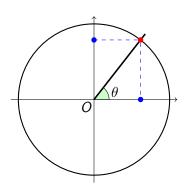
Mathématiques Avancées Semaine 9

20 novembre 2013

Angles et cercle trigonométrique

Soit $\theta \in \mathbb{R}$ et $M(\theta)$ le point d'intersection du cercle trigonométrique et de la demi-droite d'angle θ par rapport à l'axe des abscisses. On note $e^{i\theta}$ le complexe associé à $M(\theta)$.



Écriture exponentielle

Exemple

- On a $e^{i0} = e^{i2\pi} = 1$ et $e^{i\pi} = e^{-i\pi} = -1$.
- On a $e^{i\frac{\pi}{2}} = i$ et $e^{-i\frac{\pi}{2}} = e^{i\frac{3\pi}{2}} = -i$.

<u>Th</u>éorème

- 1 Pour tout réel θ on a $e^{i\theta} = \cos \theta + i \sin \theta$.
- **2** Quels que soient $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$ on a $e^{i(\theta+2\pi n)} = e^{i\theta}$.

Évaluation des fonctions trigonométriques

Rappel: valeurs à retenir

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Pour les autres valeurs, on utilise les symétries du cercle.

Exemple

$$\cos\frac{2\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}$$

Écriture exponentielle

Théorème

Pour tout nombre complexe $z \neq 0$,

- **1** il existe $\theta \in \mathbb{R}$ tel que $z = |z| e^{i\theta}$. On dit alors que θ est **un** argument de z;
- **2** si θ et θ' sont deux arguments de z, alors il existe $n \in \mathbb{Z}$ tel que $\theta \theta' = 2\pi n$.

Exemple (argument de $z=rac{\sqrt{6}+\mathrm{i}\sqrt{2}}{2}$)

On commence par le module $|z| = \frac{\sqrt{6+2}}{2} = \sqrt{2}$, puis

$$\frac{z}{|z|} = \frac{\sqrt{3}}{2} + \mathbf{i}\frac{1}{2} = \cos\frac{\pi}{6} + \mathbf{i}\sin\frac{\pi}{6} = e^{\mathbf{i}\frac{\pi}{6}}$$

Écriture exponentielle

Écriture exponentielle

Tout nombre complexe non nul z peut s'écrire sous la forme

$$z = r e^{i\theta}$$

avec r > 0 son module et $\theta \in \mathbb{R}$ un argument.

Remarques

- le module r est unique car c'est |z|
- lacksquare heta est seulement « unique » modulo 2π
- lacksquare il y a un unique $heta\in]-\pi,\pi]$ appelé argument principal

Formules d'addition des angles

Principe (admis)

La multiplication par $e^{\mathrm{i}\theta}$ s'identifie (dans le plan $\mathcal P$) à la rotation d'angle θ par rapport à l'origine.

Théorème

Pour tous réels θ, θ' et pour tout entier $n \in \mathbb{Z}$ on a

$$e^{i(\theta+\theta')}=e^{i\theta}\times e^{i\theta'}, \qquad \left(e^{i\theta}\right)^n=e^{in\theta}$$

Exercice

Réécrire ce théorème en termes de propriétés des fonctions trigonométriques cos et sin.

Exercices

Exercice

Déterminer le module et un argument de

$$z = \sqrt{2 + \sqrt{2}} + \mathbf{i}\sqrt{2 - \sqrt{2}}$$

(on pourra commencer par z^2).

Exercice

Donner le module et un argument des nombres complexes

$$z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}, \quad z_2 = 1 + i, \quad z_3 = \frac{z_1}{\overline{z_2}}$$

En déduire les valeurs de cos $\frac{\pi}{12}$ et sin $\frac{\pi}{12}$.

Linéarisation de cos et sin

Exercice

1 Prouver les formules d'Euler : pour tout $\theta \in \mathbb{R}$,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

f 2 En déduire que pour tout $heta\in\mathbb{R}$ on a

$$(\cos \theta)^2 = \frac{1 + \cos(2\theta)}{2}, \qquad (\sin \theta)^2 = \frac{1 - \cos(2\theta)}{2},$$

 $(\sin \theta)^3 = \frac{3}{4} \sin \theta - \frac{1}{4} \sin(3\theta).$

Exercices

Exercice

Déterminer le module et un argument de

$$z = \sqrt{2 + \sqrt{2}} + \mathbf{i}\sqrt{2 - \sqrt{2}}$$

(on pourra commencer par z^2).

Exercice

Donner le module et un argument des nombres complexes

$$z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}, \quad z_2 = 1 + i, \quad z_3 = \frac{z_1}{\overline{z_2}}$$

En déduire les valeurs de cos $\frac{\pi}{12}$ et sin $\frac{\pi}{12}$.

Des sommes trigonométriques

Exercice

Pour tout entier $n \ge 0$ on considère

$$C_n = \sum_{k=0}^n \cos(kx), \qquad S_n = \sum_{k=0}^n \sin(kx).$$

En faisant apparaître une somme de suite géométrique dans $C_n + \mathbf{i}S_n$, simplifier ces expressions (selon la valeur de x).

Exercice 🛇

Simplifier de même
$$\sum_{k=0}^{n} {n \choose k} \cos(kx)$$
 et $\sum_{k=0}^{n} {n \choose k} \sin(kx)$.

Addition des $e^{i\theta}$

La multiplication est facile mais l'addition...

Exercice ©

En utilisant (et prouvant) les formules d'Euler

$$\cos \theta = rac{e^{{f i} heta} + e^{-{f i} heta}}{2} \qquad ext{et} \qquad \sin heta = rac{e^{{f i} heta} - e^{-{f i} heta}}{2{f i}},$$

démontrer que pour tous $(lpha,eta)\in\mathbb{R}^2$ on a

$$e^{\mathbf{i}\alpha} + e^{\mathbf{i}\beta} = 2\cos\left(\frac{\alpha - \beta}{2}\right)e^{\mathbf{i}\frac{\alpha + \beta}{2}}$$

et donner de même une forme factorisée de $e^{{f i}lpha}-e^{{f i}eta}.$

Application à l'intégration

Laquelle de ces intégrales est la plus difficile à calculer?

$$\int_0^{\pi/3} \sin(3x) \, dx \qquad \text{ou} \qquad \int_0^{\pi/3} (\sin(x))^3 \, dx$$

Un bref rappel

Pour tout entier n > 1,

- une primitive de $x \mapsto \cos(nx)$ est $\frac{\sin(nx)}{n}$ une primitive de $x \mapsto \sin(nx)$ est $\frac{-\cos(nx)}{n}$

Exemple

On obtient donc

$$\int_0^{\pi/3} \sin(3x) \, dx = ?$$

Un problème?

Comment trouver des primitives pour $(\cos x)^n$ et $(\sin x)^n$?

Idée : linéarisation

Utiliser les formules d'Euler pour transformer l'expression en une somme de termes de la forme $\lambda \cos(kx)$ ou $\lambda \sin(kx)$ avec $\lambda \in \mathbb{R}$ et k entier.

Exemple

Pout tout $x \in \mathbb{R}$ on a

$$(\sin(x))^3 = \frac{3}{4}\sin(x) - \frac{1}{4}\sin(3x).$$

Exercices

Exercice 🕲

Démontrer que pour tout $\theta \in \mathbb{R}$ on a

$$(\cos(\theta))^2 = \frac{1+\cos(2\theta)}{2}, \qquad (\sin(\theta))^2 = \frac{1-\cos(2\theta)}{2}.$$

Exercice 🛇

Montrer que

$$\int_0^\pi \sin(x)(\cos(x))^2 dx = \frac{2}{3}$$