Colles de mathématiques en E1A

Intégration sur un intervalle non borné, variables aléatoires à densité.

Semaine 30 : du 29 mai au 2 juin

1 Connaissances exigibles

1.1 Intégration sur un intervalle non borné

Cours:

- Intégration sur un intervalle du type $[a, +\infty[$ ou $]-\infty, b]$ ou $]-\infty, +\infty[$, par passage à la limite. Convergence et calcul des intégrales de références : fonctions puissances (Riemann) et fonctions exponentielles. Propriétés fondamentales de l'intégration : relation de Chasles, linéarité, positivité et croissance. Théorème de comparaison pour les fonctions positives (version majoration et version équivalence).
- Techniques de calcul. On commence toujours par se ramener à un segment, pour lequel on dispose de tout l'arsenal des intégrales : primitives à vue, intégration par partie, changement de variable. Exemples. Application à l'étude des suites d'intégrales par récurrence. Intégration des fonctions paires ou impaires.

Méthodes essentielles à savoir appliquer :

- Étudier la convergence et la valeur d'une intégrale impropre : calcul sur un segment, puis limites.
- Étudier la convergence et la valeur d'une intégrale impropre à l'aide des propriétés fondamentales.
- Justifier la convergence d'une intégrale à l'aide du théorème de comparaison pour les fonctions positives.

1.2 Variables aléatoires réelles à densité

Cours:

- Définition de variable aléatoire à densité et définition de fonction de densité. Caractérisation des fonctions de répartition des variables à densité, exemple des lois exponentielles. Interprétation de la densité en termes de « probabilité de présence ». Caractérisation des fonctions de densité, exemple des lois uniformes.
- Continuité de la loi d'une variable à densité. Pour tout intervalle I, expression de $\mathbb{P}([X \in I])$ à partir de la fonction de répartition ou par intégration d'une fonction de densité (tableau). Conséquence : une fonction de densité caractérise la loi. Transformations affines d'une variable à densité.
- Espérance d'une variable aléatoire réelle et conditions d'existence. Exemple. Calcul de l'espérance pour les lois exponentielles et pour les lois uniformes. Effet d'une transformation affine sur l'espérance.

Méthodes essentielles à savoir appliquer :

- Prouver qu'une fonction est la fonction de répartition d'une variable à densité. Calculer une densité.
- Prouver qu'une fonction est une densité d'une variable à densité. Calculer la fonction de répartition.
- Calculer $\mathbb{P}([X \in I])$ à partir de la fonction de répartition et à partir d'une fonction densité.

2 Questions de cours suggérées

Chaque question de cours se compose de trois parties (ordre à la convenance de l'examinateur) :

- Une question quizz orale à laquelle il faut répondre du tac au tac, sans rien écrire.
- Un énoncé fondamental du cours à rédiger par cœur, sans démonstration.
- Une mise en pratique élémentaire, en lien avec l'énoncé précédent. Il ne s'agira pas de l'exemple vu en cours, qui est signalé seulement pour vous guider dans la préparation.

A. Fonction de répartition d'une variable à densité

Quizz oral : comment est définie la fonction de répartition? quel est son ensemble de départ/d'arrivée?

Énoncé (définition). Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ et soit F sa fonction de répartition. On dit que X est à densité si:

- 1. La fonction F est continue sur \mathbb{R} .
- 2. Il existe un ensemble fini $A \subset R$ tel que F est de classe C^1 sur $\mathbb{R} \setminus A$.

On appelle alors densité de X toute fonction $f: \mathbb{R} \to \mathbb{R}_+$ telle que : $\forall x \in \mathbb{R} \setminus A$, f(x) = F'(x).

En pratique. L'examinateur définit une fonction $F: \mathbb{R} \to \mathbb{R}$ de son choix. L'élève doit prouver que c'est la fonction de répartition d'une variable à densité, et en calculer une densité. Autrement dit, il montre que :

- F est à valeurs dans [0,1].
- F est croissante sur \mathbb{R} .
- $-\lim_{x\to-\infty} F(x) = 0$ et $\lim_{x\to+\infty} F(x) = 1$.
- F est continue sur \mathbb{R} .
- F est de classe C^1 sur $\mathbb R$ privé d'un ensemble fini (éventuellement vide) de points, et donner sa dérivée.

Exemple vu en cours : loi exponentielle de paramètre 1.

B. Fonction de densité d'une variable à densité

Quizz oral : quelle est la définition d'une variable à densité ? d'une densité ?

Énoncé (théorème). Soit $A \subset \mathbb{R}$ un ensemble fini de points et soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue $sur \mathbb{R} \setminus A$. Alors il existe une variable aléatoire à densité X dont f est une densité si et seulement si :

(i) Pour tout
$$x \in \mathbb{R}$$
, $f(x) \ge 0$. (ii) $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut 1.

Et dans ce cas, la fonction de répartition F de X vérifie : $\forall x \in \mathbb{R}, \ F(x) = \int_{-\infty}^{x} f(t) dt$.

En pratique. L'examinateur définit une fonction $f: \mathbb{R} \to \mathbb{R}$ de son choix. L'élève doit vérifier s'il s'agit bien d'une densité, ou non. Le cas échéant, il calcule la fonction de répartition associée.

Exemple vu en cours : loi uniforme sur un segment.

C. Lois usuelles à densité

Quizz oral : si X est une variable à densité d'espérance 1, que peut-on dire de 2X + 3 et de son espérance?

Énoncé. L'élève reproduit les deux lignes du tableau des lois à densité usuelles qui correspondent aux lois uniformes et exponentielles (les autres seront vues dans la semaine) : lien cliquable vers le tableau.

En pratique. Prouver que la loi exponentielle de paramètre $\lambda>0$ admet une espérance et calculer sa valeur.

Démonstration vue en cours.