- l'homogénéité des variances des distributions parentes.

La normalité des distributions parentes peut être vérifiée à l'aide du menu Graphiques - Graphiques catégorisés - Graphiques de normalité en cochant l'option "Test de Shapiro-Wilk" dans l'onglet "Avancé". Pour les données "Bransford", il est légitime de supposer la normalité des distributions parentes.

La vérification de l'homogénéité des variances peut être faite dans chacun des dialogues correspondant aux trois méthodes envisagées.

Lorsque vous utilisez le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur, activez l'onglet "ANOVA et Tests", puis cliquez sur le bouton "Test de Levene" ou le bouton "Test de Brown et Forsythe".

On voit que le test de Levene indique plutôt des variances hétérogènes, alors que celui de Brown et Forsythe produit un résultat satisfaisant :

	Test de Levene d'Homogénéité des Variances Effets significatifs marqués à p < ,05000							
	SC	dl	MC	SC	dl	MC	F	р
Variable	Effet	Effet	Effet	Erreur	Erreur	Erreur		
VD	7,896000	3	2,632000	5,504000	16	0,344000	7,651163	0,002154

	Test d'Homogénéité des Variances de Brown-Forsythe Effets significatifs marqués à p < ,05000								
	SC	dl	MC	SC	dl	MC	F	р	
Variable	Effet	Effet	Effet	Erreur	Erreur	Erreur			
VD	6,000000	3	2,000000	20,00000	16	1,250000	1,600000	0,228647	

Avec la deuxième méthode (Statistiques - ANOVA - ANOVA à un facteur), on peut, à partir de la fenêtre de dialogue "Résultats", cliquer sur le bouton "Autres résultats" puis activer l'onglet "Hypothèses" et en fin cliquer sur l'un des boutons "C de Cochran, Hartley, Bartlett" ou "Test de Levene" :

🗱 ANOVA - Résultats 1: Données Bransford dans Bransford-corre	ectio ? 💶 🕄
Profil Tests personnalisés Résidus 1 Résidus 2 Matrice Rapport Synthèse Moyennes Comp. planifiées Post-hoc (Hypothèses)	± Moins
₩ VD	A Modifier
Effet : Groupe	► Options ▼
Homogénéité des variances/covariances	
(IIII C de <u>C</u> ochran, Hartley, Bartlett)	
Test de Levene (ANOVA)	
Distrib. des variables par groupe Distribution des résidus intra-cellules	
All Histogrammes All Histogrammes	
Droite Henry Ecarts norm. Droite Henry Ecarts norm.	
Tracé des moy <u>e</u> nnes en fonction des écarts-types Variances	

La procédure est identique pour la troisième méthode (modèle linéaire général).

8.5. Tests post hoc après une ANOVA à un facteur

L'ANOVA précédente permet de conclure qu'il existe au moins une différence significative entre les moyennes des 4 groupes, mais n'indique pas quelles sont les paires de groupes pour lesquelles ces différences de moyennes sont significatives. Différents tests, appelés *tests post hoc*, ont été proposés pour étudier cette question.

8.5.1 Le test LSD de Fisher

LSD : least significant difference

Le test LSD pour une ANOVA réalisée à partir du menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur

On reprend le menu <u>Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur</u>. en indiquant comme précédemment VD comme variable dépendante et Groupe comme variable classement. Utilisez l'onglet ANOVA (tables individuelles) puis l'onglet "Tests post-hoc".

🔏 Statistiques par Groupe - Résultats : Données Bransford dans Bra	nsfor ? 💶 🔀
DEPEND. :1 variable: VD	
CLASSEM.: 1-Groupe (4): GR1 GR2 GR3 GR4	
	<u>4</u> 8_ *
Base Stats descriptives ANDVA & tests (Tests post-hoc)	Synthèse
<u>⊠⊇ ⊻</u> ariables VD	Annuler
Test LSD ou comparaisons planifiées	🔉 Options 🗸
Test de Scheffé	
Test de <u>N</u> ewman-Keuls & étendues critiques étendues critiques :	
Etendues multiples & étendues critiques de <u>D</u> uncan	
Test HSD (Honest Significant Difference) de <u>I</u> ukey Pour d'autres tests post-hoc (Dunnett,	
Test HSD de Tukey pour N différents (Spjotvoll/Stoline) Bonferroni, modèles complexes) voir aussi le	
Niveau p pour la surbrillance : .05	
	J

Le bouton "Test LSD ou comparaisons planifiées" produit le résultat suivant :

		Test LSD ; Variable VD (Données Bransford) Différences significatives marquées à p < ,050					
		{1}	{2}	{3}	{4}		
Groupe		M=3,0000	M=7,0000	M=3,2000	M=4,2000		
GR1	{1}		0,000793	0,839171	0,233681		
GR2	{2}	0,000793		0,001223	0,010705		
GR3	{3}	0,839171	0,001223		0,317683		
GR4	{4}	0,233681	0,010705	0,317683			

Statistica a effectué le test pour chacune des paires de groupes et nous indique le niveau de significativité obtenu dans chaque cas. On voit que, selon ce test, la moyenne observée dans le groupe 2 est significativement différente de celles observées dans chacun des autres groupes, et qu'il s'agit là des seules différences significatives au seuil de 5%.

Publication du résultat

Dans une publication, ce résultat, ainsi que celui de l'ANOVA, pourront être résumés dans un tableau tel que:

Contexte	C1,	C2,	C3,	C4,	F	Comp. par
	M (ET)	M (ET)	M (ET)	M (ET)		paires
Rappel	3.00 (0.71)	7.00 (2.35)	3.20 (1.64)	4.2 (0.83)	7.23**	C2>C1,C3,C4

Le test LSD pour une ANOVA réalisée à partir du menu Statistiques - ANOVA

Utilisez le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et "Spécifications rapides".

Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica), cliquez sur le bouton OK puis sur le bouton "Autres résultats". Activez ensuite l'onglet "Post-hoc" :

Le bouton "LSD de Fisher" conduit au résultat suivant, qui s'interprète de la même façon que dans le cas précédent :

	Test LSD ; variable VD (Données Bransford) Probabilités des Tests Post Hoc Erreur : MC Inter = 2,3500, dl = 16,000						
	Groupe {1} {2} {3} {4}						
Cellule N°	3,0000 7,0000 3,2000 4,2000						
1	GR1		0,000793	0,839171	0,233681		
2	GR2	0,000793		0,001223	0,010705		
3	GR3 0,839171 0,001223 0,31768						
4	GR4	0,233681	0,010705	0,317683			

Les manipulations et le résultat sont identiques lorsqu'on utilise le module "Modèles linéaires/non linéaires avancés".

On sait que le test LSD de Fisher est peu conservateur (risque important de commettre une erreur de type I, c'est-à-dire de conclure sur une différence entre deux groupes, alors que cette différence n'existe pas réellement). On peut donc conclure à l'absence de différences significatives entre les groupes 1, 3 et 4, mais il est préférable de réaliser un autre test pour comparer le groupe 2 aux autres groupes.

8.5.2 Le test de Bonferroni-Dunn

Ce test n'est pas proposé dans le menu <u>Statistiques - Statistiques élémentaires - Décompositions et ANOVA</u> à un facteur. En revanche, on peut utiliser le menu <u>Statistiques - ANOVA</u>, puis "<u>ANOVA à un facteur</u>" et "<u>Spécifications rapides</u>", ou le module "Modèles linéaires/non linéaires avancés" comme précédemment. Il suffit de cliquer sur le bouton "Bonferroni" de l'onglet "Post-hoc" On obtient comme résultat :

	Test de l Probabili Erreur : l	Test de Bonferroni ; variable VD (Données Bransfor Probabilités des Tests Post Hoc Erreur : MC Inter = 2,3500, dl = 16,000						
	Groupe	Groupe {1} {2} {3} {4}						
Cellule N°		3,0000	7,0000	3,2000	4,2000			
1	GR1		0,004756	1,000000	1,000000			
2	GR2	0,004756		0,007337	0,064228			
3	GR3	1,000000	0,007337		1,000000			
4	GR4	1,000000	0,064228	1,000000				

On remarque que les niveaux de significativité indiqués sont ceux du test LSD de Fisher, multipliés par 6, c'est-à-dire par le nombre de paires de groupes, avec le maximum à 1. Du point de vue de ce test, la différence des moyennes des groupes 2 et 4 n'est plus significative au seuil de 5%.

Le test de Bonferroni-Dunn est conservateur mais peu puissant (le risque de ne pas mettre en évidence une différence qui existe est élevé). On conclut donc à des différences significatives entre le groupe 2 d'une part et les groupes 1 et 3 d'autre part. Pour la comparaison du groupe 2 au groupe 4, on peut départager les deux tests précédents à l'aide d'un test HSD de Tukey.

8.5.3 Le test HSD de Tukey

HSD : honestly significant difference

Les deux menus étudiés précédemment proposent ce test, avec des résultats identiques. On obtient alors :

Test HSD Tukey ; Variable VD (Donné						ansfo
	Différences significatives marquées à p < ,05					
		{1}	{2}	{3}	{4}	
Groupe		M=3,0000	M=7,0000	M=3,2000	M=4,2000	
GR1	{1}		0,004080	0,996826	0,613199	
GR2	{2}	0,004080		0,006149	0,047567	
GR3	{3}	0,996826	0,006149		0,734054	
GR4	{4}	0,613199	0,047567	0,734054		

Pour ce test, les moyennes des groupes 2 et 4 apparaissent significativement différentes au seuil de 5%. La différence entre ces deux groupes semble donc se confirmer.

Remarques.

1) Pour quelques éléments plus théoriques sur le test de Tukey, voir le paragraphe 12.2.

2) Le test de Tukey proprement dit s'applique à des groupes équilibrés. Pour des groupes déséquilibrés, pensez à utiliser les boutons "Test HSD de Tukey pour N différents" ou "HSD N différents".

8.6. Le test du Dunnett

Le test de Dunnett s'applique aux cas où il s'agit de comparer des groupes expérimentaux à un groupe témoin. Il peut éventuellement être appliqué dans le cas "Bransford", à condition d'inverser les termes du vocabulaire : nous avons ici un groupe expérimental (le groupe 2) et trois groupes témoins.

Ce test n'est pas disponible sous le menu <u>Statistiques - Statistiques élémentaires - Décompositions et</u> <u>ANOVA à un facteur</u>. Utilisez comme précédemment le menu <u>Statistiques - ANOVA</u> et le bouton "Autres résultats". On obtient le dialogue suivant, dans lequel on indique quel est le groupe contrôle (ici "2") et le type de test désiré (unilatéral à gauche, à droite ou bilatéral) :

ANOVA - Résultats 2: Donné	es Bransford dans Bransford-corre	ectio ? _ 🔀
Synthèse Moyennes Comp	, planifiées Post-hoc Hypothèses	Fermer
		✓⊐ Modifier ▲ Options ▼
Attichage C Différences significatives C Groupes homogènes :	Erreur inter	
C Intervalles de confiance C Etendues critiques :		
Image: Base of the second s	Bonferroni <u>Etti S</u> cheffé	
Tests d'étendue (tests multi-niveau:	x)	
Comparaisons par rapport à un Gro	upe de Contrôle (GC)	

qui conduit au résultat :

	Test de I Probabili Erreur : N	Dunnett ; v tés des Te MC Inter =	ariable VD (Données Bransfor sts Post Hoc (bilatéral) 2,3500, dl = 16,000				
	Groupe	Groupe {2}					
Cellule N°		7,0000					
1	GR1	0,002190					
2	GR2						
3	GR3	0,003352					
4	GR4	0,027866					

On peut remarquer que ce test est l'un des rares tests où Statistica propose aussi bien un test bilatéral qu'un test unilatéral. En effet, il est utilisé dans des situations où l'hypothèse de recherche est clairement orientée.

9. Traitement d'un plan S*A. Plan à mesures répétées

Dans un plan S*A, ou plan à mesures répétées, un groupe de sujets a été soumis aux différents niveaux d'un facteur A (situation de groupes appareillés). On souhaite tester l'effet des différents niveaux du facteur A sur le comportement des sujets, évalué à l'aide d'une variable dépendante X. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet "sujet" + Résidu aléatoire.

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de	Somme des	ddl	Carrés	F	р
variation	Carrés		Moyens		
Facteur A	SC_A	a – 1	CM_A	$F_{Obs} = \frac{CM_A}{CM}$	
				CM_{AS}	
Facteur S	SC_s	n-1	CM_{s}		
Résidu AS	SC_{AS}	(a-1)(n-1)	CM_{AS}		
Total	SC_T	an – 1			

La statistique F suit une loi de Fisher Snedecor à (a-1) et (a-1)(n-1) degrés de liberté.

9.1. Première méthode

Enoncé du cas:

Dans une expérimentation sur l'inhibition proactive, des sujets apprennent une liste de dix paires de mots, puis doivent se rappeler ces paires deux jours plus tard. Après le rappel, les sujets doivent apprendre une deuxième liste de dix paires dont ils devront se rappeler deux jours plus tard, le rappel de la deuxième liste est suivie de l'apprentissage d'une troisième, etc., jusqu'à la sixième liste. La variable indépendante sera la position ordinale de la liste (e.g., première, seconde, ..., sixième).

La variable dépendante sera le nombre de paires correctement rappelées. Les auteurs de l'expérience prédisent que le rappel se détériorera à mesure que l'on progresse dans la position ordinale (prédiction qui traduit simplement l'effet de l'inhibition proactive).

Ouvrez le classeur Inhibit.stw et rendez active la feuille Inhibit1.

Les données y sont saisies selon la logique "plan d'expérience" : une ligne par observation, les sujets sont considérés comme un facteur, au même titre que "position" :

	Sujet	Position	Nb Mots
1	s1	1	17
2	s2	1	14
3	s3	1	17

9	s1	2	13
10	s2	2	18
11	s3	2	16

Il s'agit là d'une expérience conduite selon un plan S*A, où A est le facteur "position" et S le facteur "sujet". Pour traiter les données à l'aide de Statistica :

Utilisez le menu Statistiques - ANOVA.

Choisissez l'item ANOVA - Effets principaux .

Spécifiez <u>Nb Mots</u> comme variable dépendante, <u>Sujet</u> et <u>Position</u> comme prédicteurs. Le résultat fourni par Statistica est le suivant :

	Tests Univ	Tests Univariés de Significativité pour Nb Mots (Données dans Inhibit.stw)						
	Paramétris	Paramétrisation sigma-restreinte						
	Décompos	Décomposition efficace de l'hypothèse						
	SC	SC Degr. de MC F p						
Effet		Liberté			•			
ord. origine	8138,021	1	8138,021	2858,431	0,000000			
Sujet	52,479	7	7,497	2,633	0,026938			
Position	146,854	5	29,371	10,316	0,000004			
Erreur	99,646	35	2,847					

Ce résultat permet de recomposer le tableau d'analyse de variance attendu :

Analyse d	e variance	pour Nb	mots		
Source	DL	SC	CM	F	P
Position	5	146,85	29,37	10,32	0,000
Sujet	7	52,48	7,50		
Erreur	35	99,65	2,85		
Total	47	298,98			

Il peut également être intéressant de produire un graphique montrant les moyennes observées pour chacun des niveaux du facteur Position.

Dans la fenêtre de dialogue "Résultats", cliquez sur le bouton "Tous effets/Graphs" puis sélectionnez la ligne "Position". Vous devriez obtenir le graphique suivant :

On pourra, comme dans le cas d'une ANOVA à un facteur, réaliser des tests post hoc : LSD de Fisher, Bonferroni-Dunn, HSD de Tukey, etc. Lorsqu'on utilise des données structurées selon cette méthode, les deux facteurs de variation "Sujet" et "Position" peuvent être étudiés. Evidemment, seul le facteur "Position" présente un intérêt.

La conclusion sera ici :

- La condition 1 est significativement différente des conditions 3 à 6.
- La condition 2 est significativement différente des conditions 4 à 6.
- Il n'existe pas de différence significative entre les conditions 3, 4, 5 et 6.

9.2. Deuxième méthode

	Sujet	Nb Mots-					
		1	2	3	4	5	6
1	s1	17	13	12	12	11	11
2	s2	14	18	13	18	11	12
3	s3	17	16	13	11	15	14
4	s4	18	16	11	10	12	10
5	s5	17	12	13	10	11	13
6	s6	16	13	13	11	11	11
7	s7	14	12	10	10	10	10
8	s8	16	17	15	11	13	11

Une autre façon de saisir les données est celle figurant dans la feuille Inhibit2 :

Chaque ligne correspond alors à un individu statistique (sujet). Autrement dit, les six scores relatifs à un même sujet se trouvent sur une même ligne.

Statistica peut également réaliser l'ANOVA sur des données structurées de cette façon.

Rendez active la feuille Inhibit2.

Utilisez le menu Statistiques - ANOVA, puis l'item ANOVA - Mesures répétées.

Indiquez NB Mots-1 à Nb Mots-6 comme variables dépendantes, et n'indiquez pas de prédicteur catégoriel :

Sélectionnez les vars dépendant 1-Sujet 2-Nb Mots-1 3-Nb Mots-2 4-Nb Mots-3 5-Nb Mots-4 6-Nb Mots-5 7-Nb Mots-6 8-Var9 9-Var10	tes & prédicteurs catégoriels facul 1-Sujet 2-Nb Mots-1 3-Nb Mots-2 4-Nb Mots-3 5-Nb Mots-4 6-Nb Mots-5 7-Nb Mots-6 8-Var3 9-Var10	tati 🕐 🕅
Tout Détail Zoom Liste de vars dépendantes :	Tout Détail Zoom Prédicteurs catégoriels (facteurs) :	

Validez et cliquez ensuite sur le bouton "Effets intra" ; indiquez que les variables Nb Mots-1 à Nb Mots-6 correspondent aux 6 niveaux du facteur POSITION :

Vous devriez obtenir la description suivante des facteurs impliqués dans l'analyse :

🗃 ANOVA/MANOVA - ANOVA Mesures Répétées : Inhibi	t2 dans Inh ? 💶 🔀
Base Options	📰 ОК
<u>E</u>	Annuler
Variables dépendantes : Nb Mots-1-Nb Mots-6	🔉 Options 👻
Effets intra : POSITION	
Facteurs catégoriels : 😑	
	📝 Editeur de synta <u>x</u> e

Statistica dispose alors le tableau d'analyse de variance de la façon suivante :

	Analyse de la Variance Mesures Répétées (Données Inhibit dans Inhibit2.stw) Paramétrisation sigma-restreinte Décomposition efficace de l'hypothèse									
	SC	SC Degr. de MC F p								
Effet		Liberté								
ord. origine	8138,021	1	8138,021	1085,500	0,000000					
Erreur	52,479	7	7,497							
POSITION	146,854	146,854 5 29,371 10,316 0,000004								
Erreur	99,646	35	2,847							

Comme dans la méthode précédente, l'étude peut être poursuivie à l'aide de tests post hoc. Mais ici, seul POSITION est proposé comme facteur de variation. La conclusion est évidemment la même que précédemment.

9.3. Troisième méthode

9.3.1 Données saisies "par observation"

On revient à la feuille Inhibit1. Comme précédemment, utilisons le menu <u>Statistiques - Modèles linéaires /</u> non linéaires avancés, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>".

Avec les données structurées "par observation" (feuille Inhibit1 à rendre active), complétez le dialogue "Variables" de la manière suivante:

	Sélectionnez les varia	bles dépendantes, pro	édicteurs catégoriels et	co <table-cell></table-cell>
	1-Sujet 2-Position 3-NB Mots 4-Var4 5-Var5 6-Var5 6-Var6 8-Var8 9-Var7 8-Var8 9-Var9 10-Var10	1-Sujet 2-Position 3-Nb Mots 4-Var4 5-Var5 6-Var5 6-Var6 7-Var7 8-Var8 9-Var8 9-Var3 10-Var10	1-Sujet 2-Position 3-Nb Mots 4-Var4 6-Var5 6-Var5 7-Var7 8-Var8 9-Var8 9-Var9 10-Var10	OK Annuler
	Détail Zoom Variables dépendantes : [3]	Détail Zoom Prédicteurs catégoriels : (1-2	Détail Zoom Prédicteurs continus :	
Cliquez ensuite sur le bou	ton "Effets Inter	":		
	🚟 GLM Modèles liné	aires généraux : Inhib	it1 dans Inhibit-correct	ia ? 💶 🔀
				I

📅 GLM Modèles linéaires généraux : Inhibit1 dans Inhibi	t-corr	ectic ? 💶	X	Ŋ
Base Options	7818	ОК		
Que yariables		Annuler		
Variable(s) dépendante(s) : Nb Mots	A	Options	•	
Facteurs catégoriels : Sujet-Position				
說日 <u>C</u> odes facteurs : sélect.				
Prédicteurs continus :				
Effets intra : Position + Sujet				
	Z,	Editeur de synl	ta <u>x</u> e	

Cliquez alors sur le bouton radio "Effets personnalisés pour le modèle inter", et utilisez les outils fournis dans la fenêtre de dialogue pour obtenir les spécifications suivantes :

GLM - Effets Inter : Inhibit	t1 dans Inhibit-correctio	n.stw 🌪 🕅					
Effets personnalisés pour le mod	èle inter	Annuler					
Pour construire des effets personnalisés à inclure dans le modèle inter, sélectionnez les prédicteurs des effets et une méthode pour construire les effets.							
Variables prédictives Méthode Catégorielles : Sujet Position	Effets du modèle inter Position Sujet						
Pour réorganiser les 'Effets du plan inter', :	sélectionnez la ou les lignes à dépla	cer et cliquez à l'endroit					
a insertion. Aucun effet n'a été sélectionné							

Le résultat s'affiche sous la même forme que dans la méthode 1.

9.3.2 Données saisies "par sujet" :

Activez la feuille Inhibit2. Utilisez le menu <u>Statistiques - Modèles linéaires / non linéaires avancés</u>, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>".

Dans le dialogue suivant, indiquez les variables 2 à 7 comme variables dépendantes et n'indiquez aucun prédicteur catégoriel, ni prédicteur continu.

Sélectionne:	z les varia	bles dépend	lantes, pr	édicteurs c	atégoriels e	t co ? 🕅
1-Sujet		1-Sujet		1-Sujet		ОК
3-Nb Mots-2 4-Nb Mots-3		3-Nb Mots-2 4-Nb Mots-3		3-Nb Mots-2 4-Nb Mots-3		Annuler
5-Nb Mots-4 6-Nb Mots-5 7-Nb Mots-6 8-Var9 9-Var10		5-Nb Mots-4 6-Nb Mots-5 7-Nb Mots-6 8-Var9 9-Var10		5-Nb Mots-4 6-Nb Mots-5 7-Nb Mots-6 8-Var9 9-Var10		
Détail Variables dépi	Zoom endantes :	I Détail Prédicteurs ca	Zoom atégoriels :	Détail Prédicteurs c	Zoom continus :)

Cliquez ensuite sur le bouton "Effets Intra" et définissez les 6 variables dépendantes comme niveaux du facteur POSITION :

🚟 Spécifiez les facteurs inti	ra (mesures rép 🏆 🕅
Nb total de mesures répétées et/ou vars dépendantes sélectionnées :	6 OK
Nb. niveaux : Nom du Facteur :	Annuler
1:(6 😫) (POSITION	Spécifiez chaque facteur intra
	 (mesures repétées) et son nombre respectif de niveaux. La liste de variables dépendantes sera divisée par le nombre total de niveaux de facteurs intra.
4: • 5: • •	Si les facteurs spécifiés ici n'expliquent pas toutes les variables dépendantes ou de
6:	mesures répétées, une MANOVA sera réalisée. F1 pour + d'infos.
Une fois les facteurs intra (mesures répétées) spécifiés, un modèle intra personnalisé différent du plan factoriel par défaut poura être spécifié dans le dialogue Modèle Intra Personnalisé. Apouyez sur F1 pour plus d'infos.	跽日 <u>M</u> odèle intra perso.

Le résultat s'affiche sous une forme analogue à celle de la méthode 2.

9.4. Quatrième méthode

Lorsque les données sont saisies par sujet (feuille de données Inhibit1), on peut obtenir le tableau d'analyse de variance, sous une forme légèrement différente, en utilisant le menu <u>Statistiques - Techniques</u> exploratoires multivariées - Fiabilité et analyse d'échelle.

Utilisez le menu Fiabilité et analyse d'échelle et indiquez Nb Mots-1 à Nb Mots-6 comme variables :

🆆 Fiabilité et Analyse d'Echelle : Inhibit2 dans Inhibit.stv	» ?_ ×
Base Avancé	EE OK
	Annuler
<u>F</u> iabilité par moitié (2 listes) : ···	🔈 Options 🔻
Fichier d'entrée : Données Brutes	🗁 Ou <u>v</u> rir
Matrice de corrélations : R Standard de Pearson	SELECT S D
Codes des variables dichotomisées :	Traitement des VM-
Calculer la régression multiple des questions/échelle	Obs. ignorée
Traitement/Impression par lots	C Remplacement par la moyenne

Cliquez sur OK. Lorsque la fenêtre "Etude des statistiques descriptives" s'affiche, cliquez de nouveau sur OK.

Résultats de la Fiabilité : Inhibit2 dans Inhibit.stw	? _ 🗙
Nb questions dans l'éch.: 6	
Nombre d'obs. actives: 8 Nbre d'obs. à valeurs manquantes: 0 Obs. à valeurs manquantes: ignorées	
STATS de SYNTHESE / ECHELLE Noy.: 78,12500000 Somme: Ecart-type: 6,706872808 Variance: Asymétr.: -,467900637 Aplatis.: Ninimum: 66,00000000 Maximum: Alpha Cronbach: ,620246129 Alpha standardisé: Corrélation moy. entre quest.:	625,0000000 44,982142857 ,184758598 86,00000000 ,657299553 ,257892115
Base Avancé Atténuation Davantage de questions ? Combien ?	Synthèse
Synthèse : Stats du total des questions	
Fiabilité par moitié Moyennes & écarts-types	🛛 🔊 🔁 Options 🕶
Corrélations Et Nuage de points matriciel	
<u>∎øē</u> <u>B</u> oîtes à moustaches	

Dans la fenêtre "Résultats de la fiabilité", activez l'onglet "Avancé" et cliquez sur le bouton "Analyse de variance". On obtient :

	Analyse de Variance (Inhibit2 dans Inhibit.stw						
	Sommes	dl	Moyenne	F	р		
Effet	Carrés		Carrés				
Inter-Individus	52,4792	7	7,49702				
Intra-Individus	246,5000	40	6,16250				
Inter-Questions	146,8542	5	29,37083	10,31633	0,000004		
Résidu	99,6458	35	2,84702				
Total	298,9792	47					

Contrairement aux autres méthodes, celle-ci affiche une ligne "Total" et ne calcule que le rapport F relatif à la comparaison des différentes conditions expérimentales. On remarque par ailleurs que, dans la ligne "Intraindividus" la somme des carrés et le nombre de ddl sont en fait les sommes de ceux qui apparaissent dans les deux lignes suivantes.

9.5. Conditions d'application. Sphéricité.

Outre les conditions sur la normalité des distributions parentes et sur l'égalité des variances (homoscédasticité des résidus), l'analyse de variance sur un plan à mesures répétées exige une condition d'application supplémentaire appelée **sphéricité**. Il s'agit en fait de vérifier certaines propriétés de régularité concernant les covariances entre les séries correspondant aux différents niveaux du facteur.

A partir des données saisies "par sujet" (feuille Inhibit2), on peut réaliser un test de sphéricité : utilisez par exemple la feuille Inhibit2 et le menu "Modèle linéaire général". Dans la fenêtre dialogue "GLM - Résultats", cliquez sur "Autres résultats". Activez ensuite l'onglet "Synthèse" puis sur le bouton "Test de sphéricité" :

🚟 GLM - Résultats 4: Inhibit2 dar ? 💶 		
Comps Résidus Matrice Rapport Base Synthèse Moyennes		? _ 3
Image: Tous effets/Graphs Image: Tous les effets Image: I aille des effets Image: Tous les effets Effets inter Image: Termes du modèle Image: Termes du modèle Image: R modèle complet	Tests personnalisés Résidus 1 Résidus 2 Matrice Rapport Synthèse Moyennes Comp. planifiées Post-hoc Hypothèses Image: Tous les effets/Graph. Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tous les effets/Graph. Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous effets Image: Tester tous e	Moins Fermer Modifier Modifier Dptions
Valeurs de alpha	Image: Index model Image: Complet Contractions	
Limites de confiance : [,950 🔄 Niveau de significativité : [,050 🗣	Image: Tests univ. Test de sphéricité Image: Corrél. Erreur Image: Tests multivariés Image: Tests multivariés Image: Tests multivariés Image: Test multivariés	

On obtient le résultat suivant :

	Tests de Sphéricité de Mauchley (Inhibit2					
	Paramétrisation sigma-restreint					
	Décomposition efficace de l'hypothèse					
Effet	W	Chi ²	dl	р		
POSITION	0,032085	17,54080	14	0,228502		

Interprétation du résultat : dans ce test, l'hypothèse H_0 correspond au respect de l'hypothèse de sphéricité, tandis que l'hypothèse H_1 correspond à un défaut de sphéricité. Le niveau de significativité observé (22,8%) conduit à retenir l'hypothèse H_0 : on n'a pas mis en évidence de défaut de sphéricité.

Le test de sphéricité peut également être réalisé à partir du menu ANOVA - Mesures répétées.

9.6. Exercice

Dans une étude sur l'effet du bruit sur la discrimination perceptive, on utilise six sujets. On mesure pour chaque sujet le nombre d'erreurs commises dans une tâche de discrimination perceptive. Les sujets sont soumis à trois conditions. Dans la première, les sujets accomplissent la tâche en l'absence de bruit; dans la seconde, le bruit est présenté de façon intermittente (i.e., bruits d'avions) ; dans la dernière, le bruit est présenté de façon continue (bruits de "marteau piqueur") On obtient les résultats suivants

Sujets	Absence de bruit	Bruit Intermittent	Bruit continu
1	117	119	127
2	130	126	131
3	122	118	129
4	123	117	134
5	126	120	137
6	116	120	128

Après avoir identifié la ou les variable(s) indépendante(s), dépendante(s), vous répondrez à la question classique : la variable indépendante influe-t-elle sur les variables dépendantes ?. Réalisez cette étude à l'aide de Statistica et recomposez le tableau d'analyse de variance convenable.

10. Traitement d'un plan S<A*B>. Plan factoriel à 2 facteurs

Le plan S<A*B>, ou plan factoriel, correspond au cas où l'on étudie l'effet de deux facteurs croisés, en utilisant des groupes indépendants de sujets dans chacune des conditions définies par le croisement des deux facteurs. Les sources de variation à prendre en compte sont les facteurs A et B et, éventuellement, l'interaction AB. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet de B + Effet d'interaction + Résidu aléatoire.

Sources de variation	Somme des Carrés	ddl	Carrés Moyens	F	р
Facteur A	SC_A	a – 1	CM_A	$F_A = \frac{CM_A}{CM_{S(AB)}}$	
Facteur B	SC_{B}	<i>b</i> -1	CM _B	$F_B = \frac{CM_B}{CM_{S(AB)}}$	
Interaction AB	SC _{AB}	(a-1)(b-1)	CM _{AB}	$F_{AB} = \frac{CM_{AB}}{CM_{S(AB)}}$	
Résidu S(AB)	$SC_{S(AB)}$	ab(n-1)	$CM_{S(AB)}$		
Total	SC_T	N-1			

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Trois tests statistiques, correspondant aux trois sources de variation A, B et AB peuvent être effectués. La statistique F_A suit une loi de Fisher Snedecor à (a-1) et ab(n-1) degrés de liberté, la statistique F_B , une loi de Fisher Snedecor à (b-1) et ab(n-1) degrés de liberté et la statistique F_{AB} une loi de Fisher Snedecor à (a-1)(b-1) et ab(n-1) degrés de liberté

10.1. Première méthode : le menu ANOVA - Factorielle

Enoncé du cas:

Cet exemple est basé sur des données fictives présentées par Lindeman (1974).

Vous testez la performance de rats d'origines différentes dans un labyrinthe. La tâche du rat est d'apprendre à se rendre directement à l'endroit où de la nourriture a été placée, sans erreurs. Trois lignées de rats sont utilisées. Pour chacune de ces lignées, vous utilisez 4 animaux élevés dans un environnement libre, et 4 animaux élevés dans un environnement restreint. La variable dépendante est le nombre d'erreurs faites par le rat dans son parcours vers la nourriture.

Extrait des données :

	ELEVAGE	LIGNEE	ERREURS
1	LIBRE	BRILLANT	26,000
2	LIBRE	BRILLANT	14,000
17	CAGE	MIXTE	39,000
24	CAGE	MAUVAIS	124,000

Ouvrez le fichier <u>Rats.stw</u>. Identifiez les facteurs de variation et la variable dépendante. Il s'agit ici d'un plan S4<A2*B3>.

Utilisez le menu <u>Statistiques - ANOVA</u>. Choisissez l'item <u>ANOVA - Factorielle</u>.

Spécifiez <u>Erreurs</u> comme variable dépendante, <u>Elevage</u> et <u>Lignée</u> comme prédicteurs. Le résultat fourni par Statistica est le suivant :

	Tests Univariés de Significativité pour ERREURS (Rats.sta) Paramétrisation sigma-restreinte Décomposition efficace de l'hypothèse							
	SC	SC Degr. de MC F p						
Effet	Liberté							
ord. origine	100233,4	1	100233,4	105,1353	0,000000			
ELEVAGE	5551,0	1	5551,0	5,8225	0,026705			
LIGNEE	7939,8	2	3969,9	4,1640	0,032635			
ELEVAGE*LIGNEE	16,1	16,1 2 8,0 0,0084 0,991604						
Erreur	17160,8	18	953,4					

L'interaction (ici l'absence d'interaction) entre les deux facteurs étudiés peut être illustrée à l'aide d'un graphique :

Affichez la fenêtre de dialogue "Résultats ANOVA" et cliquez sur le bouton "Tous effets:Graphs".

Sélectionnez ensuite la ligne : "Elevage*Lignée"

Vous devriez obtenir le graphique suivant :

10.2. Deuxième méthode : le module "Modèle linéaire général"

Comme précédemment, utilisons le menu <u>Statistiques - Modèles linéaires / non linéaires avancés</u>, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>". Compléter le dialogue relatif aux variables comme suit :

1-ELEVAGE 2-LIGNEE 3-ERREURS 4-Var4 5-Var5 6-Var6 7-Var7 8-Var8 9-Var8 9-Var9 10-Var10	•	1-ELEVAGE 2-LIGNEE 3-EREURS 4-Var4 5-Var5 6-Var6 7-Var7 8-Var8 9-Var8 9-Var9 10-Var10		1-ELEVAGE 2-LIGNEE 3-ERREURS 4-Var4 5-Var5 6-Var5 6-Var6 8-Var7 8-Var8 9-Var9 10-Var10		OK Annuler
Détail Variables dép 3	Zoom endantes :	Détail Prédicteurs c 1-2	Zoom atégoriels :	Prédicteurs co	Zoom ontinus :	

Les spécifications de l'étude apparaissent donc ainsi :

Le résultat obtenu est identique au précédent.

Publication du résultat

Dans une publication ou un rapport, le résultat pourra être indiqué sous la forme suivante : nous avons traité les données selon un plan factoriel à 2 facteurs. Nous avons observé un effet significatif du facteur Elevage (F(1,18)=5.82, p<.05) ainsi que du facteur Lignée (F(2,18)=4.16, p<0.05). En revanche, nous n'avons pas observé d'effet d'interaction (F(2,18)=0.01, NS).

10.3. Tests post hoc

De la même façon que dans les cas précédemment étudiés, des tests post hoc pourront être faits sur chacun des facteurs de variation pour lesquels la statistique F a conclu sur un effet significatif. On fera donc des tests post hoc sur Elevage et Lignée. On peut également mener les calculs sur l'interaction Elevage x Lignée, mais on se gardera d'interpréter une éventuelle différence significative obtenue en conclusion de l'un des tests, puisque la statistique F a conclu sur l'absence d'interaction. Par exemple, ici, le test LSD de Fisher et le test HSD de Tukey concluent sur une différence significative entre la combinaison Libre-Brillant et la combinaison Cage-Mauvais, mais cette conclusion mérite d'être confirmée par une étude complémentaire.

10.4. Exercice

On demande aux sujets de mémoriser des listes comportant 12, 24 ou 48 mots (facteur A, avec trois modalités). Ces mots peuvent se regrouper par paires en catégories (par exemple pomme et orange se regroupent en "fruits"). On demande aux sujets d'apprendre les mots, et on leur montre le nom des catégories à ce moment en leur précisant qu'ils n'ont pas à apprendre le nom de ces catégories. Au moment de l'épreuve de rappel qui a lieu immédiatement après l'apprentissage on crée deux conditions. Dans un cas, on présente aux sujets la liste des catégories. Dans l'autre cas, on ne leur présente pas cette liste (facteur B présentation de la liste des catégories au moment de l'apprentissage versus absence de présentation). Dans cette reprise d'une expérience de Tulving et Pearlstone (1966), la variable dépendante sera le nombre de mots rappelés. En examinant les deux variables indépendantes, la première (nombre de mots de la liste de mots est longue, plus on peut en retenir. Cette remarque indique que les auteurs de cette expérience s'intéressaient d'emblée à un effet d'interaction.

	Facteur A : Nombre de mots par liste			
Facteur B	a1:12	a2:24	a3:48	
	10 6	13 15	17 16	
	8 11	18 13	20 23	
b1	12 10	19 9	22 19	
	89	13 8	13 20	
	79	8 14	21 19	
	12 10	12 13	31 29	
	12 12	20 12	30 32	
b2	7 10	19 13	26 24	
	97	14 15	29 24	
	9 12	16 6	28 27	

Etudiez à l'aide d'une analyse de variance quels sont les facteurs dont l'effet est significatif. Recomposez le tableau d'analyse de variance et illustrez la situation proposée à l'aide d'un graphe d'interaction et commentez-le.

11. Traitement d'un plan S<A>*B. Plan à mesures partiellement répétées

Le plan S<A>*B correspond au cas où des groupes indépendants de sujets (facteur "groupe" A, emboîté dans les sujets) ont été observés dans deux ou plusieurs conditions, définies par les niveaux du facteur B, chaque sujet passant par tous les niveaux du facteur B. Un tel plan est qualifié de "plan à mesures partiellement répétées".

Les sources de variation à prendre en compte sont les facteurs A et B et, éventuellement, l'interaction AB. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet "sujet" + Effet de B + Interaction AB + Résidu aléatoire.

Sources de variation	Somme des Carrés	ddl	Carrés Moyens	F	р
Entre les sujets					
Facteur A	SC_A	a – 1	CM_A	$F_A = \frac{CM_A}{CM_{S(A)}}$	
Facteur S(A)	$SC_{S(A)}$	a(n-1)	$CM_{S(A)}$		
Dans les sujets					
Facteur B	SC _B	<i>b</i> -1	CM_{B}	$F_B = \frac{CM_B}{CM_{BS(A)}}$	
Interaction AB	SC_{AB}	(<i>a</i> -1)(<i>b</i> -1)	CM_{AB}	$F_{AB} = \frac{CM_{AB}}{CM_{BS(A)}}$	
Résidu BS(A)	$SC_{BS(A)}$	a(b-1)(n-1)	$CM_{BS(A)}$		
Total	SC_T	N-1			

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Pour un plan S<A>*B, avec A et B facteurs fixes, le rapport F relatif au facteur A se calcule en utilisant comme dénominateur le carré moyen relatif à S(A), tandis que les rapports F relatifs à B et AB utilisent le carré moyen du résidu.

Trois tests statistiques, correspondant aux trois sources de variation A, B et AB peuvent être effectués. La statistique F_A suit une loi de Fisher Snedecor à (a-1) et a(n-1) degrés de liberté, la statistique F_B , une loi de Fisher Snedecor à (b-1) et a(b-1)(n-1) degrés de liberté et la statistique F_{AB} une loi de Fisher Snedecor à (a-1)(b-1) et a(b-1)(n-1) degrés de liberté.

11.1. Première méthode : données saisies "par sujet"

Enoncé du cas:

En 1986, King a étudié l'activité motrice chez le rat après injection d'un médicament appelé midazolam. La première injection du médicament entraîne généralement une diminution nette de l'activité motrice. Mais une certaine tolérance se développe rapidement. King souhaitait savoir si cette tolérance acquise pouvait s'expliquer sur la base d'une tolérance conditionnée.

Il a utilisé trois groupes et n'a recueilli les données (présentées dans le tableau ci-dessous) que le dernier jour, jour du test. Durant le pré-test, deux groupes d'animaux ont reçu à plusieurs reprises des injections de midazolam réparties sur plusieurs jours, tandis que le groupe témoin recevait des injections d'une solution saline physiologique.

Le jour du test, un groupe (le groupe "même") a reçu une injection de midazolam dans le même environnement qu'auparavant. Le groupe "différent" a également reçu une injection de midazolam, mais dans un environnement différent. Enfin, le groupe témoin a reçu, pour la première fois, une injection de midazolam. Ce groupe témoin devrait donc manifester la réaction initiale classique au médicament

(comportement ambulatoire réduit), tandis que le groupe "même" devrait présenter l'effet normal de tolérance. Par contre, si King a raison, le groupe "différent" devrait réagir de la même façon que le groupe témoin; en effet, ces animaux allaient cette fois recevoir l'injection dans un environnement différent, et les éléments nécessaires pour susciter une tolérance conditionnée ne seraient pas présents. La variable dépendante du tableau ci-dessous est une mesure du comportement ambulatoire, en unités arbitraires.

Comme le médicament se métabolise sur une période d'environ 1 heure, King a enregistré ses données par blocs (ou intervalles) de 5 minutes. Le tableau donne les valeurs observées pour les 6 premiers blocs de données.

Ouvrez le fichier King.stw et rendez active la feuille King1.

Le plan d'expériences utilisé par King est du type S8<A3>*B6. Avec les notations utilisées dans la feuille de données, il s'agit du plan Sujet₈<Groupe₃>*Intervalle₆.

	Sujet	Groupe	Amb1	Amb2	Amb3	Amb4	Amb5	Amb6
1	S1	Témoin	150	44	71	59	132	74
2	S2	Témoin	335	270	156	160	118	230
9	S9	Même	346	175	177	192	239	140
10	S10	Même	426	329	236	76	102	232

Dans la feuille King1, les données ont été saisies "par sujet" :

Utilisez le menu Statistiques - ANOVA.

Choisissez l'item ANOVA - Mesures répétées.

Indiquez Amb1 à Amb6 comme variables dépendantes et Groupe comme prédicteur catégoriel.

Sélectionnez les vars dépendant	es & prédicteurs catégoriels facul	tati ア 🕅
1-Sujet 2-Graupe	1-Sujet 2.Groupe	OK
3-Amb1 4-Amb2	3-Amb1 4-Amb2	Annuler
5-Amb3 6-Amb4	5-Amb3 6-Amb4	
7-Amb5 8-Amb6	7-Amb5 8-Amb6	
Tout Détail Zoom	Tout Détail Zoom	
Liste de vars dépendantes :	Prédicteurs catégoriels (facteurs) :	
3-8	2	

Cliquez ensuite sur le bouton "Effets intra" et indiquez que les variables Amb1 à Amb6 correspondent aux 6 niveaux du facteur Intervalle :

N.B. Le facteur sujet est spécifié, de façon implicite, par la disposition des données : les mesures d'une même ligne sont relatives à un même sujet. On obtient le résultat suivant :

	Analyse o Paramétr	Analyse de la Variance Mesures Répétées (Feuille de données160 dans King.stw Paramétrisation sigma-restreinte					
	Decompo	sition effica	ace de l'ny	/potnese			
	SC	Degr. de	MC	F	р		
Effet		Liberté					
ord. origine	4113798	1	4113798	224,5511	0,000000		
Groupe	285815	2	142908	7,8006	0,002928		
Erreur	384722	21	18320				
INTERVAL	399737	5	79947	29,8524	0,000000		
INTERVAL*Groupe	80820	10	8082	3,0178	0,002164		
Erreur	281199	105	2678				

qui correspond au tableau d'analyse de variance ci-dessous:

Analyse de la variance pour Ambulato, en utilisant la SC ajustée pour les tests

Source	DL	SC	CM	F	Р
Entre les sujets					
Groupe	2	285815	142908	7.80	0.003
Sujet(Groupe)	21	384722	18320		
Dans les sujets					
Interval	5	399737	79947	29.85	0.000
Groupe*Interval	10	80820	8082	3.02	0.002
Erreur	105	281199	2678		
Total	143	1432293			

11.2. Deuxième méthode : données "par observation"

La feuille King2 contient les mêmes données, mais saisies selon la logique "plan d'expérience" : chaque facteur est représenté par une variable, et chaque ligne correspond à une observation.

Voici un extrait des données :

	1	2	3	4
	Sujet	Groupe	Intervalle	Ambulatoire
1	S1	Témoin	1	150
2	S2	Témoin	1	335
3	S3	Témoin	1	149
4	S4	Témoin	1	159

Utilisez le menu : <u>Statistiques</u> - <u>Modèles Linéaires/Non linéaires avancés</u> - <u>Décomposition de la Variance</u>. Indiquez "<u>Ambulatoire</u>" comme variable dépendante, <u>Sujet</u> comme facteur aléatoire, Groupe et Intervalle comme facteurs fixes:

Sélectionnez les variab	les dépendantes et les	facteurs		
1-Sujet 2-Groupe 3-Intervalle 4-Ambulatoire	1-Sujet 2-Groupe 3-Intervalle 4-Ambulatoire	1-Sujet 2-Groupe Skintervalle 4-Ambulatoire	1-Sujet 2-Groupe 3-Intervalle 4-Ambulatoire	OK Annuler
Détail Zoom Variables dépendantes : 4	Détail Zoom Facteurs aléatoires : 1	Détail Zoom Facteurs fixes : [2:3	DétailZoom Covariants :	

Cliquez sur le bouton OK, puis sur le bouton "Synthèse : Décomposition de la variance. Vous obtenez le résultat suivant :

	Résulta dl de l'E	Résultats ANOVA des Erreurs Synthétisées : Ambulatoire (King2.sta) dl de l'Erreur calculés par la méthode Satterthwaite						
	* Ces te	ests co	onsidèrent l	les effets fi	xes impliqu	ués nuls		
MC, Type	Effet	dl	MC	dl	MC	F	р	
I	(F/AI.)	Effet	Effet	Erreur	Erreur			
{1}Groupe	*Fixe	2	142907,5	21	18320,10	7,80	0,002928	
{2}Intervalle	*Fixe	5	79947,3	105	2678,09	29,85	0,000000	
{3}Sujet	Aléat.	21	18320,1	105	2678,09	6,84	0,000000	
1*2	Fixe	10	8082,0	105	2678,09	3,02	0,002164	
1*3	Aléat.	0	0,0					
2*3	Aléat.	105	2678,1					
1*2*3	Aléat.	0	0,0					

En remettant les lignes dans le bon ordre, on retrouve ainsi le tableau d'analyse de variance.

11.3. Troisième méthode : le module "Modèle linéaire général"

11.3.1 Données saisies "par observation"

On utilise la feuille de données King2. et le menu <u>Statistiques - Modèles linéaires / non linéaires avancés</u>, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>". Complétez le dialogue relatif aux variables comme suit :

Sélectionnez les varia	ables dépendantes	, prédicteurs catégoriels e	et co ? 🕅
1-Sujet	1-Sujet	1-Sujet	OK
2-Groupe 3-Intervalle 4-Ambulatoire	2-aroupe 3-Intervalle 4-Ambulatoire	2-aroupe 3-Intervalle 4-Ambulatoire	Annuler
Détail Zoom	Détail Zoo	m Détail Zoom	
Variables dépendantes :	Prédicteurs catégoriel	s : Prédicteurs continus :	
4	1-3		

Cliquez ensuite sur le bouton "Effets Intra", puis sur le bouton radio "Effets personnalisés pour le modèle inter". Utilisez le bouton "Imbric. hiérarc." pour ajouter les effets Groupe et Sujet(Groupe). Ajoutez ensuite l'effet "Intervalle" et enfin, utilisez le bouton "Croisé complet pour ajouter l'effet d'interaction Groupe * Intervalle.

GLM - Effets Int	er : King2 dans	King-correction.stw	? 🕅
C Effets par défaut p	🖽 ОК		
Effets personnalisé	is pour le modèle inte	er	Annuler
Pour construire des effets des effets et une méthode	personnalisés à inclur pour construire les ef	e dans le modèle inter, sélection fets.	nez les prédicteurs
Variables prédictives	Méthode	Effets du modèle inter	
Catégorielles : Sujet Groupe "Intervalle"	Ajouter Croisé complet Imbric: hiérarc: Factoriel cplet Fact. de degré	Groupe Sujet(Groupe) "Intervalle" Groupe*"Intervalle"	
	Degré: 2 🛓		Effacer tout
Pour réorganiser les 'Effets d'insertion. Aucun effet n'a été sélect	s du plan inter', sélectio tionné	nnez la ou les lignes à déplacer	et cliquez à l'endroit

Validez ce dialogue. On obtient ainsi la spécification des variables suivante :

📅 GLM Modèles linéaires généraux : King2 dans King-co	rrection.st ? 💶 🔀
Base Options	E OK
∑_ ⊻ariables	Annuler
Variable(s) dépendante(s) : Ambulatoire	🔊 Options 👻
Facteurs catégoriels : Sujet-Intervalle	
🔀 Codes facteurs : sélect.	
Prédicteurs continus :	
B Effets intra : Groupe + Sujet (Groupe) + "Intervalle" + Groupe * "Intervalle"	
	📝 Editeur de synta <u>x</u> e

Important : Activez ensuite l'onglet Options et spécifiez Sujet comme facteur aléatoire :

🚟 GLM Modèles linéaires gén	éraux : King2 dans King-cor	rectio	n.st ? 💶 🔀
Base Options			ок
Facteurs <u>a</u> léatoires : Sujet)		Annuler
Delta sweep : 1.E- 7 🗲 Delta inverse : 1.E- 12 🖨	Sommes des carrés (type) C Type I (séquentiel) C Type II (partiel)	A	Options 🔻
Paramétrisation	 Type III (orthogonal) Type IV (estimable) 		
☐ Sans ordonnée à l'origine ☐ Défaut d'ajustement	C Type V (rang plein)		
B Validation croisée : non			Editeur de synta <u>x</u> e

Statistica émet un message d'avertissement puis produit le résultat suivant :

	Tests Univariés de Significativité de Ambulatoire (King2 dans King-correction.stw) Modèle sur-paramétré Décomposition de Type III							
	Effet	SC	Degré de	MC	Syn.Dén.	Syn.Dén.	F	р
Effet	(F/A)		Liberté		dl Err.	MC Erreu		
Ord.Orig.	Fixe	4113798	1	4113798	21	18320	224,55	0,000000
Groupe	Fixe	285815	2	142908	21	18320	7,80	0,002928
Sujet(Groupe)	Aléat.	384722	21	18320	105	2678	6,84	0,000000
Intervalle	Fixe	399737	5	79947	105	2678	29,85	0,000000
Groupe*Intervalle	Fixe	80820	10	8082	105	2678	3,02	0,002164
Erreur		281199	105	2678				

11.3.2 Données saisies "par sujet"

On utilise évidemment la feuille de données King1. et le menu <u>Statistiques - Modèles linéaires / non linéaires</u> <u>avancés</u>, puis "<u>Modèle linéaire général</u>" et "<u>Modèles linéaires généraux</u>". Complétez le dialogue rela<u>tif aux variables comme suit :</u>

Sélectionnez le	s variables déper	ndantes, pr	édicteurs c	atégoriels e	t co <table-cell></table-cell>
1-Sujet	1-Sujet	-	1-Sujet		OK
2-Groupe 3-Amb1 4-Amb2	2-Groupe 3-Amb1 4-Amb2		2-Groupe 3-Amb1 4-Amb2		Annuler
5-Amb3 6-Amb4 7-Amb5	5-Amb3 6-Amb4 7-Amb5		5-Amb3 6-Amb4 7-Amb5		
8-Amb6	8-Amb6		8-Amb6		
Détail 2	Zoom Détail	Zoom	Détail	Zoom	
Variables dépende	antes : Prédicteurs	catégoriels :	Prédicteurs o	ontinus :	
(3-8	(2		(J

Cliquez ensuite sur le bouton "Effets Intra" pour indiquer que les variables dépendantes Amb1 à Amb6 correspondent aux 6 niveaux du facteur "Intervalle :

🚟 GLM Modèles linéaires généraux : King1 dans King-co	rrection.st ? 💶 🔀
(Base Options)	СК ОК
Same yeariables	Annuler
Variable(s) dépendante(s) : <u>Amb1-Amb6</u> <u> </u>	▶ Options ▼
Facteurs catégoriels : Groupe	
<u> 聞</u> <u>C</u> odes facteurs : ···	
Prédicteurs continus :	
Groupe	
	😰 Editeur de synta <u>x</u> e

11.4. Tests post hoc

De la même façon que dans les cas précédemment étudiés, des tests post hoc pourront être faits sur chacun des facteurs de variation pour lesquels la statistique F a conclu sur un effet significatif. On fera donc des tests post hoc sur Groupe, Intervalle et sur l'interaction Groupe x Intervalle. Il semblerait que ce soit essentiellement l'intervalle 1 qui diffère des autres. L'interaction, quant à elle, produit des résultats assez difficiles à interpréter.

11.5. Exercice

Dans une reprise d'une expérience de Conrad (1971), on veut mettre en évidence l'hypothèse de recherche suivante "les enfants jeunes n'utilisent pas un codage phonologique en mémoire à court terme". Pour ce faire, on sélectionne cinq enfants de 5 ans et 5 enfants de 12 ans (Variable A, avec deux modalités). On montre à chaque enfant un certain nombre de paires d'images représentant des objets dont on s'est assuré auparavant qu'ils sont nommés d'une seule manière par les enfants. On montre les images aux enfants. Puis on retourne les images (les enfants ne voient plus que le dos des images). Ensuite, on donne aux enfants une paire d'images identiques à celles retournées. Enfin, on leur demande de placer ces nouvelles images comme les images retournées sur la table. Pour la moitié des paires d'images les noms des objets se ressemblent (e.g., noix et doigt). Pour l'autre moitié, les noms des objets ne se ressemblent pas (e.g., maison et cheval). Conrad prédit que les enfants les plus vieux réussiront dans l'ensemble mieux que les enfants les plus jeunes, mais également que les enfants les plus vieux utiliseront un codage phonologique comme mnémonique (i.e., "la parole intérieure"). De ce fait, les enfants les plus vieux devront commettre plus d'erreurs lorsque les noms se ressemblent acoustiquement que lorsque les noms diffèrent. On présente à chaque enfant cinquante paires d'images correspondant à la modalité b1 (dissemblance acoustique), et cinquante paires d'images correspondant à la modalité b2 (ressemblance acoustique); la variable dépendante choisie est le nombre de paires d'images correctement reconstituées. L'ordre de présentation est "aléatorisé" pour chaque passation (Pourquoi cette précaution ?).

Essayer de traduire l'hypothèse de recherche en prédiction sur les sources de variation de l'analyse de variance.

Vous avez dû conclure que, d'une part, on s'attend à un effet principal de l'âge (qui est trivial), et, d'autre part, à un effet d'interaction c'est le point d'importance, ou si vous préférez, le point crucial de la théorie. On retrouve, ici, le rôle essentiel de l'interaction "comme test de théorie".

	a1b1	a1b2
s1	15	14
s2	23	20
s3	12	11
s4	16	17
s5	14	13
	a2b1	a2b2
s6	40	33
s7	38	23
s8	31	21
s9	36	26
4.0	~~~	

Etudiez ces données à l'aide d'une analyse de variance, recomposez le tableau d'analyse de variance sous sa forme classique et commentez les résultats obtenus. Illustrez l'étude à l'aide d'un graphe d'interaction.

12. Aperçu sur l'analyse de covariance

12.1. Analyse de covariance à un facteur catégoriel

Comme pour l'analyse de variance à un facteur, des groupes indépendants de sujets ont été soumis à différents niveaux d'un facteur A. Le comportement des sujets est évalué à l'aide d'une variable dépendante numérique X. On suppose en outre qu'une autre variable numérique C (la covariée) a vraisemblablement un effet sur le comportement des sujets.

Exemple 1 : On veut comparer les performances mnésiques de deux groupes de sujets âgés. Le premier groupe est composé de sujets vivant à leur domicile, le second groupe de sujets accueillis en institution. On souhaite montrer que le mode d'hébergement a un effet sur la variable dépendante (score à un test mnésique), mais on pense que l'âge du sujet (variable continue) a également un effet.

Exemple 2 : On veut comparer les effets de 3 méthodes d'apprentissage d'un savoir-faire. La variable dépendante est le score obtenu par le sujet à un test passé après l'apprentissage. On utilise comme covariée le score obtenu par les sujets lors d'un pre-test. On a observé les valeurs suivantes :

Groupe 1		Grou	ipe 2	Groupe 3		
Pré-test	Post-Test	Pré-test	Post-Test	Pré-test	Post-Test	
12	34	18	35	10	28	
6	26	8	30	4	22	
9	33	16	37	10	24	
13	35	5	28	17	29	
12	34	9	31	9	27	
10	33	8	30	7	22	

Le graphique donnant les scores des sujets au test en fonction du score au pré-test et du groupe d'appartenance est le suivant :

On pourrait envisager de traiter ces données selon un plan S*A (analyse de variance à un facteur sur des groupes appariés). Cependant, rien n'indique que les échelles de mesure du pré-test et du post-test sont identiques. Le protocole des différences individuelles n'est donc peut-être pas pertinent.

Une analyse de variance à un facteur donne le résultat suivant :

Tests Univariés de Significativité pour Post-Test (Donnees dans Ancova1.stw)

	SC	Degr. de Liberté	MC	F	р
Groupe	188,11	2	94,06	8,836	0,002913
Erreur	159,67	15	10,64		

Utilisons le menu Statistiques - Modèles linéaires / non linéaires avancés - Modèle linéaire général puis l'item "Analyse de covariance". Indiquez "Post-test" comme variable dépendante, "Groupe" comme prédicteur catégoriel et "Pré-test" comme prédicteur continu.

🚟 GLM - Analyse de Covariance : Donnees dans Ancova1	.stw	? _ 3
Base Options	7818	ок
☑ Variables		Annuler
Variable(s) dépendante(s) : (Post-Test	A	Options 🔻
Facteurs catégoriels : Groupe Codes facteurs : Prédicteurs continus : Pré-test Effets inter : "Pré-test" + Groupe		
	Z	Editeur de synta <u>x</u> e

Cliquez sur le bouton OK, puis sur le bouton "Tous les effets". On obtient en résultat le tableau d'analyse de variance suivant :

	Tests Univariés de Significativité de Post-Test (Donnees dans Ancova1.st Paramétrisation sigma-restreint Décomposition efficace de l'hypothèse										
	SC	SC Degré de MC F p									
Effet		Liberté									
Ord.Orig.	1153,408	1	1153,408	416,4845	0,000000						
Pré-test	120,895	120,895 1 120,895 43,6541 0,000012									
Groupe	151,504	51,504 2 75,752 27,3533 0,000015									
Erreur	38,771	14	2,769								

Comme précédemment, l'effet du facteur "Groupe" est significatif. Mais la p-value est nettement plus faible que pour le test précédent. En effet, la somme des carrés de l'erreur de l'ANOVA (159,67) est maintenant répartie entre l'effet de la covariée (120,89) et l'erreur résiduelle (38,77), tandis que la somme des carrés correspondant au facteur "Groupe" est peu modifiée.

12.2. Conditions d'application de l'ANCOVA à un facteur catégoriel

Comme précédemment pour l'ANOVA, l'application de l'ANCOVA suppose :

- la normalité des distributions parentes dans chacune des populations dans lesquelles ont été tirés les groupes ;
- l'égalité des variances de la variable dépendante dans les populations parentes.

Mais, la méthode utilise aussi les propriétés de la régression linéaire de la variable dépendante selon les valeurs de la covariée. Il faut donc supposer en outre :

- qu'il existe une relation linéaire entre la covariée et la variable dépendante ;

- que les coefficients de régression sont homogènes dans les différentes populations (les droites de régression de la variable dépendante selon la covariée sont des droites parallèles, dans les populations parentes.

Si cette dernière condition n'est pas vérifiée, on pourra utiliser l'item "Modèles pentes séparées" dans le menu Statistiques - Modèles linéaires / non linéaires avancés - Modèle linéaire général de Statistica. Il apparaît alors une interaction entre la covariée et le facteur catégoriel. La stratégie peut être la suivante :

- prendre l'option générale "Homogénéité des pentes".

- si les pentes diffèrent réellement (p-value de l'interaction < 0.05), passer au modèle de covariance à pentes séparées.

- si les pentes ne diffèrent pas (p-value de l'interaction > 0.05), passer au modèle traditionnel (Analyse de covariance).

13. Contrastes orthogonaux

L'analyse de variance montre que, globalement, les différentes moyennes sont significativement différentes. Mais elle n'indique pas quelles sont les différences significatives qui existent dans cet ensemble de moyennes. Outre les tests post hoc, on peut essayer de répondre à cette question à l'aide de la méthode des contrastes orthogonaux.

13.1. Contrastes orthogonaux

On reprend les données Bransford (fichier Bransford.stw). L'étude peut être poursuivie à l'aide de la méthode des contrastes orthogonaux.

La première étape consiste opposer le groupe 2 aux trois autres groupes en testant l'hypothèse nulle :

$$3\mu_2 = \mu_1 + \mu_3 + \mu_4$$

Refaites le calcul de l'ANOVA sur les données Bransford, à l'aide du menu Statistiques - ANOVA - ANOVA Factorielle Puis, reprenez l'analyse et affichez l'onglet "Comps". Cliquez sur le bouton "Contrastes de moyennes MC" et entrez les coefficients suivants :

Cliquez ensuite sur le bouton OK, puis le bouton Calculer.

On obtient les deux tableaux de résultats suivants (N.B. le premier tableau n'est affiché que dans un rapport. Demandez donc à ce que les résultats du traitement soient copiés dans un rapport) :

ľ		Estimations de Contrastes (Bransfor.sta) /ariable dépendante : VD							
	[Estimati	Err-Ty.	t	р	-95,00%	+95,00%		
	Contraste					Lmt Cnf.	Lmt Cnf.		
	CNTRST1	10,60000	2,374868	4,463405	0,000392	5,565504	15,63450		
	Test Univarié de Significativité pour les Comp. Plannifiées (Bransfor.sta) Variable dépendante : VD								
	Tanabio (rependante	e:vD						
	Somme	Degr. de	Moyen.	F	р				
Sourc	Somme Carrés	Degr. de Liberté	Moyen. Carré	F	р				
Sourc Effet	Somme Carrés 46,81667	Degr. de Liberté	 WD Moyen. Carré 46,81667 	F 19,92199	p 9 0,00039	2			

Détails des calculs : voir la fiche de TD de statistiques.

Le F de Fisher associé à ce contraste vaut 19.92. Les degrés de liberté sont 1 et 16. Le résultat est donc significatif d'un comportement du groupe 2 différent de celui des autres groupes.

La méthode peut être poursuivie en opposant le groupe 4 aux groupes 1 et 3 (coefficients appliqués aux quatre moyennes : 1, 0, 1, -2) puis en opposant les groupes 1 et 3 (coefficients appliqués : 1, 0, -1, 0).

Statistica permet de réaliser les trois calculs en une seule étape. Reprenez la fenêtre de dialogue"Contrastes de moyennes MC" et complétez-la comme suit :

🕮 Spécifiez les Contrastes du Facteur ア 🕅							
	C	ONTRAS	STES	ОК			
Groupe	1.	2.	З.				
Gr1	-1	1	1	Annuler			
Gr2	3	0	0				
Gr3	-1	1	-1	Suppr. Colonne			
6r4	-1	-z	10	Prédéfini			
Insérer Vale	ur.			Polynôme			
-2 -	10	1	2	Autre			
Cellule	⊂ Ligr	ne Cl	Colonne				
Entrez au moins Prédéfini ou ent Remplissage A pour en compar	s une colon rez vos pro rto) ; D pou rer ; 1 pour	ne de com opres cont r ignorer u en regrouj	trastes. Sélé rastes (sais in niveau ; e per.	ectionnez un ens. issez-les ou utilisez le intiers de signe opposé			

On obtient alors les résultats suivants :

	Estimations de Contrastes (Bransfor.sta) Variable dépendante : VD									
	Estimati	Estimati Err-Ty. t p -95,00% +95,00%								
Contraste					Lmt Cnf.	Lmt Cnf.				
CNTRST1	10,60000	2,374868	4,46341	0,000392	5,56550	15,63450				
CNTRST2	-2,20000	-2,20000 1,679286 -1,31008 0,208666 -5,75993 1,35993								
CNTRST3	-0,20000	0,969536	-0,20628	0,839171	-2,25532	1,85532				

	Test Univarié de Significativité pour les Comp. Plannifiées (Bransfor.sta) Variable dépendante : VD								
	Somme	Somme Degr. de Moyen. F p							
Source	Carrés	Liberté	Carré						
Effet	50,95000	3	16,98333	7,226950	0,002782				
Erreur	37,60000	16	2,35000						

Statistica calcule un t de Student pour chacun des contrastes, et un F de Fisher pour l'ensemble des trois contrastes. On voit que seul le premier contraste conduit à un résultat significatif.

En fait, Statistica permet de ne rentrer que 1, 0 ou -1 comme coefficients. Il se charge de calculer lui-même les pondérations nécessaires. En revanche, il permet de rentrer des jeux de coefficients qui ne correspondent pas à des contrastes orthogonaux.

Pourquoi s'agit-il de contrastes orthogonaux?

Réponse : Les "vecteurs" associés aux coefficients des trois contrastes, à savoir V1=(-1, 3, -1, -1), V2=(1, 0, 1, -2), V3=(1, 0, -1, 0) sont deux à deux orthogonaux ce qui garantit l'indépendance des résultats des trois tests.

13.2. Estimation de l'intensité de l'effet

Une autre grandeur intéressante est le coefficient (souvent noté η^2 , Statistica le note R²) d'estimation de l'intensité de l'effet de la variable indépendante. Dans le cas d'une analyse de variance à un facteur, il est défini par : R² = SCinter / SCtotal.

Affichez l'onglet "Synthèse" et cliquez sur le bouton "R modèle complet". On obtient :

	Test de la SC du modèle entier vs. SC Résiduels (Bransfor.sta)										
Dépendnt	Multiple	Aultiple Multiple Ajusté SC dl MC SC dl									
Variable	R	R ²	R ²	Modèle	Modèle	Modèle	Résidu	Résidu			
VD	0,758539	0,575381	0,495765	50,95000	3	16,98333	37,60000	16			

Signification : 58% de la variance de la variable dépendante est expliquée par l'effet de la variable indépendante (les différentes conditions expérimentales).

R² est aussi le carré d'un coefficient de corrélation. Il peut en effet être obtenu comme coefficient de la corrélation entre l'ensemble des données observées d'une part, et la série de données obtenue en remplaçant chaque observation par la moyenne de son groupe d'autre part.

14. Travail à rendre par courrier électronique

Réalisez les études demandées dans les 4 exercices ci-dessous. Faites parvenir votre travail (classeur Statistica contenant les traitements demandés, commentaire saisi dans un rapport Statistica ou un fichier Word) par mail à votre enseignant (adresse : Francois.Carpentier@univ-brest.fr).

14.1. Exercice 1

Source : Jordan Navarro. L'essentiel de la statistique en Psychologie. Editions Ellipses. Paris. 2012.

La responsabilité de repenser les espaces de travail dans une entreprise de création publicitaire est confiée à un ergonome. L'objectif qui lui est fixé est de mettre en place un environnement favorisant la créativité. L'ergonome souhaite tester avec précision l'effet de quatre environnements de travail existants sur la genèse d'idées. Neuf employés de l'entreprise sont invités à tester les quatre environnements. Dans chaque environnement, un thème est donné aux participants à partir duquel ils doivent proposer le plus d'idées pertinentes possible en 20 minutes.

Vous noterez que compte tenu du nombre de participants, le contre-balancement de l'ordre de présentation des quatre environnements ne peut pas être complet pour cette étude.

La variable dépendante est donc le nombre d'idées pertinentes générées en 20 minutes. Les résultats sont les suivants :

	Condition expérimentale							
Sujets	A1	A2	A3	A4				
1	15	6	9	19				
2	11	11	11	11				
3	16	9	9	22				
4	15	10	8	20				
5	18	4	11	23				
6	16	7	8	18				
7	13	5	5	17				
8	14	6	12	20				
9	16	8	9	15				

1) Commentez la phrase de l'énoncé : "Vous noterez que compte tenu du nombre de participants, le contrebalancement de l'ordre de présentation des quatre environnements ne peut pas être complet pour cette étude."

2) Illustrez la situation proposée à l'aide d'un graphique.

3) Réalisez un test de sphéricité sur les données proposées. Interprétez le résultat fourni par Statistica.

4) On souhaite étudier si l'environnement de travail a un effet significatif sur le nombre d'idées générées. Sans tenir compte du résultat obtenu à la question 3, réalisez cette étude à l'aide de Statistica et recomposez le tableau d'analyse de variance convenable.

5) Complétez l'étude précédente à l'aide de tests post hoc convenablement choisis.

6) Comment rédigeriez-vous le texte d'une publication décrivant ces résultats ? Proposez également un tableau résumant les résultats numériques, tel qu'il pourrait figurer dans une publication ou un rapport.

14.2. Exercice 2

Le modèle de la mémorisation proposé par Craik et Lockhart (1972) stipule que le degré auquel un sujet se rappelle un matériel verbal est fonction du degré auquel ce matériel a été traité lors de sa présentation initiale. Eysenck (1974) voulait tester ce modèle et examiner s'il pouvait contribuer à expliquer certaines différences relevées entre des sujets jeunes et âgés concernant leur aptitude à se rappeler du matériel verbal. L'étude qu'il a menée incluait 50 sujets dont l'âge se situait entre 18 et 30 ans et 50 sujets compris dans la tranche d'âge 55--65 ans. Dans chacune des tranches d'âge, Eysenck a réparti les 50 sujets dans cinq groupes. Le premier devait lire une liste de mots et se contenter de compter le nombre de lettres de chacun d'eux. Le deuxième groupe devait lire chaque mot et lui trouver une rime. Le troisième groupe devait

donner un adjectif qui aurait pu être utilisé pour modifier chaque mot de la liste. Le quatrième devait essayer de se former une image précise de chaque mot. Aucun de ces quatre groupes ne savait qu'il faudrait se rappeler les mots ultérieurement. Enfin, le cinquième groupe, ou groupe d'apprentissage intentionnel, devait lire la liste et mémoriser tous les mots.

Après avoir passé trois fois en revue la liste de 27 mots, les sujets devaient retranscrire tous les mots dont ils se souvenaient. On se limite ici aux groupes 1, 2 et 5. Le nombre de mots rappelés par chacun des 60 sujets est indiqué par le tableau ci-dessous :

Age	Gr. 1	Gr. 2	Gr. 5
âgé	9	7	10
âgé	8	9	19
âgé	6	6	14
âgé	8	6	5
âgé	10	6	10
âgé	4	11	11
âgé	6	6	14
âgé	5	3	15
âgé	7	8	11
âgé	7	7	11
jeune	8	10	21
jeune	6	7	19
jeune	4	8	17
jeune	6	10	15
jeune	7	4	22
jeune	6	7	16
jeune	5	10	22
jeune	7	6	22
jeune	9	7	18
jeune	7	7	21

1) Pour chacun des six groupes obtenus en croisant les deux facteurs, étudiez la normalité de la distribution parente à l'aide d'un graphique et d'un test de Shapiro-Wilk. Commentez les résultats obtenus.

2) Etudiez, globalement, l'homogénéité des variances dans les 6 groupes.

3) Réalisez une analyse de variance sous Statistica afin de déterminer s'il existe un effet significatif de chacun des facteurs Age et Groupe ainsi que de l'interaction Age x Groupe. Commentez les résultats obtenus.

4) Compléter l'étude précédente à l'aide de tests post hoc convenablement choisis.

14.3. Exercice 3

Ref. Deaux, K. et al., Becoming American: Stereotype Threat Effects in Afro-Caribbean Immigrant Groups, Social Psychology Quaterly, Vol. 70, No 4, 2007, pp. 384-404.

Dans une étude publiée en 2007, des chercheurs se sont intéressés aux effets de la menace du stéréotype¹ chez les immigrants originaires des Caraïbes (West Indians) et ont comparé de ce point de vue les immigrants de première génération (nés aux Caraïbes) et ceux de deuxième génération (nés aux USA de parents nés aux Caraïbes).

Dans une partie de l'étude, les chercheurs ont interrogé un échantillon de 270 étudiants originaires des Caraïbes inscrits dans un College de la City University de New York. Cet échantillon comportait 145 sujets immigrés de première génération et 125 sujets immigrés de seconde génération.

Le questionnaire rempli par les sujets comportait deux échelles visant à comparer les stéréotypes culturels perçus relatifs aux Afro-Américains et aux West Indians. Pour chacune des deux cibles et pour 12 adjectifs, les sujets devaient évaluer sur une échelle en 6 points la façon dont le public en général estimait que l'adjectif s'appliquait au groupe cible. On obtenait ainsi pour chacun des deux groupes cibles une évaluation du stéréotype perçu (ou métastéréotype) sur une échelle allant de 12 à 72.

¹ La menace du stéréotype se traduit par le comportement d'une personne qui se conforme inconsciemment à un stéréotype négatif portant sur elle en effectuant une tâche.

Le classeur Statistica <u>Becoming-American.stw</u> rassemble des données fournissant des résultats analogues à ceux décrits dans l'article cité ci-dessus. L'évaluation du stéréotype perçu se trouve dans les colonnes AA (cible : Afro-Américains) et WI (cible : West Indians).

1) Réalisez une analyse de variance avec "Génération" comme facteur d'emboîtement des sujets et "Cible" comme facteur croisé avec les sujets.

2) Interprétez les résultats produits par Statistica.

3) Réaliser un graphique illustrant l'interaction entre "Génération" et "Cible" et interprétez-le.

14.4. Exercice 4

Quatre méthodes d'apprentissage d'un chapitre de mathématiques ont été testées sur 4 groupes indépendants de sujets. Pour chacun des sujets observés, on a évalué son QI et le résultat à un test de compétences en mathématiques, après apprentissage. Les résultats sont les suivants (inspiré de : exemples fournis avec Statistica, fichier Ancova.sta, avec d'autres données) :

Méthode 1		Mét	hode 2	Mét	hode 3	Mét	hode 4
QI	RESULTAT	Q	RESULTAT	QI	RESULTAT	QI	RESULTAT
95	15	82	40	93	56	96	39
97	20	86	36	97	54	96	26
99	18	92	45	100	56	100	24
101	39	99	45	102	53	102	45
103	41	99	63	103	36	105	51
106	27	114	65	105	47	106	43
110	42	117	95	108	58	110	28
111	29	120	76	111	56	115	72
112	37	122	78	112	43	117	65
131	67	122	81	119	82	106	26

Résultats en mathématiques par rapport au groupe d'appartenance et au QI

N.B. Ces données sont saisies dans la feuille de données du classeur TD2-Exercice4.stw

1) Les QI moyens dans les différents groupes diffèrent-ils significativement ?

2) Représenter à l'aide d'un graphique de type "nuage de points", le lien entre le QI et le résultat au test dans les différents groupes.

3) Etudier l'effet de la méthode sur le résultat au test, en tenant compte de la variabilité individuelle telle qu'elle est mesurée par le QI des sujets.