Nominal sets for quantum memory An algebraic account of linear parameters

Pierre Cagne

Laboratoire PPS, Université Paris Diderot

October 7, 2015

2 Lawvere theories with arities

Nominal sets

Pierre Cagne

Nominal sets for quantum memory 3 / 21

Definitions

Let A be a infinite countable set of variables.

Denote \mathfrak{S}_A for the permutation group of A. A \mathfrak{S}_A -set is a set together with an action of \mathfrak{S}_A .

Definitions

Let A be a infinite countable set of variables.

Denote \mathfrak{S}_A for the permutation group of A. A \mathfrak{S}_A -set is a set together with an action of \mathfrak{S}_A .

Support

An element x of a \mathfrak{S}_A -set X has support $S \subseteq A$ if for every $\sigma \in \mathfrak{S}_A$,

$$(\forall s \in S, \sigma s = s) \implies \sigma \cdot x = x$$

Remark: the set of supports of a element is closed by supset.

Definitions

Let A be a infinite countable set of variables.

Denote \mathfrak{S}_A for the permutation group c A \mathfrak{S}_A -set is a set together with an actic

$$A = \{x_1, x_2, \dots\}$$

$$X = \{\lambda \text{-terms over } A\}$$

Action: $\sigma \cdot t = t[x_i/\sigma(x_i)]$

t has support S iff $S \supseteq FV(t)$

Support

An element x of a \mathfrak{S}_A -set X has support $S \subseteq A$ if for every $\sigma \in \mathfrak{S}_A$,

$$(\forall s \in S, \sigma s = s) \implies \sigma \cdot x = x$$

Remark: the set of supports of a element is closed by supset.

Definitions (Cont'd)

Nominality

An element in a \mathfrak{S}_A -set admitting a finite support is said to be nominal.

A \mathfrak{S}_A -set X is nominal if every element of X is nominal.

Fact: the set of finite supports of a nominal element is closed under intersection.

Definitions (Cont'd)

Nominality

An element in a \mathfrak{S}_A -set admitting a finite support is said to be nominal.

A \mathfrak{S}_A -set X is nominal if every element of X is nominal.

Fact: the set of finite supports of a nominal element is closed under intersection.

Support

Let x be a nominal element of a \mathfrak{S}_A -set. One defines the support of x by

supp $(x) = \bigcap \{ \text{finite support of } x \}.$

Remark: supp (x) is the smallest support of x.

Definitions (Cont'd)

Nominality

An element in a \mathfrak{S}_A -set admitting a finite support is said to be nominal.

A \mathfrak{S}_A -set X is nominal if every element of X is nominal.

 λ -terms example: X is a nominal set because every Fact: the set of finite supports of a non term has a finite number of intersection. (free) variables supp(t) = FV(t)

Support

Let x be a nominal element of a \mathfrak{S}_A -set. One defines the support of x by

 $supp(x) = \bigcap \{ finite support of x \}.$

Remark: supp (x) is the smallest support of x.

Sheaf-rephrasing

Given X a nominal set, define

$$NX : \operatorname{Inj}_{A} \to \operatorname{Set} \\ S \mapsto \{x \in X : S \supseteq \operatorname{supp}(x)\}$$

Sheaf-rephrasing Given X a nominal set, define

$$NX : \operatorname{Inj}_A \to \operatorname{Set}$$

 $S \mapsto \{x \in X : S \supseteq \operatorname{supp}(x)\}$

But $Inj_A \simeq Inj \implies [Inj_A, Set] \simeq [Inj, Set]$, so one gets $N: Nom \rightarrow [Inj, Set]$.

Sheaf-rephrasing Given X a nominal set, define

$$NX : \operatorname{Inj}_A \to \operatorname{Set}$$

 $S \mapsto \{x \in X : S \supseteq \operatorname{supp}(x)\}$

But
$$Inj_A \simeq Inj \implies [Inj_A, Set] \simeq [Inj, Set]$$
, so one gets
 $N: Nom \rightarrow [Inj, Set]$.

Theorem

N identifies Nom with those functors $Inj \rightarrow Set$ which preserve pullbacks.

Remark: It makes the nominal sets exactly the sheaves for a certain Grothendieck topology on Inj^o. The topos of nominal sets is *Schanuel's topos*.

Sheaf-rephrasing Given X a nominal set, define

$$NX : \operatorname{Inj}_A \to \operatorname{Set}$$

 $S \mapsto \{x \in X : S \supseteq \operatorname{supp}(x)\}$

But $Inj_A \simeq Inj \implies [Inj_A, Set] \simeq [Inj, Set]$, so one gets

 $N: \text{Nom} \rightarrow [\text{Inj}, \text{Set}].$

λ -terms example:
View X asN identifies Nom with
Remark: It makes the
Grothendieck topology on Inj°. The topos of nominal sets is Schanuel's
topos.

Lawvere theories with arities

Pierre Cagne

Nominal sets for quantum memory 7 / 21

What is a monoid?

- ► a set *M*,
- a 2-ary multiplication $M^2 \rightarrow M$,
- a constant neutral $1 \rightarrow M$,

What is a monoid?

- ► a set *M*,
- a 2-ary multiplication $M^2 \rightarrow M$,
- ▶ a constant neutral $1 \rightarrow M$,

satisfying some axioms.

What is a group?

- ► a set G,
- a 2-ary multiplication $G^2 \rightarrow G$,
- a 1-ary inversion $G \rightarrow G$
- \blacktriangleright a constant neutral $1 \rightarrow G$,

What is a monoid?

- ► a set *M*,
- a 2-ary multiplication $M^2 \rightarrow M$,
- a constant neutral $1 \rightarrow M$,

satisfying some axioms.

What is a group?

► a set G,

- a 2-ary multiplication $G^2 \rightarrow G$,
- a 1-ary inversion $G \rightarrow G$
- \blacktriangleright a constant neutral $1
 ightarrow {\cal G}$,

satisfying some axioms.

What is an algebraic structure?

► a set A,

 for each n ≥ 0, a collection of n-ary operations Aⁿ → A
 ...

Categorical POV

What is an algebraic structure?

► a set A,

▶ for each $n \ge 0$, a collection of n-ary operations $A^n \to A$

Categorical POV

What is an algebraic structure?

► a set A,

▶ for each $n \ge 0$, a collection of n-ary operations $A^n \to A$

satisfying some axioms.

Denote \aleph_0 for the category of finite set $\mathbf{n} = \{0, \dots, n-1\}$ and set-maps between them.

Lawvere theory

An algebraic structure is just a finite-product-preserving functor $A: \Theta^{\circ} \rightarrow Set$ where

- ► there is a finite-sum-preserving bijective-on-objects functor $\aleph_0 \to \Theta$,
- morphisms $\mathbf{n} \to 1$ in Θ° are the *n*-ary operation.

The axioms are the commutative diagrams of Θ° .

Generalized algebraic structure by example What is a category?

Generalized algebraic structure by example What is a category?

- ▶ a graph C,
- for each $n \ge 0$, a "n-ary" composition map

 $\operatorname{Path}(n,C)\to C,$

Generalized algebraic structure by example What is a category?

- ▶ a graph C,
- for each $n \ge 0$, a "n-ary" composition map

 $\operatorname{Path}(n,C)\to C,$

satisfying some axioms.

À la Lawvere

A category is just a functor $C: \Theta^{\circ} \rightarrow \text{Set}$ where

- ▶ there is a "nice" functor $\Lambda \rightarrow \Theta$, $(\Lambda = finite linear graphs)$
- morphisms $\Lambda_n \to \Lambda_1$ in Θ° are the compositions,

and such that $\exists G \in \text{Graph}, C(\Lambda_n) = \text{Graph}(\Lambda_n, G).$

The axioms are the commutative diagrams of Θ° .

Generalized algebraic structure What is a generalized algebraic structure of arity $A \hookrightarrow E$?

Generalized algebraic structure What is a generalized algebraic structure of arity $A \hookrightarrow E$?

- ► an object E in E,
- ▶ for each $a, b \in A$, a collection of "(a, b)-ary" operations

$$\mathbf{E}(a, E) \rightarrow \mathbf{E}(b, E),$$

Generalized algebraic structure What is a generalized algebraic structure of arity $A \hookrightarrow E$?

- ▶ an object *E* in **E**,
- ▶ for each $a, b \in A$, a collection of "(a, b)-ary" operations

$$\mathsf{E}(a,E)\to\mathsf{E}(b,E),$$

satisfying some axioms.

(Berger, Melliès, Weber)

A generalized algebraic structure of arity $\mathbf{A} \hookrightarrow \mathbf{E}$ is just a functor $F: \Theta^{\circ} \rightarrow \text{Set}$ where

- there is a "nice" functor $A \rightarrow \Theta$,
- morphisms $a \rightarrow b$ in Θ° are the (a, b)-ary operations,

and such that $\exists E \in \mathbf{E}, F(a) = \mathbf{E}(a, E)$.

The axioms are the commutative diagrams of Θ° .

Warnings!

Technicalities have been swept under the rug.

▶ The arity $A \hookrightarrow E$ can not be any embedding: there must exists $E \hookrightarrow Psh(A)$ such that the composite functor

$$\mathsf{A} \hookrightarrow \mathsf{E} \hookrightarrow \mathsf{Psh}\,(\mathsf{A})$$

is the Yoneda embedding.

► The "niceness" of $j: \mathbf{A} \to \Theta$ is that the monad

$$j_*j_!$$
: Psh (A) \rightarrow Psh (A)

should restict to a monad on E.

Quantum memory

Pierre Cagne

lominal sets for quantum memory 13 / 21

Quantum computation syntax

One construct ternary judgments: $\Delta \mid \Gamma \vdash t$.

+ contraction/weakening rules on Γ (not $\Delta !)$ + permutations on both Δ et $\Gamma.$

Pierre Cagne

Theory of quantum computation

There are 12 axioms. Just focus on those 3:

Theory of quantum computation

There are 12 axioms. Just focus on those 3:

Bij: the category of finite sets \mathbf{n} and bijections.

Bij: the category of finite sets \mathbf{n} and bijections.

 $\Sigma \operatorname{Bij} \hookrightarrow \operatorname{Psh}(\operatorname{Bij})$: the full subcategory of finite sum of representable presheaves. So the objects of $\Sigma \operatorname{Bij}$ are those finite sequence (n_1, \ldots, n_k) of integers.

Bij: the category of finite sets \mathbf{n} and bijections.

 $\Sigma \operatorname{Bij} \hookrightarrow \operatorname{Psh}(\operatorname{Bij})$: the full subcategory of finite sum of representable presheaves. So the objects of $\Sigma \operatorname{Bij}$ are those finite sequence (n_1, \ldots, n_k) of integers.

 Θ_Q : the category freely generated over Σ Bij by

$$egin{array}{l} \mathsf{new}\colon (0) o (1) \ \mathsf{measure}\colon (1) o (0,0) \ \mathsf{apply}_U\colon (n) o (n) \end{array}$$

and quotiented by the interpretations of the axioms.

Bij: the category of finite sets \mathbf{n} and bijections.

 $\Sigma Bij \hookrightarrow Psh (Bij)$: the full subcategory of finite sum of representable presheaves. So the objects of ΣBij are those finite sequence (n_1, \ldots, n_k) of integers.

 Θ_Q : the category freely generated over Σ Bij by

$$egin{array}{l} \mathsf{new}\colon (0) o (1) \ \mathsf{measure}\colon (1) o (0,0) \ \mathsf{apply}_U\colon (n) o (n) \end{array}$$

and quotiented by the interpretations of the axioms.

Why is it the theory of quantum computation?

Because $j_Q: \Sigma Bij \rightarrow \Theta_Q$ is a generalized algebraic theory and its structures are exactly the models described in *Algebraic Effects, Linearity, and Quantum Programming Languages, by S.Staton.*

16 / 21

Back to nominal sets

By the same process, one can construct $\Theta_{\rm coll}$ the category associated to the theory whose only operator is coll satisfying the axiom:

 $\operatorname{coll}(a, \operatorname{coll}(b, x)) = \operatorname{coll}(b, \operatorname{coll}(a, x)).$
By the same process, one can construct Θ_{coll} the category associated to the theory whose only operator is coll satisfying the axiom:

 $\operatorname{coll}(a, \operatorname{coll}(b, x)) = \operatorname{coll}(b, \operatorname{coll}(a, x)).$

Fact

 $\begin{array}{l} \Theta_{coll} \text{ is isomorphic to } \Sigma(lnj^{\circ}). \text{ A generalized structure for} \\ j_{coll} \colon \Sigma Bij \to \Theta_{coll} \text{ is then identified with just a functor } lnj \to Set. \end{array}$

By the same process, one can construct Θ_{coll} the category associated to the theory whose only operator is coll satisfying the axiom: coll(a, coll(b, x)) = coll(b, coll(a, x)).

Fact

 $\begin{array}{l} \Theta_{\text{coll}} \text{ is isomorphic to } \Sigma(\text{Inj}^\circ). \text{ A generalized structure for} \\ j_{\text{coll}} \colon \Sigma\text{Bij} \to \Theta_{\text{coll}} \text{ is then identified with just a functor Inj} \to \text{Set.} \end{array}$

Definition

A nominal set is a functor $Inj \rightarrow Set$ preserving pullbacks.

By the same process, one can construct Θ_{coll} the category associated to the theory whose only operator is coll satisfying the axiom: coll(a, coll(b, x)) = coll(b, coll(a, x)).

Fact

 Θ_{coll} is isomorphic to $\Sigma(\text{Inj}^{\circ})$. A generalized structure for $j_{\text{coll}} \colon \Sigma \text{Bij} \to \Theta_{\text{coll}}$ is then identified with just a functor $\text{Inj} \to \text{Set}$.

Corollary

A nominal set is a model of j_{coll} sending the commutative diagrams

to pullbacks.

By the same process, one can construct Θ_{meas} the category associated to the theory whose only operator is meas satisfying the axiom:

Definition

A qnominal set is a model of j_{meas} sending the commutative diagrams

$$(n, n, n, n) \xleftarrow{(1 \ 3 \ 2 \ 4)} (n, n, n, n) \xleftarrow{(n \ 3 \ 2 \ 4)} (n, n, n, n) \xleftarrow{\text{meas}_{i}^{n} \oplus \text{meas}_{i}^{n}} (n+1, n+1)$$
$$\underset{(n+1, n+1)}{\stackrel{\text{meas}_{i}^{n+1}}} n+2$$

to pullbacks.

Pierre Cagne

With quantum nominality comes the notion of quantum support:

Support

For M a qnominal set, the quantum support of a element $x \in M_n$ is defined as

$$supp(x) = \{i \in \{0, ..., n-1\} : \forall y, x \neq meas_i^{n-1}(y)\}.$$

Interpretation: the quantum support of a program is then the set of memory location for which the program is not a direct measure on it.

Quantum nominality is relevant

The theory Q contains meas and its axiom, so it makes sense to ask whether a model of Q is qnominal or not.

Proposition

Any model of Q is a qnominal set.

Quantum nominality is relevant

The theory Q contains meas and its axiom, so it makes sense to ask whether a model of Q is gnominal or not.

Proposition

Any model of Q is a qnominal set.

Preuve.

All is left to show is that if $x \in M_2$ can be written

$$measure(a, t, u) = x = measure(b, v, w),$$

then $\exists y_1, y_2, y_3, y_4 \in M_0$,

$$t = \text{measure}(b, y_1, y_2), \quad u = \text{measure}(b, y_3, y_4)$$

 $v = \text{measure}(a, y_1, y_3), \quad w = \text{measure}(a, y_2, y_4)$

Draw the proof!

Pierre Cagne

Thanks.

If interested, one can find a complete internship report on my webpage: http://www.eleves.ens.fr/home/cagne/