Exercice 1. Factorisation

Soient $P = X^4 - 4X^3 + 5X^2 - 4X + 1$ et $Q = X^7 - 5X^6 + 8X^5 - 4X^4 - 4X^3 + 8X^2 - 5X + 1$.

- (a) Trouver deux racines « évidentes » de Q et donner leurs multiplicités.
- (b) Trouver un polynôme $R \in \mathbb{R}[X]$ de degré 2 tel que $P = X^2 R \left(X + \frac{1}{X}\right)$. En déduire une factorisation de P en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
- (c) Décomposer Q en produit de polynômes irréductibles dans $\mathbb{C}[X]$.

Exercice 2. Polynôme dérivé

- (a) Démontrer que la dérivation des polynômes est *linéaire*, c'est à dire que pour tout couple $(P,Q) \in \mathbb{R}[X]^2$ et pour tout $\lambda \in \mathbb{R}$, on a $(P + \lambda Q)' = P' + \lambda Q'$.
- (b) En commençant par traiter le cas des monômes, en déduire que

$$\forall (P,Q) \in \mathbb{R}[X]^2, \quad (PQ)' = P'Q + PQ'.$$

- (c) Soit $P \in \mathbb{R}[X]$. Montrer que la suite $(P^{(n)}(0))_{n \in \mathbb{N}}$ est stationnaire.
- (d) Montrer que tout polynôme $P \in \mathbb{R}[X]$ peut s'écrire comme la somme finie

$$P = \sum_{n=0}^{\infty} \frac{P^{(n)}(0)}{n!} X^{n}.$$

Exercice 3. Une suite récurrente linéaire périodique

Soient $P = X^4 - X^3 + X^2 - X + 1$ et $Q = X^{10} - 1$.

- (a) Montrer que le polynôme Q a exactement 10 racines distinctes dans \mathbb{C} .
- (b) Montrer que Q est divisible par P dans $\mathbb{R}[X]$.
- (c) Soient z_1, z_2, z_3, z_4 les racines de P dans \mathbb{C} . Montrer qu'elles sont deux à deux distinctes et qu'elles vérifient $z_i^{10} = 1$ pour $1 \le i \le 4$.
- (d) Sans calculs, montrer que tout suite de réels $(u_n)_{n\in\mathbb{N}}$ telle que $u_{n+4} = u_{n+3} u_{n+2} + u_{n+1} u_n$ pour tout $n \in \mathbb{N}$ est nécessairement périodique.

Exercice 4. Relations entre coefficients et racines

(a) Soient α, β, γ les racines (dans \mathbb{C}) de $X^3 - X - 1$. En développant $(X - \alpha)(X - \beta)(X - \gamma)$, donner la valeur de

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}.$$

- (b) Trouver trois réels α, β, γ tels que $\alpha + \beta + \gamma = 2$, $\alpha\beta\gamma = -1/2$ et $1/\alpha + 1/\beta + 1/\gamma = 1/2$.
- (c) Soit $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{C}[X]$ avec $a_n \neq 0$. On note z_1, \dots, z_n ses racines dans \mathbb{C} comptées avec multiplicité. Montrer que

$$z_1 + z_2 + \dots + z_n = -\frac{a_{n-1}}{a_n}, \qquad z_1 \times z_2 \times \dots \times z_n = (-1)^n \frac{a_0}{a_n},$$

et plus généralement $\sum_{i_1 < i_2 < \dots < i_k} z_{i_1} \times \dots \times z_{i_k} = (-1)^k \frac{a_{n-k}}{a_n}$ pour tout $k \in \{1, \dots, n\}$.