PSY38X2 : Traitement de données en Psychologie - TD N°3 Analyse de variance à plusieurs facteurs

1) Analyse de variance pour un plan S*A

1.1 - Traitement d'un plan S*A avec Minitab

1.1.1 Le menu Stat - ANOVA - A deux facteurs contrôlés...

Chargez Minitab et ouvrez le projet <u>W:\PSY3\TD-Minitab\INHIBIT.MPJ</u>.

Ce cas est décrit dans l'énoncé 20 de la fiche distribuée en TD de statistiques

Nous allons tester l'hypothèse : "le nombre de paires correctement rappelées dépend de la position ordinale dans la liste" à l'aide d'une analyse de variance. Deux facteurs doivent ici être pris en compte : le facteur "position ordinale" et le facteur "sujet" (car les sujets sont croisés avec l'autre facteur).

Observez attentivement la façon dont les données ont été saisies : chacun des facteurs, et la variable dépendante, sont saisis dans des colonnes différentes.

Utilisez le menu Stat - ANOVA - A deux facteurs contrôlés... et complétez le dialogue comme suit :

Analyse de variance à deu	x facteurs contrôlés 🛛 🗙
C2 Position C3 Nb mots	<u>R</u> éponse: 'Nb mots'
	Facteur de ligne : Position
	☐ Afficher les <u>m</u> oyennes
	Facteur de <u>c</u> olonne : Sujet
	☐ Afficher les moyennes
	┌ Mémoriser les valeurs ré <u>s</u> iduelles
	☐ Mémoriser les valeurs <u>a</u> justées
Sélectionner	☑ Ajuster le modèle additif <u>Graphiques</u>
Aide	<u>O</u> K Annuler

Les dénominations "facteur de ligne" et "facteur de colonne" ne sont pas particulièrement explicites, puisque la variable dépendante est saisie dans une seule colonne.

Retrouvez ainsi les résultats donnés sur la fiche de TD de Statistiques, c'est-à-dire :

Analyse d	le variance	pour Nb	mots		
Source	DL	SC	CM	F	Р
Position	5	146,85	29,37	10,32	0,000
Sujet	7	52,48	7,50	2,63	0,027
Erreur	35	99,65	2,85		
Total	47	298,98			

On peut obtenir une représentation graphique donnant les moyennes par condition expérimentale (c'est-à-dire par position dans la liste) en utilisant le menu <u>Stat - ANOVA - Analyse de moyennes</u> Complétez le dialogue de manière à obtenir le résultat suivant : A un facteur contrôlé ANOM pour Nb mots par Position

Enregistrez votre fichier et joignez-le à un mail adressé à votre enseignant.

1.1.2 - Les menus Stat - ANOVA - ANOVA équilibrée et Stat - ANOVA - Modèle linéaire généralisé

L'analyse de variance pour un plan S*A peut également être réalisée avec deux autres menus : <u>Stat - ANOVA - ANOVA équilibrée</u> et <u>Stat - ANOVA - Modèle linéaire généralisé</u>, pourvu que l'on ait quelques notions sur les sources de variation à prendre en compte.

Rappel : pour un plan S*A, les sources de variation sont S, A, et l'interaction AS, qui est confondue avec le terme d'erreur.

Dans l'exemple traité, le facteur A est la variable "Position", le facteur S est la variable "Sujet", et la variable dépendante est "Nb Mots". La fenêtre de dialogue du menu <u>Stat - ANOVA - ANOVA équilibrée</u> sera donc complétée comme suit :

Analyse de variance équi	librée 🔀
C1 Sujet C2 Position C3 Nb mots	Réponses: ['Nb mots' Modèle: Position Sujet Facteurs aléatoires :
	Sujet
	Graphiques Résultats Stockage
Aide	OK Annuler

On obtient évidemment le même résultat que précédemment. Remarquez que l'indication du facteur "Sujet" comme facteur aléatoire n'est pas indispensable. Le résultat est le même dans les deux cas. De manière équivalente, on peut aussi utiliser le menu <u>Stat - ANOVA - Modèle linéaire généralisé</u>. La fenêtre de dialogue doit être complétée de la même façon.

1.2 - Traitement d'un plan S*A avec Excel ou OpenOffice Calc

1.2.1 - Traitement d'un plan S*A avec l'utilitaire d'analyse

Affichez la feuille de données INHIBIT du fichier W:\PSY3\TD-Excel\Inhibit.xls. Il s'agit, comme précédemment, du cas est décrit dans l'énoncé 20 de la fiche de TD.

C:\Documents-Papango\DOCUMENT\Psy3-03\PSY38X2\PSY38TD3.doc- FGC - 2003/2004 31

Nous allons tester l'hypothèse : *"le nombre de paires correctement rappelées dépend de la position ordinale dans la liste"* à l'aide d'une analyse de variance. Deux facteurs doivent ici être pris en compte : le facteur "position ordinale" et le facteur "sujet" (car les sujets sont croisés avec l'autre facteur. Remarquez que l'on dispose d'une seule valeur de la variable dépendante pour chaque combinaison des deux facteurs. Pour Excel, il s'agit de deux facteurs sans répétition d'expérience. Sélectionnez le menu Outils-Utilitaire d'analyse... puis l'item Analyse de variance: deux facteurs sans

répétition d'expérience.

Complétez la fenêtre de dialogue comme suit :

Analyse de variance: deux facteurs	sans répétition	n d'expérie	ence 🦹 🕅
Paramètres d'entrée			ОК
<u>Pl</u> age d'entrée:	\$A\$1:\$G\$9	<u> ₹.</u>	Annulau
🔽 Int <u>i</u> tulé présent			Annuler
Se <u>ui</u> l de signification:	0,01		<u>A</u> ide
Options de sortie			
← Plage de <u>s</u> ortie:		₹ <u>.</u>	
Insérer une nouvelle <u>f</u> euille:			
⊂ Créer un <u>n</u> ouveau classeur			

Dans le tableau d'analyse dressé par Excel, seul le rapport F calculé pour les colonnes nous intéresse.

Source des	Somme des	Degré de	Moyenne des	F	Probabilité
variations	carrés	liberté	carrés		
Lignes	52,48	7	7,50	2,63	2,69%
Colonnes	146,85	5	29,37	10,32	3,87E-06
Erreur	99,65	35	2,85		
Total	298,98	47			

ANALYSE DE VARIANCE

1.2.2 - Analyse de variance sans l'utilitaire d'analyse pour un plan S*A

Nous allons construire le tableau d'analyse de variance en n'utilisant que des fonctions simples du tableur : somme, moyenne, variance. Le but n'est pas d'en tirer une méthode utilisable en pratique, mais plutôt de mieux comprendre les mécanismes mis en jeu dans l'analyse de variance, en s'appuyant d'une part sur la détermination des sources de variations, d'autre part sur le modèle de score.

Rappel : pour un plan S*A, avec A facteur fixe :

- les sources de variation sont A, S, AS (confondue avec l'erreur)

- le modèle de score peut être écrit : $Y_{as} = \mu + \alpha_a + s_s + \alpha s_{as} + e_{as}$.

Nous allons donc décomposer le tableau des données en plusieurs tableaux représentant les contributions de chacune des sources de variation à la formation de la variable dépendante.

Ouvrez le fichier W:\PSY3\TD-Calc\Inhibit.sxc et affichez la feuille INHIBIT.

Terme µ du modèle de score :

Calculez la moyenne générale des données en I2. Concevez la formule afin qu'elle puisse être recopiée à l'identique vers le bas et vers la droite. Recopiez cette formule sur toute la plage I2:N9. Calculez ensuite dans la plage P2:U9 la part de la variable dépendante qui n'est pas expliquée par ce terme. Vous devriez obtenir :

	01	02	О3	04	O5	06	Moyen	ne gér	érale				Reste	à exp	liquer			
S1	17	13	12	12	11	11	13,02	13,02	13,02	13,02	13,02	13,02	3,98	-0,02	-1,02	-1,02	-2,02	-2,02
S2	14	18	13	18	11	12	13,02	13,02	13,02	13,02	13,02	13,02	0,98	4,98	-0,02	4,98	-2,02	-1,02
S3	17	16	13	11	15	14	13,02	13,02	13,02	13,02	13,02	13,02	3,98	2,98	-0,02	-2,02	1,98	0,98
S4	18	16	11	10	12	10	13,02	13,02	13,02	13,02	13,02	13,02	4,98	2,98	-2,02	-3,02	-1,02	-3,02
S5	17	12	13	10	11	13	13,02	13,02	13,02	13,02	13,02	13,02	3,98	-1,02	-0,02	-3,02	-2,02	-0,02

S6	16	13	13	11	11	11	13,02	13,02	13,02	13,02	13,02	13,02	2,98	-0,02	-0,02	-2,02	-2,02	-2,02
S7	14	12	10	10	10	10	13,02	13,02	13,02	13,02	13,02	13,02	0,98	-1,02	-3,02	-3,02	-3,02	-3,02
S8	16	17	15	11	13	11	13,02	13,02	13,02	13,02	13,02	13,02	2,98	3,98	1,98	-2,02	-0,02	-2,02

<u>Terme α_a du modèle de score :</u>

L'effet du facteur "position" est le même pour tous les sujets. Il dépend de la position ordinale et il est nul en moyenne. On l'obtient en calculant des moyennes par colonne dans le tableau "Reste à expliquer" précédent.

Calculer en I12 la moyenne de la plage P2:P9. Concevoir la formule de façon que la recopie vers la droite produise les moyennes des différentes colonnes, tandis que la recopie vers le bas laisse la moyenne inchangée. Vous devriez aboutir à la formule suivante :

=MOYENNE(P\$2:P\$9)

Recopiez cette formule dans la plage I12:N19.

Calculez ensuite dans la plage P12:U19 la part de la variable dépendante qui n'est expliquée ni par μ ni par α_a . Vous devriez obtenir :

Effet de	e la varia	able « P	osition	»		Reste à	expliq	uer			
3,1	1,6	-0,52	-1,4	-1,27	-1,52	0,88	-1,63	-0,5	0,38	-0,75	-0,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	-2,13	3,38	0,5	6,38	-0,75	0,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	0,88	1,38	0,5	-0,63	3,25	2,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	1,88	1,38	-1,5	-1,63	0,25	-1,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	0,88	-2,63	0,5	-1,63	-0,75	1,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	-0,13	-1,63	0,5	-0,63	-0,75	-0,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	-2,13	-2,63	-2,5	-1,63	-1,75	-1,5
3,1	1,6	-0,52	-1,4	-1,27	-1,52	-0,13	2,38	2,5	-0,63	1,25	-0,5

Terme s_s du modèle de score :

L'effet du facteur "sujet" est le même pour toutes les positions ordinales. Il dépend du sujet considéré et il est nul en moyenne. On l'obtient en calculant des moyennes par ligne dans le tableau "Reste à expliquer" précédent.

Calculer en I22 la moyenne de la plage P12:U12. Concevoir la formule de façon que la recopie vers le bas produise les moyennes des différentes lignes, tandis que la recopie vers la droite laisse la moyenne inchangée. Vous devriez aboutir à la formule suivante :

=MOYENNE(\$P12:\$U12)

Recopiez cette formule dans la plage I22:N29.

Calculez ensuite dans la plage P22:U29 la part de la variable dépendante qui n'est pas expliquée par aucune des sources de variation prises en compte. Vous devriez obtenir :

Effet de	la varia	able « S	ujet »			Reste à	expliqu	uer : rés	sidu		
-0,35	-0,35	-0,35	-0,35	-0,35	-0,35	1,23	-1,27	-0,15	0,73	-0,4	-0,15
1,31	1,31	1,31	1,31	1,31	1,31	-3,44	2,06	-0,81	5,06	-2,06	-0,81
1,31	1,31	1,31	1,31	1,31	1,31	-0,44	0,06	-0,81	-1,94	1,94	1,19
-0,19	-0,19	-0,19	-0,19	-0,19	-0,19	2,06	1,56	-1,31	-1,44	0,44	-1,31
-0,35	-0,35	-0,35	-0,35	-0,35	-0,35	1,23	-2,27	0,85	-1,27	-0,4	1,85
-0,52	-0,52	-0,52	-0,52	-0,52	-0,52	0,4	-1,1	1,02	-0,1	-0,23	0,02
-2,02	-2,02	-2,02	-2,02	-2,02	-2,02	-0,1	-0,6	-0,48	0,4	0,27	0,52
0,81	0,81	0,81	0,81	0,81	0,81	 -0,94	1,56	1,69	-1,44	0,44	-1,31

Les valeurs figurant dans le dernier tableau "Reste à expliquer" sont :

- nulles en moyenne pour chaque ligne

- nulles en moyenne pour chaque colonne.

Elles représentent les résidus qui ne sont expliqués que par l'effet du hasard.

Détermination du tableau d'analyse de variance :

Le tableau d'analyse de variance va être construit dans la plage : A13:E17.

Les sommes de carrés du tableau d'analyse de variance sont les variations (autrement dit : Variance x Nombre de valeurs) des tableaux d'effets correspondants. Plus précisément :

- En B14, entrez la formule : =48*VAR.P(I12:N19)

- En B15, entrez la formule : =48*VAR.P(122:N29)

- En B16, entrez la formule : =48*VAR.P(P22:U29)

- En B17, entrez, au choix : =48*VAR.P(B2:G9) ou =B14+B15+B16

Les degrés de liberté sont liés au nombre de valeurs distinctes dans les tableaux d'effets et au nombre de liaison entre les lignes et colonnes. Indiquez-les en colonne C.

Calculez ensuite les carrés moyens en colonne D, et le rapport F en colonne G. Vous devriez retrouver les résultats obtenus dans les paragraphes précédents.

Enregistrez votre fichier et joignez-le à un mail adressé à votre enseignant.

2) Analyse de variance pour un plan S<A*B>

2.1 - Traitement d'un plan S<A*B> avec Minitab

2.1.1 - Tableau d'analyse de variance

Comme dans le cas précédent, l'analyse de variance pour un plan S<A*B> peut être réalisée avec le menu <u>Stat - ANOVA - ANOVA équilibrée</u>, si les groupes sont équilibrés, c'est-à-dire si on a le même nombre de sujets dans chacune des conditions définies par un niveau de A et un niveau de B ou avec le menu <u>Stat - ANOVA - Modèle linéaire généralisé</u>, dans le cas contraire. Mais, pour utiliser ces deux menus, il est indispensable d'avoir quelques notions sur les sources de variation à prendre en compte.

Rappel : pour un plan S<A*B>, les sources de variation sont A, B, l'interaction AB, et le terme d'erreur S(AB).

Ouvrez le fichier <u>W:\PSY3\TD-Minitab\Multimedia.MPJ</u>. Ce fichier reprend la situation présentée dans l'exercice 27 de la fiche de TD de statistiques.

Le plan d'expérience correspondant est : Sujet<Présentation * Rappel>

Utilisez le menu <u>Stat - ANOVA - ANOVA équilibrée</u> ou le menu <u>Stat ANOVA - Modèle linéaire</u> <u>généralisé</u> et complétez la fenêtre de dialogue comme suit :

Anal	lyse de variance équilibr	ée	×
C	3 Score	<u>R</u> éponses : Score	
		<u>M</u> odèle :	
		Présentation Rappel Présentation* Rappel	_
			ᠴ
		<u>F</u> acteurs aléatoires :	
			1
		1	-
'		O <u>p</u> tions	
	Sélectionner	<u>G</u> raphiques <u>Résu</u> ltats <u>S</u> tockage	
_	Aide	<u>O</u> K Annuler	·

Notez qu'il est inutile de faire figurer le facteur Sujet, qui est ici assimilé à la répétition d'une mesure. On obtient le résultat suivant :

Source	DL	SC	CM	F	Р
Rappel	2	301,900	150,950	16,22	0,000
Présenta	3	198,600	66,200	7,11	0,000
Rappel*Présenta	6	402,100	67,017	7,20	0,000
Erreur	48	446,800	9,308		
Total	59	1349,400			

Remarque : Pour un tel plan, le fait qu'un facteur soit fixe ou aléatoire a une importance. Refaites le calcul en indiquant l'un des deux facteurs comme facteur aléatoire et observez les différences entre les deux tableaux d'analyse de variance ainsi produits.

2.1.2 - Graphe d'interaction

Construire un graphe montrant l'interaction entre les variables Présentation et Rappel.

Un tel graphique peut notamment être obtenu à l'aide du menu <u>Stat - ANOVA - Diagramme des</u> interactions...

On devrait ainsi obtenir le diagramme d'interaction suivant :

Exercice : on sait que, dans un graphe d'interaction les deux facteurs mis en jeu jouent des rôles analogues. Utilisez le menu précédent pour obtenir le graphe d'interaction sous la forme équivalente suivante :

Enregistrez votre fichier et joignez-le à un mail adressé à votre enseignant.

2.2 - Traitement d'un plan S<A*B> avec un tableur

2.2.1 - Traitement d'un plan S<A*B> avec l'utilitaire d'analyse

Dans le cas d'un plan S<A*B>, on considère les deux facteurs de variation A et B. Le facteur *Sujet* est assimilé à une mesure répétée dans chaque condition expérimentale.

Ouvrez le fichier W:\PSY3\TD-Excel\Tulving.xls et affichez la feuille de données TULVING. Ce cas est décrit dans l'énoncé 24 de la fiche de TD de statistiques. Observez la façon dont les données ont été saisies.

Nous allons étudier les différentes hypothèses formulées dans l'énoncé à l'aide d'une analyse de variance.

Sélectionnez le menu <u>Outils-Utilitaire d'analyse...</u> puis l'item <u>Analyse de variance: deux facteurs avec</u> <u>répétition d'expérience</u>.

Complétez la fenêtre de dialogue comme suit :

— Analyse de variance: deux fa	cteurs avec répétition	ı d'expérience
Paramètres d'entrée Plage d'entrée:	\$A\$1:\$C\$31	OK
Nombre de lignes par échantillon:	10	Annuler
Se <u>u</u> il de signification:	0,01	Aide

On obtient le tableau d'analyse de variance suivant : ANALYSE DE VARIANCE

Source des	Somme des	Degré de	Moyenne des	F	Probabilité	Valeur
variations	carrés	liberté	carrés			critique pour
						F
Echantillon	2080,00	2	1040,00	115,56	3,08E-20	5,02
Colonnes	201,67	1	201,67	22,41	1,63E-05	7,13
Interaction	213,33	2	106,67	11,85	5,40E-05	5,02
A l'intérieur	486,00	54	9,00			
du groupe						
Total	2981,00	59				

Ce tableau permet d'apporter des réponses aux hypothèses qui ont été formulées. Mais il faut recourir à d'autres outils pour obtenir sans mal un graphe d'interaction (dont la construction ne pose pourtant pas de difficulté).

2.2.2 - Analyse de variance sans l'utilitaire d'analyse pour un plan S<A*B>

Comme précédemment, le but n'est pas d'en tirer une méthode utilisable en pratique, mais plutôt de mieux comprendre les mécanismes mis en jeu dans l'analyse de variance.

Pour un plan S<A*B>, avec A et B facteurs fixes :

- les sources de variation sont A, B, l'interaction AB, et le résidu S(AB)
- le modèle de score peut être écrit : $Y_{abs} = \mu + \alpha_a + \beta_b + \alpha\beta_{ab} + e_{s(ab)}$.

Ouvrez le fichier W:\PSY3\TD-Calc\Tulving.sxc et affichez la feuille TULVING.

Calculez successivement :

- la moyenne générale des données dans la plage G2:I21
 - Formule : =MOYENNE(\$B\$2:\$D\$21)
- le premier tableau de différences dans la plage K2:M21
- l'effet du facteur "longueur de la liste" dans la plage G24:I43 Formule en F24 : =MOYENNE(K\$2:K\$21)
- le tableau des différences dans la plage K24:M43
- l'effet du facteur "présentation" dans la plage G46:165
- Formules : =MOYENNE(\$K\$24:\$M\$33) en G46 et =MOYENNE(\$K\$34:\$M\$43) en G56
- le tableau des différences dans la plage K46:M65
- l'effet de l'interaction Longueur x Présentation dans la plage G68:187
- Formules : =MOYENNE(K\$46:K\$55) en F68 et =MOYENNE(K\$56:K\$65) en F78 - le tableau des différences résiduelles dans la plage K68:M87.

Construisez ensuite le tableau d'analyse de variance dans la plage A23:E28. Comme précédemment, les sommes de carrés seront obtenues en multipliant les variances (fonction VAR.P) des tableaux d'effets par le nombre d'observations (ici : 60). Vous devriez retrouver ainsi le tableau d'analyse de variance trouvé au paragraphe précédent.

Enregistrez votre fichier et joignez-le à un mail adressé à votre enseignant.

3) Analyse de variance pour un plan S<A>*B

Le traitement de ce type de plan dépasse les possibilités de l'utilitaire d'analyse. Nous utiliserons donc seulement Minitab, ou la décomposition utilisant le modèle de score dans ce cas.

3.1 - Traitement d'un plan S<A>*B avec Minitab

Rappel : Pour un plan S<A>*B, avec A et B facteurs fixes, les sources de variation sont A, S(A), B, l'interaction AB, et le résidu BS(A). Le rapport F relatif au facteur A se calcule en utilisant comme dénominateur le carré moyen relatif à S(A), tandis que les rapports F relatifs à B et AB utilisent le carré moyen du résidu.

Ouvrez le fichier <u>W:\PSY3\TD-Minitab\King.MPJ</u>.

Les données qui y sont saisies sont celles de l'énoncé 30 de la fiche de TD de Statistiques. Le plan d'expériences utilisé par King est du type S8<A3>*B6. Avec les notation utilisées dans la feuille de données Minitab, il s'agit du plan Sujet₈<Groupe₃>*Intervalle₆. Les logiciels de traitement statistique ne prévoient pas toujours ce type de plan "à mesures partiellement répétées". Ce cas peut être traité par Minitab, en utilisant l'un des menus <u>Stat - ANOVA - ANOVA équilibrée</u> ou <u>Stat - ANOVA - Modèle linéaire généralisé...</u> On complète la fenêtre de dialogue comme suit :

Modèle linéaire généralisé	×						
C3 Intervalle C4 Ambulatoire	<u>Réponses:</u> Ambulatoire						
	<u>M</u> odèle :						
	Groupe Sujet(Groupe) Intervalle Intervalle * 🔺 Groupe						
	_						
	<u>F</u> acteurs aléatoires :						
	Sujet						
	1 7						
'	Covariables Options <u>C</u> omparaisons						
Sélectionner	<u>G</u> raphiques <u>Résu</u> ltats <u>S</u> tockage						
Aide	<u>O</u> K Annuler						

Notez la manière dont on indique à Minitab l'emboîtement des sujets dans les groupes et l'interaction. Remarquez en particulier la zone de dialogue "Facteurs Aléatoires". Il est indispensable d'y mentionner le facteur sujet pour que la statistique F relative au facteur Groupe soit calculée en utilisant le carré moyen relatif à la source de variation Sujet(Groupe) au dénominateur.

On devrait obtenir comme résultat :

Analyse de la variance pour Ambulato, en utilisant la SC ajustée pour les tests

Source	DL	SC Séq	SC Ajust	CM Ajust	F	Р
Groupe	2	285815	285815	142908	7.80	0.003
Sujet(Groupe)	21	384722	384722	18320	6.84	0.000
Interval	5	399737	399737	79947	29.85	0.000
Groupe*Interval	10	80820	80820	8082	3.02	0.002
Erreur	105	281199	281199	2678		
Total	143	1432293				

On pourra comme précédemment, obtenir un graphe de l'interaction entre les variables Intervalle et Groupe à l'aide du menu <u>Graphiques - Carte ...</u> ou plus simplement <u>Stat - ANOVA - Diagramme des interactions...</u>

Exercice 1 : Réaliser le graphique suivant :

C:\Documents-Papango\DOCUMENT\Psy3-03\PSY38X2\PSY38TD3.doc- FGC - 2003/2004 37

Enregistrez votre fichier et joignez-le à un mail adressé à votre enseignant.

3.2 - Traitement d'un plan d'expérience S<A>*B avec un tableur

Pour un plan S<A>*B, avec A et B facteurs fixes :

- les sources de variation sont A, S(A), B, l'interaction AB, et le résidu BS(A)

- le modèle de score peut être écrit : $Y_{abs} = \mu + \alpha_a + s_{s(a)} + \beta_b + \alpha\beta_{ab} + e_{bs(a)}$.

Ouvrez le fichier W:\PSY3\TD-Calc\Conrad.sxc et affichez la feuille CONRAD.

Calculez successivement la moyenne générale et les effets des différentes sources de variation dans les plages indiquées.

Construisez ensuite le tableau d'analyse de variance dans la plage A13:E19. Vous devriez retrouver ainsi le tableau donné dans les fiches de TD de statistiques.

4) Autres plans d'expérience

Ouvrez le fichier W:\PSY3\TD-Minitab\Syssau.MPJ

Il s'agit ici d'un plan d'expérience assez complexe, de type S<T2*C2*M2> Observez la façon dont les données ont été saisies.

On veut d'abord faire une analyse de variance portant sur l'ensemble de l'expérience. Les facteurs à prendre en compte sont : Type Texte, Connotation, Mémoire. Pour les interactions, il faut tenir compte des interactions des facteurs pris deux à deux, et de l'interaction triple entre les trois facteurs.

Pour exécuter l'analyse de variance sous Minitab, on utilise donc le menu <u>Stat - ANOVA - Modèle</u> <u>linéaire généralisé</u> (ou ANOVA équilibrée...) en complétant le dialogue de la façon suivante :

Modèle linéaire généralisé	×						
C4 Score	<u>R</u> éponses: Score						
	<u>M</u> odèle :						
	'Type Texte' Connot Mémoire 'Type Texte'* 🔺 Connot_'Type Texte'* Mémoire Connot* Mémoire						
	Type Texte'* Connot* Mémoire						
	<u>F</u> acteurs aléatoires :						
	<u>ا</u>						
	<u> </u>						
	Covariables Options <u>C</u> omparaisons						
Sélectionner	<u>G</u> raphiques <u>Résu</u> ltats <u>S</u> tockage						
Aide	<u>O</u> K Annuler						

On devrait ainsi obtenir le tableau d'analyse de variance suivant :

Source	DL	SC Séa	SC Ajust	CM Ajust	F	Р
Type Tex	1	63.013	63.013	63.013	12.58	0.001
Connot	1	1.513	1.513	1.513	0.30	0.584
Mémoire	1	4.513	4.513	4.513	0.90	0.346
Type Tex*Connot	1	1.013	1.013	1.013	0.20	0.654
Type Tex*Mémoire	1	1.513	1.513	1.513	0.30	0.584
Connot*Mémoire	1	21.012	21.012	21.012	4.19	0.044
Type Tex*Connot*Mémoire	1	0.112	0.112	0.112	0.02	0.881
Erreur	72	360.700	360.700	5.010		
Total	79	453.387				

5) Monitorat : travail à rendre

Exercice 1 :

Ouvrez un nouveau projet Minitab et saisissez les données de l'exercice 22 de la fiche de TD de statistiques (données Craik). Retrouvez les résultats indiqués, d'abord en interprétant les données comme celles d'un plan S<A>, puis en interprétant les données comme celles d'un plan S*A. *Envoyer ensuite votre travail par mail à votre enseignant.*

Exercice 2

Les données de l'exercice 25 des fiches de TD de statistiques (données Eysenck) ont été saisies dans le fichier W:\PSY3\TD-Excel\Eysenck.xls. Utilisez ce fichier pour retrouver le tableau d'analyse de variance, soit à l'aide d'Excel, soit à l'aide de Minitab.

Envoyer ensuite votre travail par mail à votre enseignant.

Exercice 3

Reprendre les données de l'exercice 18 des fiches de TD de Statistiques (données Cochran) et les saisir dans une feuille de calcul Minitab.

Retrouver les deux tableaux d'analyse de variance indiqués.

Envoyer ensuite votre travail par mail à votre enseignant.

6) Monitorat

Exercice 4

Ouvrez le fichier <u>W:\PSY3\TD-Minitab\Neglige.MPJ</u> et traitez les questions figurant dans l'énoncé. Les données saisies sont celles de l'énoncé 32 des fiches de TD de statistiques.

Pour le tableau d'analyse de variance, vous devriez aboutir à quelque chose du genre suivant :

Source	DL	SC Séq	SC Ajust	CM Ajust	F	P
Conditio	1	0.000	0.000	0.000	0.00	0.997
Sujet(Conditio)	22	31.658	31.658	1.439	0.92	0.585 x
Main	1	21.275	21.275	21.275	13.50	0.001
Conditio*Main	1	18.169	18.169	18.169	11.53	0.003
Main*Sujet(Conditio)	22	34.677	34.677	1.576	1.32	0.213
Orientat	2	5.342	5.342	2.671	2.25	0.118
Conditio*Orientat	2	3.236	3.236	1.618	1.36	0.267
Orientat*Sujet(Conditio)	44	52.348	52.348	1.190	1.00	0.506
Main*Orientat	2	1.357	1.357	0.678	0.57	0.571
Conditio*Main*Orientat	2	0.495	0.495	0.248	0.21	0.814
Erreur	44	52.586	52.586	1.195		
Total	143	221.142				

Interprétez ensuite ce tableau : quels sont les facteurs, ou les interactions, dont les effets sont significatifs ?

Retrouve-t-on ainsi ce qui a été obtenu, par d'autres moyens, dans l'énoncé 32 de la fiche de TD de statistiques ?

C:\Documents-Papango\DOCUMENT\Psy3-03\PSY38X2\PSY38TD3.doc- FGC - 2003/2004 39