
Group theory without groups
Pierre Cagne1 1 Appalachian State University,

pierre.cagne@gmail.com

Last updated on August 25, 2022

These notes are supporting the colloquium given at the HoTTEST Summer
School 2022. They present a synthetic version of group theory by taking
advantage of two key aspects of HoTT: the built-in types of identifications
and the univalence axiom.

According to popular belief, Henri Poincaré would have said to Sophus
Lie:

Tout en mathématique est histoire de groupes.2 2 Rough translation: All in mathematics is a
tale of groups.

But if we look more closely to what Poincaré considered a group back
then, it is safe to assume that he meant that “all in mathematics is a tale
of symmetries”. If you have no preconcieved idea about goup theory and
you are tying to read the seminal work of Klein, Lie and Poincaré, or
the precursor ideas of Riemann and Galois, this is the picture you will
see emerge: a group is a collection of symmetries of some mathematical
object that play well together. Ordinary group theory tends to relegate
the part in emphasis to a subordinate role. The goal of the approach
presented in these notes is to make the mathematical object of which we
are studying the symmetries the primitive notion, and not the other way
around. This is by no mean a novel ideal, and this has been implemented by
algebraic topologists for decades. However, I want to convey that univalent
foundations allow for a formal rigorous encoding of this way of thinking,
making group theory more akin to what the founders of groups were
thinking of.

These notes are an invitation for the reader to dive deeper into the
subject with the work-in-progress book “Symmetry” [Bez+22]. The book
addresses undergraduate students with a strong curiosity for mathematics,
and does not require knowledge about either ordinary group theory nor
univalent type theory. People that have been following the HoTTEST
Summer School 2022 are then more than well-equipped to read the book.

HoTT has built-in symmetries

In a type 𝐴, each element 𝑎 comes with the type of identifications 𝑎 = 𝑎.
The elements of 𝑎 = 𝑎 are called the symmetries of 𝑎 in 𝐴. This is not just
a game of naming convention. Take your favorite type constructed in
class and explore the type of identifications from a element to itself and
you’ll most likely be describing a symmetry in the intuitive sense. For
example, describe the elements of 2 = 2 in the universe 𝒰, where 2 denote
the set with two elements, 0 and 1. Through the univalence axiom, you can
completely describe these elements: there is refl2 and the identification
that corresponds through univalence to the equivalence swapping the two
elements.

group theory without groups 2

For a more geometric example, define the type of graphs to be

Graph :≡ ∑
𝑉 :𝒰

(𝑉 → 𝑉 → 2)

Then consider the square 𝑆, that is the graph whose first projection is the
set 𝑉 :≡ 4 with 4 elements (0, 1, 2 and 3), and whose second projection is
the function 𝑒: 4 → 4 → 2 defined by

𝑒 0 2 :≡ 0, 𝑒 2 0 :≡ 0, 𝑒 1 3 :≡ 0, 𝑒 3 1 :≡ 0, 𝑒 𝑖 𝑖 :≡ 0, 𝑒 𝑖 𝑗 :≡ 1 otherwise

What are the symmetries of 𝑆? By definition it is a identification 𝜎: 𝑆 = 𝑆 in
0 1

3 2

the type of graphs. By using the description of identification of dependent
sums, 𝜎 is equivalently given by a pair of identifications 𝜎1: 4 = 4 and
𝜎2: trp𝜎1 𝑒 = 𝑒. The transport involved in 𝜎2 is the transport in the type
family 𝑉 ↦ (𝑉 → 𝑉 → 2). Now, by univalence, we know that 𝜎1 is
equivalently an equivalence 𝜎1: 𝑉 ≃ 𝑉. By induction, prove that there
is an identification (trp𝑝 𝑓) 𝑖 𝑗 = 𝑓 (̃𝑝−1 𝑖) (̃𝑝−1 𝑗). This is proven by

instantiating 𝑝 ≡ refl𝑉 and recalling that r̃efl𝑉 ≡ id𝑉. In the end, the
symmetry 𝜎 is equivalently given by an equivalence 𝜎1: 4 ≃ 4 together
with an identification 𝑒 𝑖 𝑗 = 𝑒 (𝜎1 𝑖) (𝜎1 𝑗) for all 𝑖, 𝑗: 4. In other words,
a symmetry of the square is a permutation of its vertices such that two
vertices are connected by an edge if and only if their images are. These are
exactly what we intend to call symmetry for such a square: they are the
axis symmetries in red and the blue rotations in the drawing.

The structure of the type of identifications

Not only are symmetries built-in in HoTT, but so is their expected
behaviour. You have seen in the course that the type 𝑎 = 𝑎 contains a
specific element refl𝑎, and that you can define functions _−1: (𝑎 = 𝑎) →
(𝑎 = 𝑎) and _ ⋅ _: (𝑎 = 𝑎) → (𝑎 = 𝑎) → (𝑎 = 𝑎) by =-induction. You
also have seen that you have dependent functions lunit :∏𝑝:𝑎=𝑎 refl𝑎 · = 𝑝,
runit :∏𝑝:𝑎=𝑎 𝑝 ⋅ refl𝑎 = 𝑝, linv:∏𝑝:𝑎=𝑎 𝑝

−1 ⋅ 𝑝 = refl𝑎, rinv:∏𝑝:𝑎=𝑎 𝑝 ⋅ 𝑝−1 =
refl𝑎, and ass:∏𝑝,𝑞,𝑟 :𝑎=𝑎(𝑝 ⋅ 𝑞) ⋅ 𝑟 = 𝑝 ⋅ (𝑞 ⋅ 𝑟), again defined by =-induction.
Let me insist on the fact that these functions are obtained by =-induction,
and thus need the full definition of the type of identifications 𝑎 = 𝑏 for
generic 𝑎, 𝑏: 𝐴.

Those acqainted to ordinary group theory will notice that this is
very reminiscent of the usual definition of groups if we replace refl𝑎 by the
neutral element and ⋅ by the multiplication operation. Indeed, the definition
of groups in ordinary mathematics, called abstract groups in these notes
to differentiate from the objects we will call groups later, is as follows: an
abstract group is a set G together with elements

1:G, 1/_:G → G, _ × _:G → G → G

group theory without groups 3

satisfying the following axioms

1 × 𝑥 = 𝑥 for all 𝑥:G

𝑥 × 1 = 𝑥 for all 𝑥:G

(1/𝑥) × 𝑥 = 1 for all 𝑥:G

𝑥 × (1/𝑥) = 1 for all 𝑥:G

𝑥 × (𝑦 × 𝑧) = (𝑥 × 𝑦) × 𝑧 for all 𝑥, 𝑦, 𝑧:G

The main difference between an abstract group and (𝑎 = 𝑎) is that the
dependent functions lunit , runit , linv, rinv, and ass are simply statements
in the case of an abstract group. This is due to the fact that their target
types are propositions. So, if one require 𝑎 = 𝑎 to be a set (in the sense of
HoTT), one recover exactly the structure of an abstract group.

Connectedness

You have seen with Egbert the notion of truncation. Recall that for
each type 𝐴, we can form a type ‖𝐴‖ which is the “universal proposition
made from 𝐴”. It means that ‖𝐴‖ is a proposition, and that there is a map
|_|: 𝐴 → ‖𝐴‖ such that mapping out of ‖𝐴‖ into a proposition 𝑃 is fully
determined by the image of |𝑎| in 𝑃 for each 𝑎: 𝐴.

Deriving from it is the notion of connectedness. A type 𝐴 is said
to be connected when 𝐴 is not empty and we have an element of the
proposition isConn𝐴 :≡ ∏𝑎,𝑎′:𝐴‖𝑎 = 𝑎′‖. This is read as “every element is
merely equal to any other”. Note that this is very different from the notion
of contractibility where “every element is effectively equal to any other”.
Connectedness is typically used as follows: given a family of propositions
𝑃 𝑎 indexed by 𝑎: 𝐴 and a specific point 𝑎0: 𝐴 for which 𝑃 𝑎0 can be proved
true “easily”; you can invoke connectedness to show that 𝑃𝑎 holds for all
𝑎: 𝐴. Indeed, given 𝑎: 𝐴, you are trying to provide an element in 𝑃 𝑎 from an
element 𝑤: ‖𝑎0 = 𝑎‖; but because the goal 𝑃 𝑎 is a proposition, it is enough
to provide such an element when 𝑤 is of the form |𝑝| for 𝑝: 𝑎0 = 𝑎. This is
easy enough as we can associate to each 𝑝: 𝑎0 = 𝑎 the element trp𝑝 𝑥0: 𝑃 𝑎
where 𝑥0 is the element proving 𝑃 𝑎0 mentioned above.

Examples of connected types include any contractible type of course,
but also other typical types that you have seen during the course such
as the circle. Recall that 𝑆1 is a type containing an element • : 𝑆1 and a
symmetry 	: • = • such that for any type family 𝑇 : 𝑆1 → 𝒰, the choice
of a dependent pair (𝑥, ℓ):∑𝑦:𝑇 • 𝑦 =	 𝑦 determines fully a dependent The notation 𝑡0 =𝑝 𝑡1 applies in the context

of a type family 𝑇 : 𝐴 → 𝒰, where 𝑡0: 𝑇 𝑎0,
𝑡1: 𝑇 𝑎1, and 𝑝: 𝑎0 = 𝑎1. It is the type of
identifications from 𝑡0 to 𝑡1 over 𝑝, and it
is equivalent to the type of identifications
trp𝑝 𝑡0 = 𝑡1 in 𝑇 𝑎1.

function 𝑓 :∏𝑐:𝑆1 𝑇 𝑐 such that 𝑓 • ≡ 𝑥 together with an identification
ap𝑓	 = ℓ. Informally, 𝑆1 is the “free type with a symmetry”. Because
we already have a specific point • in 𝑆1, proving that 𝑆1 is connected is
equivalent to providing a dependent function ∏𝑐:𝑆1‖ • = 𝑐‖. Using the
property just described, it amounts to give an element 𝑥: ‖ • = • ‖ and an
identification ℓ: 𝑥 =	 𝑥 over 	. Take 𝑥 :≡ |refl • |, and choose for ℓ the
element in trp	 𝑥 = 𝑥 given by the fact that both side are element of the
proposition ‖ • = • ‖, and you are done!

group theory without groups 4

Definition of groups

We define a group to be essentially a 1-truncated pointed connected type.
However, we must take some precautions. Let us first define: The notation 𝒰=1

∗ contains the symbol 𝒰 to
refer to types, the symbol ∗ to refer to the
pointedness, and the symbol “= 1” to refer
to both the 1-truncatedness (≤ 1) and the
connectedness (> 0).

𝒰=1
∗ :≡ ∑

𝐴:𝒰
𝐴 × isConn𝐴 × isGrpd𝐴

where isGrpd𝐴 denotes the proposition ∏𝑥,𝑦:𝐴 isSet(𝑥 = 𝑦). Notice that A type 𝐴 for which isGrpd𝐴 is inhabited is
said to be a groupoid, or to be 1-truncated.under the hypothesis isConn𝐴, then isGrpd𝐴 is equivalent to isSet(𝑎 = 𝑎)

for any choice of 𝑎: 𝐴. So that the type above can be rewritten as:

𝒰=1
∗ ≃ ∑

𝐴:𝒰
∑
𝑎:𝐴

isSet(𝑎 = 𝑎) × ∏
𝑥:𝐴

‖𝑎 = 𝑥‖

The type of groups is defined as a unary sum of 𝒰=1
∗ . That is, the type This corresponds as a “wrapper type” in

Agda:
data Group : 𝒰 where

Ω : 𝒰=1
∗ → Group

Group is defined inductively with a unique constructor Ω:𝒰=1
∗ → Group

such that _ ∘ Ω: (Group → 𝐴) → (𝒰=1
∗ → 𝐴) is an equivalence for all type

𝐴. It is important to understand t
In particular, there is a (propositionally unique) map B:Group →

𝒰=1
∗ in the fiber at id𝒰=1

∗
. There is an identification 𝛽:B ∘ Ω = id𝒰=1

∗
by

definition, and there is an identification Ω ∘ B = idGroup because both
(Ω ∘ B, 𝑥 ↦ apΩ 𝛽𝑥) and (idGroup, reflΩ) are in the fiber of _ ∘ Ω at Ω. All of
that is a formal intricated way to say that Group is a “black box” that is
also an exact copy of 𝒰=1

∗ . It is important to understand that Group is not
a type constructed with type formers such as ∑ and ∏, it is a posited type
with the given universal property above. Each connected 1-truncated type The type Group and its elimination rule are

posited in the exact same sense that N and
its elimination rule are posited.

𝐴, pointed at an element 𝑎: 𝐴, provides a group Ω(𝐴, 𝑎). We call (𝐴, 𝑎) the
classifying type of the group Ω(𝐴, 𝑎). Conversely, every group is of this
form, and given 𝐺:Group, there is always an identification ΩB𝐺 = 𝐺

Note that B𝐺 is a pointed type for any group 𝐺:Group. It has a distin-
guished point, denoted sh𝐺, and called “the shape of 𝐺”. We say that 𝐺 is
“the group of symmetries of sh𝐺”. An important point is that any other
element 𝑠:B𝐺 is as good as a shape for 𝐺, in the sense that ‖𝐺 = Ω(B𝐺, 𝑠)‖ We abusively consider the pointed type B𝐺

as a bare type when needed. For example,
“𝑠:B𝐺” is inaccurate and should formally be
written as 𝑠: pr1B𝐺. We find that it clutters
the text too much and we trust the reader
to coerce a pointed type to its underlying
type when needed.

is inhabited. Indeed, to prove such a proposition, the connectedness of
B𝐺 gives an identification 𝑝: sh𝐺 = 𝑠. Then the dependent pair (reflB𝐺, 𝑝)
makes an identification 𝜋: (B𝐺, sh𝐺) = (B𝐺, 𝑠) in 𝒰=1

∗ , which in turn pro-
duces an identification apΩ 𝜋: ΩB𝐺 = Ω(B𝐺, 𝑠), leading to an identification
𝜛: 𝐺 = Ω(B𝐺, 𝑠) by composition with the canonical identification 𝐺 = ΩB𝐺,
whose truncation |𝜛| is the element we wanted to construct. For that
reason, we call any 𝑠:B𝐺 “a shape of 𝐺”.

What you have to get out of this is that any group 𝐺 is defined as the
group Ω(𝐴, 𝑎) of symmetries of a mathematical object, namely 𝑎, in a given
type, namely 𝐴. The set of symmetries defined by 𝐺 is the set U𝐺 :≡ (𝑎 = 𝑎),
and this set can be equipped with the structure of an abstract group. But,
we insist that the view we propose here makes the classifying type 𝐴 and
its element 𝑎 the primitive notion. The set U𝐺 and its structure, while
important, is the derived notion here. For those of you with background in
algebraic topology, it would correspond to defining any group as the group
of automorphisms of a homogeneous space.

group theory without groups 5

A lot of interesting types are 1-truncated but are not connected,
hence they can not serve as a basis to generate a group. However, if given
an element of such a type, we can restrict our attention to its connected
component, which is then an element of 𝒰=1

∗ . Recall that in any type 𝐴, the
connected component of an element 𝑎: 𝐴 is the type 𝐴(𝑎) = ∑𝑥:𝐴‖𝑎 = 𝑥‖.
It is a subtype of 𝐴, in the sense that the first projection 𝐴(𝑎) → 𝐴
induces equivalences on all identifications types. In particular, there is an
implication isGrpd𝐴 → isGrpd(𝐴(𝑎)). So, for a 1-truncated type 𝐴, we can
define, for each element 𝑎: 𝐴, the group

Aut𝐴 𝑎 :≡ Ω(𝐴(𝑎), (𝑎, |refl𝑎|))

In particular, if 𝐴 is already connected, we use indifferently Aut𝐴 𝑎 and
Ω(𝐴, 𝑎).

Let us know turn to examples of groups.

(i) Note that Set :≡ ∑𝑋:𝒰 isSet𝑋 is 1-truncated. For each set 𝑆, the group Set is 1-truncated because the type 𝑝 = 𝑞,
for 𝑝, 𝑞: 𝑋 = 𝑌 and 𝑋, 𝑌 : Set, can be
identified through univalence and function
extensionality with ∏𝑥:𝑋 ̃𝑝 𝑥 = �̃� 𝑥. This is a
dependent product of propositions (as for
all 𝑥: 𝑋, ̃𝑝 𝑥 and �̃� 𝑥 are elements of the set
𝑌), hence it is a proposition itself.

AutSet 𝑆 is called the group of permutations on elements of 𝑆. Of
particular interest are the groups Σ𝑛 :≡ AutSet n where n is the type with
𝑛 elements you defined inductively in class. The group Σ𝑛 is called the
group of permutations on 𝑛 elements. In other words, Σ𝑛 is the group of
symmetries of the finite set with 𝑛 elements in the type of sets. These
groups, or more precisely their classifying types, have been introduced
by Egbert toward the end of his lectures.

(ii) The group Σ1 is also called the trivial group. Its classifying type BΣ1
is the type of those types that are merely equal to the type with one
element. This is contractible, or in other words BΣ1 = 1, and Σ1 is as
well the group of symmetries of the unique element ∗ in 1. o

(iii) The group Aut𝑆1 • is called the group of integers and is denoted Z. In
what sense exactly is it related to the brave old integers you know from
your younger age? You have seen in the Agda track an overview of
this relationship, namely that every element of UZ, which is • = • by
definition, is of the form 	𝑘 for some integer 𝑘. A proof of this fact is
recalled later on in these notes, once we introduce a little more material
about groups.

Construction of groups

This is, in my opinion, where this approach shines. I invite the
knowledgeable reader to think about how a subgroup or a quotient group is
defined in ordinary group theory: the elements of the newly constructed
groups are described from the elements of the old one. It is non-obvious at
all what is the mathematical object of which the newly constructed group
is the group of symmetries. The approach presented here intends to correct
this flaw.

Another motto for the theory presented here is: a group is better
understood through its actions. One consequence of the identifications

group theory without groups 6

types in HoTT is that any function 𝑓 : 𝐴 → 𝐵 provides a way to “simulate”
the symmetries of 𝑎 in 𝐴 by symmetries of 𝑓 𝑎 in 𝐵. More precisely, you
have seen that 𝑓 induces a function ap𝑓: (𝑎 = 𝑎) → (𝑓 𝑎 = 𝑓 𝑎) that
preserves refl , composition and inverses. This is exactly what we need
to encode the notion of group action. For a group 𝐺:Group, define the
type of 𝐺-actions in a type 𝐴 as the type B𝐺 → 𝐴. Given such an action
𝑓 :B𝐺 → 𝐴, we say that 𝑓 is an action of 𝐺 on 𝑓sh𝐺. If 𝐻 is another group,
then an action 𝑓 of 𝐺 in B𝐻 together with an identification 𝑝: sh𝐻 = 𝑓 sh𝐺
allows to simulate symmetries of sh𝐺 by symmetries of sh𝐻 through the
composite 𝑝 ⋅ (ap𝑓 _) ⋅ 𝑝−1. For this reason, the data of a map 𝑓 :B𝐺 → B𝐻
together with an identification in sh𝐻 = 𝑓 sh𝐺 (also known as a pointed
map) is called a homomorphism of groups.

Actions of a group in Set suffice to understand the group completely,
and we shall focus on these. Write 𝐺-Set for the type B𝐺 → Set of actions
of 𝐺 in Set. Of importance is the following action Pr𝐺: 𝑠 ↦ (sh𝐺 = 𝑠). It
is an action of 𝐺 on the set U𝐺, and allows to “simulate” the symmetries
of sh𝐺 by symmetries of U𝐺. Those among you with background in
ordinary group theory will recognize the usual action of a group on
itself by multiplication, also called the principal torsor of 𝐺 in geometric
contexts. One crucial point of this approach is that there is an identification
𝑝𝐺: 𝐺 = Aut𝐺-Set Pr𝐺. Indeed, we can generalize a bit the definition of the
principal torsor to make it an action of 𝐺 in 𝐺-Set as follows:

Pr:B𝐺 → 𝐺-Set, 𝑠 ↦ (𝑠 = _)

Then the identification 𝑝𝐺 will follow by univalence and application of
Ω as soon as we show that all fibers of Pr−1𝑋 are contractible when 𝑋
is in the connected component of Pr𝐺. Because being contractible is a
proposition, it suffices to show that the fiber Pr−1(Pr𝐺) is contractible. The
pair (sh𝐺, reflPr𝐺

) is an element of this fiber; so it remains only to show that
it is a center of contraction. For every 𝑠:B𝐺 together with an identification
ℎ: Pr𝐺 = Pr 𝑠, we can consider the identification (ℎ sh𝐺) (reflsh𝐺

): 𝑠 = sh𝐺.
This provides an identification from (𝑠, ℎ) to (sh𝐺, reflPr𝐺

). The identifications type (𝑠, ℎ) =
(sh𝐺, reflPr𝐺

) in the fiber Pr−1(Pr𝐺) is
equivalent to ∑𝑝:𝑠=sh𝐺

trp𝑝 ℎ = reflPr𝐺
.

The transport occurs in the type family
𝑠 ↦ Pr𝐺 = Pr 𝑠, hence there is an identifi-
cation trp𝑝 ℎ = ℎ ⋅ (apPr 𝑝) = ℎ ⋅ 𝑝−1 ⋅ _ =
((𝑥:B𝐺) ↦ (𝑞: sh𝐺 = 𝑥) ↦ 𝑝−1 ⋅ ((ℎ 𝑥) 𝑞)).
For any identification 𝑘: Pr𝐺 = Pr𝐺,
one shows by path induction
(𝑘 𝑠)𝑝 = 𝑝 ⋅ ((𝑘 sh𝐺)_ reflsh𝐺

) for
all 𝑝: sh𝐺 = 𝑠. So symmetries 𝑘, 𝑘′
of Pr𝐺 in 𝐺-Set are equal as soon as
((𝑘 sh𝐺) reflsh𝐺

= (𝑘′ sh𝐺) reflsh𝐺
,

which allow to reduce further
trp𝑝 ℎ = reflPr𝐺

to the equivalent type
𝑝−1 ⋅ (ℎ sh𝐺) reflsh𝐺

= reflsh𝐺
. In other

words, the type (𝑠, ℎ) = (sh𝐺, reflPr𝐺
) is a

singleton type.

Let us focus here on the circle 𝑆1 and the group Z that it generates.
As promised, I shall now prove that UZ is indeed in bijection with the
integers, and that this bijection is given by 𝑘 ↦ 	𝑘. Define the 𝐺-set
𝑍: 𝑆1 → Set, by setting 𝑍 • to be the set of integers and 𝑍 	 to be 𝑠 where
𝑠 is the “successor” equivalence, that is the bijection 𝑍 • → 𝑍 • that
send every integer 𝑘 to 𝑘 + 1. By the induction property of 𝑆1, this is
sufficient to fully define 𝑍: 𝑆1 → 𝒰. The key of the proof is to construct
an identification 𝑍 = PrZ. For a given 𝑐: 𝑆1, there is an obvious function
𝑡𝑐: PrZ 𝑐 → 𝑍 𝑐, namely 𝑝 ↦ trp𝑍𝑝 0. Conversely, there is 𝑤𝑐: 𝑍 𝑐 →
PrZ 𝑐 defined by setting 𝑤• to be 𝑘 ↦ 	𝑘 and ap𝑤_

	 to be the unique
identification 𝑤• =	 𝑤• . We want to show that 𝑡𝑐 and 𝑤𝑐 are inverse

You can check that 𝑤• =	 𝑤• is equiva-
lent to 𝑤• (_ − 1) ⋅	 = 𝑤• .

equivalences. By identification induction on 𝑝: • = 𝑐, we get that 𝑤𝑐(𝑡𝑐 𝑝) =
𝑝. Indeed, 𝑤• (𝑡 • refl •) = 	0 = refl • . Now, by the induction property of
𝑆1, proving that 𝑡𝑐 ∘ 𝑤𝑐 = id𝑍 𝑐 for each 𝑐 amounts to providing ℎ: 𝑡 • ∘ 𝑤 • =
id𝑍 • and an identification 𝜂: ℎ =	 ℎ. The element ℎ is given pointwise by

group theory without groups 7

the identification trp𝑍
	𝑘 0 = (trp𝑍)

𝑘0 = 𝑠𝑘 0 = 𝑘. Now notice that the type
of ℎ is a proposition, as 𝑍 • is a set, hence 𝜂 is provided for free. In the end,
we do have that 𝑤• : 𝑘 ↦ 	𝑘 is an equivalence (with inverse 𝑡 •) from the
set of integers to UZ. But notice that we actually did more. As announced,
we have constructed an identification 𝑤: 𝑍 = PrZ. So in particular, we
have an identification AutZ-Set𝑍 = Z, by applying AutZ-Set to 𝑤 and
composing with the identification 𝑝Z

−1:AutZ-Set PrZ = Z. This provides
an alternative description of the circle: 𝑆1 is equivalent to Z − Set(𝑍) and
under this equivalence • is identified with the Z-set 𝑍. We can simplify
further by noticing that Z-Set ≡ (𝑆1 → Set) is equivalent, by the universal
property of the circle and univalence, to ∑𝑋:Set 𝑋 ≃ 𝑋. In the end, writing
Z :≡ 𝑍 • for the set of integers, it provides an equivalence of type The identifications type (Z, 𝑠) = (𝑋 , 𝜑)

takes place in the type ∑𝑋:𝒰 𝑋 → 𝑋.
In particular, ‖(Z, 𝑠) = (𝑋 , 𝜑)‖ implies
that 𝑋 is a set and 𝜑 an equivalence, so
that the right hand-side in the displayed
equality is equivalently written as
∑𝑋:Set ∑𝜑:𝑋≃𝑋‖(Z, 𝑠) = (𝑋 , 𝜑)‖.

𝑆1 ≃ ∑
𝑋:𝒰

∑
𝜑:𝑋→𝑋

‖(Z, 𝑠) = (𝑋 , 𝜑)‖

For those of you with knowledge about ordinary group theory,
you might know see why the theory exposed here is indeed group theory
and not some new kind of theory with a vague analogy with group theory.
We defined groups and groups homomorphisms, and you can check that
there is a (univalent) category of groups, denoted Group in the following.
We can as well define a (univalent) category AbsGroup whose objects are
the abstract groups and their morphisms the homomorphisms of such
defined in ordinary group theory. This is not the focus of these notes, so
I’ll skip over the proper definitions here. The interested reader can check
[Bez+22] for the rigorous details. However, the function U from groups
to abstract groups that associates to 𝐺:Group the set sh𝐺 = sh𝐺 with its
structure of abstract group, can be extended into a functor from Group to
AbsGroup. This functor can be shown to be an equivalence of categories,
using crucially the identification 𝑝𝐺: 𝐺 = Aut𝐺-Set Pr𝐺 we constructed
earlier.

Each 𝐺-set 𝑋 produces a 1-truncated type, namely the total space
𝑋 :≡ ∑𝑠:B𝐺 𝑋 𝑠. If you think of the 𝐺-set 𝑋 as associating to each shape
𝑠:B𝐺 a set 𝑋 𝑠 of possible structures on 𝑠, then 𝑋 is the type of 𝑋-structured
shapes, whose elements are the choice of a shape 𝑠 together with a structure
on 𝑠 drawn from 𝑋 𝑠. From this point of view, the symmetries of a 𝑋-
structure shape of the form (sh𝐺, 𝑥) ought to be symmetries of sh𝐺 that
respect the structure 𝑥 in some sense. To go back to the example of the
square graph 𝑆 of earlier, consider the type GraphSet of graphs whose
type of vertices is a set. Then define the family of sets 𝑉 :GraphSet → Set
associating to each such graph its set of vertices. We can simply restrict 𝑉
to get a (GraphSet)(𝑆)-set, abusively still denoted 𝑉. Here, a shape is a graph
merely equal to 𝑆, and a structure on such an graph is a choice of one of
its vertices. A 𝑉-structured graph of the form (𝑆, 𝑣) is then a pointed graph
whose underlying plain graph is 𝑆. The type of symmetries of (𝑆, 𝑣) in �̃�
can be calculated to be equivalent to the type of those symmetries of 𝑆 in
GraphSet preserving the selected vertex.

The notion of subgroups of a given group emerges. A subgroup of

group theory without groups 8

𝐺 is defined to be a 𝐺-set 𝑋 together with a choice of element of 𝑋 sh𝐺,
with the side propositional condition that 𝑋 is connected (we say that 𝑋 is
transitive). In other words, a subgroup of 𝐺 is an element of the type

Sub𝐺 :≡ ∑
𝑋:𝐺-Set

(𝑋 sh𝐺) × (isConn 𝑋)

Thinking again in terms of structures, a subset of 𝐺 is the choice of a notion
of structure on shapes, together with such a structure on the shape sh𝐺.
The intuitive meaning of the side condition isConn 𝑋 is that all structures
(in the sense of 𝑋) on a given shape 𝑠:B𝐺 are essentially “equivalent”. In the
example of the previous paragraph, 𝑉 :GraphSet(𝑆)-Set satisfies isConn �̃� as,
the vertices of 𝑆 are indistinguishable if we erase their names 0, 1, 2, and
3. Going back to the general case, There is a map, that associates to each
subgroup of 𝐺 an actual group together with a homomorphism to 𝐺:

Sub𝐺 → ∑
𝐻:Group

∑
𝑓 :B𝐻→B𝐺

sh𝐺 = 𝑓 sh𝐻, (𝑋 , 𝑥) → (Aut𝑋(sh𝐺, 𝑥), pr1, reflsh𝐺
)

Notice that this map would still make sense for a definition of Sub𝐺 with-
out the side condition of connectedness. But the advantage of requiring
the connectedness of 𝑋 is that the map has propositional fibers. In other
words, no two different elements of Sub𝐺 will yield the same group 𝐻 over
𝐺. This recover the notion of subgroup found in ordinary group theory: if
𝑓 :B𝐻 → B𝐺 is such that ap𝑓 is injective, then the fiber at (𝐻 , 𝑓 , 𝑝) is non
empty (and so contractible) because the type family 𝑓 −1 is then a 𝐺-set,
whose total space is connected (it is B𝐻), so we can form the subgroup
given by 𝑓 −1 and the element (sh𝐻, 𝑝) of the set 𝑓 −1 sh𝐺; this subgroup is
sent to an element equal to (𝐻 , 𝑓 , 𝑝) by the previous map. While abstract
group theory introduces the notion of subgroup through algebraic axioms
(in the form of a subset stable under the different operations), our approach
introduces the notion directly as “the group of symmetries of something”,
this something being the selected 𝑋-structure on the shape sh𝐺.

A transitive 𝐺-set 𝑋 determines several subgroups. Indeed, a priori,
different elements of the set 𝑋 sh𝐺 yield different subgroups. Given a
symmetry 𝑔:U𝐺 of sh𝐺 and 𝑥: 𝑋 sh𝐺, the subgroup (𝑋 , trp𝑋𝑔 𝑥) is called the
conjugate of (𝑋 , 𝑥) by 𝑔. The type Sub𝐺 of subgroups of 𝐺 can be proven
to be a set, and when the proposition ∏𝑔:U𝐺(𝑋 , trp𝑋𝑔 𝑥) = (𝑋 , 𝑥) holds, the
subgroup (𝑋 , 𝑥) is said to be normal. It is then only natural to consider I am intentionally cutting corners here

about normal subgroups. The reader
should refer to Chapter 5 of [Bez+22] for a
complete treatment of the subject.

the group Aut𝐺-Set 𝑋, that is the group of symmetries of the 𝐺-set 𝑋 itself.
This group recover the notion of quotient group in ordinary group theory.
Here, the synthetic approach offers a very nice point of view: in ordinary
group theory, it is very not obvious how the quotient group is the group
of symmetries of a mathematical object; the synthetic approach on the
contrary gives directly the mathematical object of which the quotient
group is the group of symmetries, namely the 𝐺-set 𝑋. Thinking of 𝑋 as
defining a notion of structure on the shape in B𝐺, the quotient group is the
set of “𝐺-equivariant permutations of 𝑋-structure on sh𝐺”.

One can even consider the same group Aut𝐺-Set 𝑋 when the given
subgroup (𝑋 , 𝑥) is not normal. This is a perfectly fine group, implementing

group theory without groups 9

the symmetries of perfectly well-defined mathematical object (the 𝐺-set
𝑋). The equivalent construction in abstract group theory is far from
trivial. It is only accessible as the quotient of the normalizer of 𝐻 in 𝐺 by
the subgroup 𝐻 (where 𝐻 is the abstract subgroup corresponding to the
concrete subgroup (𝑋 , 𝑥)). This construction is sometimes called the Weyl
group of 𝐻 in 𝐺. The mathematical object of which this Weyl group is the
group of symmetries is not obvious at all in abstract group theory. In our
synthetic version, this mathematical object is readily available! I invite you
to explore further how this view on group theory can be fruitful in many
ways by consulting [Bez+22]. Although the book is still far from a final
version, the first 4 chapters are in good enough shape to be read by the
student of this Summer School.

References

[Bez+22] Marc Bezem et al. Symmetry. https://github.com/UniMath/
SymmetryBook. Commit: 982015d. Aug. 18, 2022.

https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook

	HoTT has built-in symmetries
	The structure of the type of identifications
	Connectedness
	Definition of groups
	Construction of groups

