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Definitions

Let A be a infinite countable set of variables.

Denote SA for the permutation group of A.
A SA-set is a set together with an action of SA.

Support
An element x of a SA-set X has support S ⊆ A if for every σ ∈ SA,

(∀s ∈ S , σs = s) =⇒ σ · x = x

Remark: the set of supports of a element is closed by supset.

A = {x1, x2, . . . }
X = {λ-terms over A}

Action: σ · t = t[xi/σ(xi )]

t has support S iff S ⊇ FV(t)
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Definitions
(Cont’d)

Nominality
An element in a SA-set admitting a finite support is said to be nominal.

A SA-set X is nominal if every element of X is nominal.

Fact: the set of finite supports of a nominal element is closed under
intersection.

Support
Let x be a nominal element of a SA-set. One defines the support of x by

supp (x) =
⋂
{finite support of x}.

Remark: supp (x) is the smallest support of x .

λ-terms example:
X is a nominal set because every
term has a finite number of
(free) variables

supp (t) = FV(t)
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Sheaf-rephrasing
Given X a nominal set, define

NX : InjA → Set
S 7→ {x ∈ X : S ⊇ supp (x)}

But InjA ' Inj =⇒ [InjA, Set] ' [Inj, Set], so one gets

N : Nom→ [Inj, Set] .

Theorem
N identifies Nom with those functors Inj→ Set which preserve pullbacks.

Remark: It makes the nominal sets exactly the sheaves for a certain
Grothendieck topology on Inj◦. The topos of nominal sets is Schanuel’s
topos.

λ-terms example:
View X as

{xj : j ∈ J ⊂f N} 7→ {λ-terms with fv among the xj ’s}

Then pass to de Bruijn indices.
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Lawvere theories with arities
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Classical algebraic theories

What is a monoid?
I a set M,
I a 2-ary multiplication M2 → M,
I a constant neutral 1→ M,

satisfying some axioms.

What is a group?
I a set G ,
I a 2-ary multiplication G 2 → G ,
I a 1-ary inversion G → G

I a constant neutral 1→ G ,
satisfying some axioms.

What is an algebraic structure?
I a set A,
I for each n ≥ 0, a collection of

n-ary operations An → A

satisfying some axioms.
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Categorical POV
What is an algebraic structure?

I a set A,
I for each n ≥ 0, a collection of n-ary operations An → A

satisfying some axioms.

Denote ℵ0 for the category of finite set n = {0, . . . , n − 1} and set-maps
between them.

Lawvere theory
An algebraic structure is just a finite-product-preserving functor
A : Θ◦ → Set where

I there is a finite-sum-preserving bijective-on-objects functor ℵ0 → Θ,
I morphisms n→ 1 in Θ◦ are the n-ary operation.

The axioms are the commutative diagrams of Θ◦.
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Generalized algebraic structure by example
What is a category?

I a graph C ,
I for each n ≥ 0, a “n-ary” composition map

Path(n,C )→ C ,

satisfying some axioms.

À la Lawvere
A category is just a functor C : Θ◦ → Set where

I there is a “nice” functor Λ→ Θ, (Λ = finite linear graphs)
I morphisms Λn → Λ1 in Θ◦ are the compositions,

and such that ∃G ∈ Graph, C (Λn) = Graph (Λn,G ).

The axioms are the commutative diagrams of Θ◦.
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Generalized algebraic structure
What is a generalized algebraic structure of arity A ↪→ E?

I an object E in E,
I for each a, b ∈ A, a collection of “(a, b)-ary” operations

E (a,E )→ E (b,E ) ,

satisfying some axioms.

(Berger, Melliès, Weber)
A generalized algebraic structure of arity A ↪→ E is just a functor
F : Θ◦ → Set where

I there is a “nice” functor A→ Θ,
I morphisms a→ b in Θ◦ are the (a, b)-ary operations,

and such that ∃E ∈ E, F (a) = E (a,E ).

The axioms are the commutative diagrams of Θ◦.
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Warnings!
Technicalities have been swept under the rug.

I The arity A ↪→ E can not be any embedding: there must exists
E ↪→ Psh (A) such that the composite functor

A ↪→ E ↪→ Psh (A)

is the Yoneda embedding.
I The “niceness” of j : A→ Θ is that the monad

j∗j! : Psh (A)→ Psh (A)

should restict to a monad on E.
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Quantum memory
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Quantum computation syntax
One construct ternary judgments: ∆ | Γ ` t.

∆, a | Γ ` t

∆ | Γ ` new(a.t)

t

∆ | Γ ` t ∆ | Γ ` u

∆, a | Γ ` measure(a, t, u)

t
u

∆, ~b | Γ ` t

∆, ~a | Γ ` applyU(~a, ~b.t)

U t

∀U ∈ U2n (C)

+ contraction/weakening rules on Γ (not ∆!) + permutations on both ∆
et Γ.
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Theory of quantum computation

There are 12 axioms. Just focus on those 3:

(D)
=

(L)
=

(K)
=

Pierre Cagne Nominal sets for quantum memory 15 / 21



Theory of quantum computation

There are 12 axioms. Just focus on those 3:

(D)
=

(L)
=

(K)
=

Pierre Cagne Nominal sets for quantum memory 15 / 21



Make it a generalized algebraic theory
Bij: the category of finite sets n and bijections.

ΣBij ↪→ Psh (Bij): the full subcategory of finite sum of representable
presheaves. So the objects of ΣBij are those finite sequence (n1, . . . , nk) of
integers.

ΘQ : the category freely generated over ΣBij by

new : (0)→ (1)

measure : (1)→ (0, 0)

applyU : (n)→ (n)

and quotiented by the interpretations of the axioms.

Why is it the theory of quantum computation?
Because jQ : ΣBij→ ΘQ is a generalized algebraic theory and its structures
are exactly the models described in Algebraic Effects, Linearity, and
Quantum Programming Languages, by S.Staton.
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Back to nominal sets
By the same process, one can construct Θcoll the category associated to
the theory whose only operator is coll satisfying the axiom:

coll(a, coll(b, x)) = coll(b, coll(a, x)).

Fact
Θcoll is isomorphic to Σ(Inj◦). A generalized structure for
jcoll : ΣBij→ Θcoll is then identified with just a functor Inj→ Set.

A

q

nominal set is a

Pierre Cagne Nominal sets for quantum memory 17 / 21



Back to nominal sets
By the same process, one can construct Θcoll the category associated to
the theory whose only operator is coll satisfying the axiom:

coll(a, coll(b, x)) = coll(b, coll(a, x)).

Fact
Θcoll is isomorphic to Σ(Inj◦). A generalized structure for
jcoll : ΣBij→ Θcoll is then identified with just a functor Inj→ Set.

A

q

nominal set is a

Pierre Cagne Nominal sets for quantum memory 17 / 21



Back to nominal sets
By the same process, one can construct Θcoll the category associated to
the theory whose only operator is coll satisfying the axiom:

coll(a, coll(b, x)) = coll(b, coll(a, x)).

Fact
Θcoll is isomorphic to Σ(Inj◦). A generalized structure for
jcoll : ΣBij→ Θcoll is then identified with just a functor Inj→ Set.

Definition
A

q

nominal set is a functor Inj→ Set preserving pullbacks.
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Fact
Θcoll is isomorphic to Σ(Inj◦). A generalized structure for
jcoll : ΣBij→ Θcoll is then identified with just a functor Inj→ Set.

Corollary
A

q

nominal set is a model of jcoll sending the commutative diagrams

n n + 1

n + 1 n + 2

ιni

ιnj−1 ιn+1
j

ιn+1
i

(i < j)

to pullbacks.
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Back to nominal sets
By the same process, one can construct Θmeas the category associated to
the theory whose only operator is meas satisfying the axiom:

(K)
=

Definition
A qnominal set is a model of jmeas sending the commutative diagrams

(n, n, n, n) (n, n, n, n) (n + 1, n + 1)

(n + 1, n + 1) n + 2

measnj−1⊕measnj−1

(1 3 2 4) measni ⊕measni

measn+1
j

measn+1
i

to pullbacks.
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Quantum support

With quantum nominality comes the notion of quantum support:

Support
For M a qnominal set, the quantum support of a element x ∈ Mn is
defined as

supp (x) =
{
i ∈ {0, . . . , n − 1} : ∀y , x 6= measn−1

i (y)
}
.

Interpretation: the quantum support of a program is then the set of
memory location for which the program is not a direct measure on it.
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Quantum nominality is relevant
The theory Q contains meas and its axiom, so it makes sense to ask
whether a model of Q is qnominal or not.

Proposition
Any model of Q is a qnominal set.

Preuve.
All is left to show is that if x ∈ M2 can be written

measure(a, t, u) = x = measure(b, v ,w),

then ∃y1, y2, y3, y4 ∈ M0,

t = measure(b, y1, y2), u = measure(b, y3, y4)

v = measure(a, y1, y3), w = measure(a, y2, y4)
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Draw the proof!

t

u =

v

w
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Thanks.

If interested, one can find a complete internship report on my webpage:
http://www.eleves.ens.fr/home/cagne/
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