Limites de fonctions Exercices

Lycée Carnot, E1A

Calcul de limites

1. Déterminer les limites suivantes en $+\infty$ et $-\infty$.

(a)
$$f(x) = x^4 - 2x^3 + 1$$
 (b) $g(x) = x^5 - e^{2x}$

(b)
$$g(x) = x^5 - e^{2x}$$

(c)
$$h(x) = (3+x^2) e^x$$

2. Déterminer les limites suivantes :

(a)
$$f(x) = \frac{-5x^2 + 37x - 4}{8x^2 - 2}$$
 en $+\infty$.

(e)
$$h(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$
 en $+\infty$.

(b)
$$g(x) = \frac{x^7 - 1}{52x^6 + 3x^2 - 2x}$$
 en $-\infty$.

(f)
$$f(x) = \sqrt{x^2 + 2x} - \sqrt{x^2 + x}$$
 en $+\infty$.

(c)
$$f(x) = \frac{x^7 e^x - x e^{2x}}{x^3 (\ln x) + x (\ln x)^5}$$
 en $+\infty$.

(g)
$$g(x) = \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}$$
 en $+\infty$.

(d)
$$g(x) = \frac{xe^x + x^2 + e^{x^3}}{x^7 + 5}$$
 en $-\infty$.

(h)
$$f(x) = \sqrt{\ln(x^2 + 1)} - \sqrt{\ln(x^2 - 1)}$$
 en $+\infty$.

(i)
$$g(x) = \frac{x^3}{\sqrt{1-x}} e^{\frac{1}{x(x-1)}} \text{ en } 0^+.$$

3. Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} \frac{e^{2x}}{9x^3}$$

(h)
$$\lim_{x \to +\infty} \frac{(x^3)^x}{(3^x)^3}$$

(b)
$$\lim_{x \to +\infty} \frac{e^{2x-1}}{(\ln x)^4}$$

(i)
$$\lim_{x \to 0^+} \frac{(x^3)^x}{(3^x)^3}$$

(c)
$$\lim_{x \to 3^+} \frac{2x^2 - 3x + 2}{x^2 - 9}$$

(j)
$$\lim_{x \to +\infty} \ln(x+3) - \ln(x-1)$$

(d)
$$\lim_{x \to 1} \ln(x+3) - \ln(x-1)$$

(k)
$$\lim_{x \to +\infty} \ln(x^2 + 1) - 2\ln x$$

(e)
$$\lim_{x \to +\infty} \sqrt{x+6} - \sqrt{x-2}$$

(1)
$$\lim_{x \to 0^+} \frac{x \ln x}{\sqrt{x} + 1}$$

(f)
$$\lim_{x \to 3^+} \frac{1}{x-3} - \frac{1}{x^2-9}$$

(m)
$$\lim_{x \to +\infty} x^4 e^{-\sqrt{x}}$$

$$(g) \lim_{x \to 0^+} x^a$$

(n)
$$\lim_{x \to +\infty} \frac{e^{x^3}}{x}$$

Composition des limites

4. Déterminer les limites suivantes.

(a)
$$\lim_{x\to 0^+} x \ln(x)$$
 (on pourra poser $y=\frac{1}{x}$)

(b)
$$\lim_{x \to 1^+} (x-1)^2 \ln(x-1)$$
 (on pourra poser $y = x-1$)

(c)
$$\lim_{x\to 0^+} x^2 e^{\frac{1}{x}}$$
 (on pourra poser $y=\frac{1}{x}$)

(d)
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$$
 (on pourra poser $y=\sqrt{x}$)

Limite à droite, limite à gauche

- **5**. Soit $a \in \mathbb{R}$.
 - (a) La fonction $x \mapsto |x|$ est-elle continue en a?
 - (b) La fonction $x \mapsto |x| + (x |x|)^2$ est-elle continue en a?
- **6**. Étudier la continuité au point x_0 des fonctions suivantes.

(a)
$$x_0 = 2$$
 et $f(x) = \begin{cases} x+1 & \text{si } x < 2 \\ x^2 - 1 & \text{si } x \ge 2 \end{cases}$

(b)
$$x_0 = -\frac{1}{2}$$
 et $f(x) = \begin{cases} \frac{4x^2 + 5x - 4}{2x + 1} & \text{si } x \neq -\frac{1}{2} \\ 0 & \text{si } x = -\frac{1}{2} \end{cases}$

(c)
$$x_0 = 0$$
 et $g(x) = \begin{cases} \frac{x^2}{x - e^{1/x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

(d)
$$x_0 = 0$$
 et $h(x) = \begin{cases} x \ln\left(\frac{x^2 + 1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

(e)
$$x_0 = 1$$
 et $j(x) =\begin{cases} \ln(\sqrt{x} - 1) - \ln(x - 1) & \text{si } x > 1 \\ 0 & \text{si } x = 1 \end{cases}$

Prolongement par continuité

7. Déterminer l'ensemble de définition des fonctions suivantes, puis rechercher si elles admettent un prolongement par continuité aux bornes de cet ensemble de définition :

(a)
$$f_1(x) = \frac{2}{x-2} - \frac{3}{(x-2)^2}$$

(d)
$$f_4(x) = \frac{x \ln x}{x - 1}$$

(b)
$$f_2(x) = \frac{x^2 - 2x - 8}{x + 2}$$

(e)
$$f_5(x) = \frac{x-1}{\ln x}$$

(c)
$$f_3(x) = \frac{x^2 - 2x - 8}{\sqrt{x+2}}$$

(f)
$$f_6(x) = e^{-1/x^2}$$

Utilisation d'inégalités

8. Déterminer les limites suivantes. (a)
$$\lim_{x\to +\infty} \frac{2x+\lfloor x\rfloor}{1-\lfloor x\rfloor}$$

(b)
$$\lim_{x \to 0} \frac{1}{\lfloor \frac{3}{x} \rfloor}$$

9. Déterminer les limites suivantes. (a)
$$\lim_{x\to +\infty} \frac{e^{x^3}}{x}$$

(b)
$$\lim_{x \to +\infty} \frac{xe^x + x^2 + e^{x^3}}{x^3 + 5}$$

10. On considère la fonction $f: x \mapsto (x-1)e^{\frac{1}{\ln(x)}}$.

Le but est de trouver la limite de f en 1^- .

- (a) Effectuer le changement de variable X = 1 x.
- (b) Démontrer que : $\forall u > -1$, $\ln(1+u) \leq u$.
- (c) En déduire que : $\forall u > -1, \ u \times e^{\frac{1}{\ln(1+u)}} \geqslant u \times e^{\frac{1}{u}}.$
- (d) Déterminer $\lim_{u\to +\infty} u \times e^{\frac{1}{u}}$ et conclure.
- 11. On considère la fonction $f: x \mapsto \frac{x^3}{\sqrt{1-x}} \ e^{\frac{1}{x(x-1)}}$

Le but est de trouver la limite de f en 1^+ .

- (a) Effectuer le changement de variable X = 1 x.
- (b) Démontrer que : $\forall u > 0, \ 0 < \frac{(1-u)^3}{\sqrt{u}} \times e^{\frac{1}{-u+u^2}} \leqslant (1-u)^3 \times \frac{e^{-\frac{1}{u}}}{\sqrt{u}}.$
- (c) Déterminer $\lim_{u\to 0^+} \frac{e^{-\frac{1}{u}}}{\sqrt{u}}$ et conclure.

Taux d'accroissement du logarithme

- 12. On calcule ici une limite très classique et très utile. À connaître!
 - (a) Montrer que pour tout $x \in]-1; +\infty[\,,\,\,\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x.$
- (b) En déduire la limite de $\frac{\ln(1+x)}{x}$ lorsque $x \to 0$.
- 13. Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in \mathbb{R}$. On suppose que f est non nulle au voisinage de x_0 . On suppose enfin que $\lim_{x \to x_0} f(x) = 0$.
 - (a) Démontrer que $\lim_{x\to x_0} \frac{\ln(1+f(x))}{f(x)} = 1.$
 - (b) En déduire $\lim_{x\to 0} \frac{\ln(1+x^3)}{x}$ et $\lim_{x\to +\infty} x \ln(1+e^{-x})$.
- 14. Déterminer les limites suivantes

(a)
$$\lim_{x \to 0^+} (1+x^3)^{1/x}$$

 \Diamond

(f)
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x}$$

(b)
$$\lim_{x \to 0^+} \frac{\ln(1-5x)}{x}$$

(g)
$$\lim_{x \to 0} \frac{\ln(x+1)}{x^2}$$

(c)
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x}\right)$$

(h)
$$\lim_{x \to 0} (1+x)^{\ln x}$$

(d)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$$

(i)
$$\lim_{x \to 0^+} \frac{2\sqrt{x}}{\ln(1+x)}$$

(e)
$$\lim_{x \to 0^+} (1+x)^{\frac{1}{x}}$$

(j)
$$\lim_{x \to +\infty} x \ln \left(\frac{x+5}{x+3} \right)$$

15. Déterminer les limites suivantes.

(a)
$$\lim_{x\to 0} (\ln(e+x))^{\frac{1}{x}}$$

(b)
$$\lim_{x \to +\infty} (\ln(1 + e^{-x}))^{\frac{1}{x}}$$

- **16**. On considère la fonction $f: x \mapsto (\ln x)^{\ln(e-x)}$ et on se propose de déterminer sa limite pour $x \to e^-$ (e par valeurs strictement inférieures).
 - (a) On pose $X = \frac{x}{e}$. Exprimer f(x) en fonction de X.
 - (b) Montrer que $\lim_{X \to 1^{-}} \frac{\ln(1 + \ln X)}{X 1} = 1.$
 - (c) Montrer que $\lim_{X\to 1^-} \frac{1+\ln(1-X)}{\ln(1-X)} = 1$.
 - (d) En déduire que f(x) peut s'écrire sous la forme :

$$f(x) = \exp(-(1 - X)\ln(1 - X) H(X))$$

où H(X) est telle que $\lim_{X\to 1^-} H(X) = 1$.

(e) En déduire $\lim_{x \to e^{-}} f(x)$. (on pourra poser T = 1 - X)

Démonstrations du cours

17. Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$. Montrer que:

$$\left. \begin{array}{l} f \text{ born\'ee} \\ \lim_{x \to x_0} g(x) = 0 \end{array} \right\} \to \lim_{x \to x_0} (f \times g)(x) = 0$$

- **18**. Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.
 - (a) Montrer que :

(b) Montrer que:

(c) Montrer que:

On pourra remarquer que:

$$f(x)g(x) - \ell_1\ell_2 = f(x)(g(x) - \ell_2) + \ell_2(f(x) - \ell_1).$$